Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 273
Question Number 193595 Answers: 2 Comments: 0
Question Number 193622 Answers: 1 Comments: 1
$$\mathrm{determiner}\:\mathrm{l}\:\mathrm{angle}\:\boldsymbol{\mathrm{x}} \\ $$
Question Number 193581 Answers: 1 Comments: 0
Question Number 193617 Answers: 1 Comments: 0
Question Number 193618 Answers: 1 Comments: 0
$${x}^{{log}_{\mathrm{2}} {x}} =\mathrm{256} \\ $$
Question Number 193565 Answers: 1 Comments: 0
Question Number 193563 Answers: 3 Comments: 0
Question Number 193554 Answers: 2 Comments: 0
Question Number 193548 Answers: 1 Comments: 1
Question Number 193546 Answers: 2 Comments: 0
$${if}\:{a}+{b}+{c}=\mathrm{1} \\ $$$${find}\:{maximum}\:{ab}\:+{bc}\:+{ca}\: \\ $$$${a}\:,\:{b}\:,\:{c}\:{are}\:{non}\:{negative}\:{integers} \\ $$$$ \\ $$
Question Number 193585 Answers: 1 Comments: 0
$$ \\ $$$${There}\:{exists}\:{a}\:{unique}\:{positive}\:{integer}\:{a}\:{for} \\ $$$${which}\:{The}\:{sum}\:{u}\:\:=\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{2023}} {\sum}}\lfloor\frac{{n}^{\mathrm{2}} −{na}}{\mathrm{5}}\rfloor\:{is}\:{an}\:{integer} \\ $$$${trictly}\:{between}\:−\mathrm{1000}\:\&\:\mathrm{1000}\:{find}\:{a}+{u}. \\ $$
Question Number 193543 Answers: 0 Comments: 4
$${solve} \\ $$
Question Number 193542 Answers: 1 Comments: 2
$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{3}} +\mathrm{3x}^{\mathrm{2}} −\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calcul}\:\:\:\:\mathrm{h}\left(\mathrm{X}\right)\:=\:\mathrm{f}\left(\mathrm{a}+\mathrm{X}\right)\:−\mathrm{b} \\ $$2) determine a and b such that h is odd
Question Number 193538 Answers: 2 Comments: 0
$$\:\:\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{6}} +\mathrm{1}}\:=? \\ $$
Question Number 193540 Answers: 0 Comments: 0
Question Number 193533 Answers: 2 Comments: 0
$$\:\:\:\mathrm{If}\:\mathrm{cot}\:\mathrm{x}−\mathrm{tan}\:\mathrm{x}=\mathrm{4}\:\mathrm{then} \\ $$$$\:\:\:\:\mathrm{cot}\:^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{sin}\:\mathrm{2x}}\:−\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}\:=? \\ $$
Question Number 193532 Answers: 2 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\pi\mathrm{x}}{\left(\mathrm{2}−\mathrm{x}\right)^{\mathrm{2}} }\:=? \\ $$
Question Number 193526 Answers: 2 Comments: 0
Question Number 193525 Answers: 2 Comments: 0
$$\:\:\:\:\:\frac{\mathrm{27t73}}{\mathrm{11}} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{R}=\mathrm{0}\:\:\:\mathrm{then}\:\mathrm{t}=? \\ $$$$\:\:\:\:\:\:\mathrm{how}\:\mathrm{is}\:\mathrm{explontry}\:\mathrm{solution} \\ $$
Question Number 193521 Answers: 0 Comments: 0
Question Number 193522 Answers: 1 Comments: 0
Question Number 193513 Answers: 1 Comments: 0
$$\mathrm{Evaluate}\:\mathrm{I}=\underset{\mathrm{s}} {\int}\int\mathrm{x}^{\mathrm{3}} \mathrm{dydz}\:+\:\mathrm{x}^{\mathrm{2}} \mathrm{ydzdx}. \\ $$$$\mathrm{where}\:\mathrm{S}\:\mathrm{is}\:\mathrm{the}\:\mathrm{closed}\:\mathrm{surface}\:\mathrm{consis}− \\ $$$$\mathrm{ting}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cylinder}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} ,\:\mathrm{0}\leqslant\mathrm{z}\leqslant\mathrm{b} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{cylinder}\:\:\mathrm{disks}\:\mathrm{z}=\mathrm{0}\:\mathrm{and}\:\mathrm{z}=\mathrm{b}, \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{b},\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \leqslant\mathrm{a}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Question Number 193512 Answers: 1 Comments: 0
Question Number 193511 Answers: 1 Comments: 0
Question Number 193504 Answers: 0 Comments: 1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}x}^{\mathrm{x}^{\mathrm{x}} } =? \\ $$
Question Number 193502 Answers: 2 Comments: 0
$$ \mathrm{olve}\: \\ $$$$\:\:\mathrm{cos}\:\mathrm{2x}\:.\mathrm{tan}\:\left(\frac{\mathrm{7}\pi}{\mathrm{19}}\right)=\mathrm{tan}\:\left(\frac{\mathrm{17}\pi}{\mathrm{23}}\right)+\mathrm{tan}\:\left(\frac{\mathrm{6}\pi}{\mathrm{23}}\right)+\mathrm{tan}\:\left(\frac{\mathrm{12}\pi}{\mathrm{19}}\right) \\ $$
Pg 268 Pg 269 Pg 270 Pg 271 Pg 272 Pg 273 Pg 274 Pg 275 Pg 276 Pg 277
Terms of Service
Privacy Policy
Contact: info@tinkutara.com