Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 273

Question Number 193522    Answers: 1   Comments: 0

Question Number 193513    Answers: 1   Comments: 0

Evaluate I=∫_s ∫x^3 dydz + x^2 ydzdx. where S is the closed surface consis− ting of the cylinder x^2 +y^2 =a^2 , 0≤z≤b and the cylinder disks z=0 and z=b, x^2 +y^2 =b, x^2 +y^2 ≤a. Help!

$$\mathrm{Evaluate}\:\mathrm{I}=\underset{\mathrm{s}} {\int}\int\mathrm{x}^{\mathrm{3}} \mathrm{dydz}\:+\:\mathrm{x}^{\mathrm{2}} \mathrm{ydzdx}. \\ $$$$\mathrm{where}\:\mathrm{S}\:\mathrm{is}\:\mathrm{the}\:\mathrm{closed}\:\mathrm{surface}\:\mathrm{consis}− \\ $$$$\mathrm{ting}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cylinder}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} ,\:\mathrm{0}\leqslant\mathrm{z}\leqslant\mathrm{b} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{cylinder}\:\:\mathrm{disks}\:\mathrm{z}=\mathrm{0}\:\mathrm{and}\:\mathrm{z}=\mathrm{b}, \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{b},\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \leqslant\mathrm{a}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 193512    Answers: 1   Comments: 0

Question Number 193511    Answers: 1   Comments: 0

Question Number 193504    Answers: 0   Comments: 1

lim_(x→0) x^x^x =?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}x}^{\mathrm{x}^{\mathrm{x}} } =? \\ $$

Question Number 193502    Answers: 2   Comments: 0

olve cos 2x .tan (((7π)/(19)))=tan (((17π)/(23)))+tan (((6π)/(23)))+tan (((12π)/(19)))

$$ \mathrm{olve}\: \\ $$$$\:\:\mathrm{cos}\:\mathrm{2x}\:.\mathrm{tan}\:\left(\frac{\mathrm{7}\pi}{\mathrm{19}}\right)=\mathrm{tan}\:\left(\frac{\mathrm{17}\pi}{\mathrm{23}}\right)+\mathrm{tan}\:\left(\frac{\mathrm{6}\pi}{\mathrm{23}}\right)+\mathrm{tan}\:\left(\frac{\mathrm{12}\pi}{\mathrm{19}}\right) \\ $$

Question Number 193492    Answers: 1   Comments: 0

Question Number 193494    Answers: 3   Comments: 1

Let n be a fixed positive integer such that sin((π/(2n)))+cos((𝛑/(2n)))=((√n)/2) Then find n

$$\boldsymbol{\mathrm{Let}}\:\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{fixed}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{integer}}\:\boldsymbol{\mathrm{such}}\:\boldsymbol{\mathrm{that}} \\ $$$$\mathrm{sin}\left(\frac{\pi}{\mathrm{2n}}\right)+\mathrm{cos}\left(\frac{\boldsymbol{\pi}}{\mathrm{2n}}\right)=\frac{\sqrt{\mathrm{n}}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{Then}}\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{n}} \\ $$

Question Number 193490    Answers: 0   Comments: 0

Question Number 193486    Answers: 1   Comments: 0

Question Number 193485    Answers: 2   Comments: 0

Show that 2^n −(−1)^n is divisible by 3 for all positive integers n.

$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}\:\mathrm{2}^{\boldsymbol{\mathrm{n}}} −\left(−\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} \:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{divisible}}\:\boldsymbol{\mathrm{by}} \\ $$$$\:\:\:\:\:\:\:\mathrm{3}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{all}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{integers}}\:\boldsymbol{\mathrm{n}}. \\ $$

Question Number 193484    Answers: 0   Comments: 0

Nice problem: Find 8 distinctive numbers ∈N\{0} such that these are simultaniously true: (1) a+b+c+d = e+f+g+h (2) a^2 +b^2 +c^2 +d^2 = e^2 +f^2 +g^2 +h^2 (3) a^3 +b^3 +c^3 +d^3 = e^3 +f^3 +g^3 +h^3 [Find a method to generate such numbers]

$$\mathrm{Nice}\:\mathrm{problem}: \\ $$$$\mathrm{Find}\:\mathrm{8}\:\mathrm{distinctive}\:\mathrm{numbers}\:\in\mathbb{N}\backslash\left\{\mathrm{0}\right\}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{these}\:\mathrm{are}\:\mathrm{simultaniously}\:\mathrm{true}: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:{a}+{b}+{c}+{d}\:=\:{e}+{f}+{g}+{h} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \:=\:{e}^{\mathrm{2}} +{f}^{\mathrm{2}} +{g}^{\mathrm{2}} +{h}^{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} +{d}^{\mathrm{3}} \:=\:{e}^{\mathrm{3}} +{f}^{\mathrm{3}} +{g}^{\mathrm{3}} +{h}^{\mathrm{3}} \\ $$$$\left[\mathrm{Find}\:\mathrm{a}\:\mathrm{method}\:\mathrm{to}\:\mathrm{generate}\:\mathrm{such}\:\mathrm{numbers}\right] \\ $$

Question Number 193469    Answers: 0   Comments: 0

Question Number 193467    Answers: 3   Comments: 3

Proof : cot^(−1) ((((√(1+sint))+(√(1−sint)))/( (√(1+sint))−(√(1−sint)))))=(t/2)

$$\mathrm{Proof}\:: \\ $$$$\mathrm{cot}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}+\mathrm{sint}}+\sqrt{\mathrm{1}−\mathrm{sint}}}{\:\sqrt{\mathrm{1}+\mathrm{sint}}−\sqrt{\mathrm{1}−\mathrm{sint}}}\right)=\frac{\mathrm{t}}{\mathrm{2}}\: \\ $$

Question Number 193464    Answers: 1   Comments: 3

Question Number 193461    Answers: 2   Comments: 0

lim_(x→0) ((((√(1+sin x))−1)/(sin 2x))) = ??

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}−\mathrm{1}}{\mathrm{sin}\:\mathrm{2x}}\right)\:=\:?? \\ $$

Question Number 193458    Answers: 1   Comments: 1

lim_(x→0) (((1−cos(x))/(x sin(x)))) = ???

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{x}\right)}{\mathrm{x}\:\mathrm{sin}\left(\mathrm{x}\right)}\right)\:=\:\:\:??? \\ $$

Question Number 193449    Answers: 1   Comments: 4

Question Number 193448    Answers: 1   Comments: 0

Question Number 193439    Answers: 1   Comments: 2

∫^(π/2) _( 0) (((tanx))^(1/3) /((sinx+cosx)^2 ))dx

$$\underset{\:\:\mathrm{0}} {\int}^{\pi/\mathrm{2}} \frac{\sqrt[{\mathrm{3}}]{{tanx}}}{\left({sinx}+{cosx}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 193438    Answers: 1   Comments: 0

Question Number 193437    Answers: 0   Comments: 0

in the malicol of CaCO_3 how many σ and π bond has?

$$\mathrm{in}\:\mathrm{the}\:\mathrm{malicol}\:\mathrm{of}\:\mathrm{CaCO}_{\mathrm{3}} \:\mathrm{how}\:\mathrm{many} \\ $$$$\sigma\:\mathrm{and}\:\pi\:\mathrm{bond}\:\mathrm{has}? \\ $$

Question Number 193436    Answers: 1   Comments: 0

((sin(x+18^o ))/(sin(48^o )))=((sin(x))/(sin(18^o )))

$$ \\ $$$$\frac{{sin}\left({x}+\mathrm{18}^{{o}} \right)}{{sin}\left(\mathrm{48}^{{o}} \right)}=\frac{{sin}\left({x}\right)}{{sin}\left(\mathrm{18}^{{o}} \right)} \\ $$$$ \\ $$

Question Number 193435    Answers: 1   Comments: 1

Question Number 193426    Answers: 1   Comments: 0

∫((x^3 +1))^(1/3) dx=? solution?

$$\int\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}\mathrm{dx}=? \\ $$$$\mathrm{solution}? \\ $$

Question Number 193423    Answers: 3   Comments: 0

when tan(θ/2)=(1/a) then find cosθ=? from the a

$$\mathrm{when}\:\:\:\mathrm{tan}\frac{\theta}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{a}} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{cos}\theta=?\:\mathrm{from}\:\mathrm{the}\:\mathrm{a} \\ $$

  Pg 268      Pg 269      Pg 270      Pg 271      Pg 272      Pg 273      Pg 274      Pg 275      Pg 276      Pg 277   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com