Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 273
Question Number 193542 Answers: 1 Comments: 2
$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{3}} +\mathrm{3x}^{\mathrm{2}} −\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calcul}\:\:\:\:\mathrm{h}\left(\mathrm{X}\right)\:=\:\mathrm{f}\left(\mathrm{a}+\mathrm{X}\right)\:−\mathrm{b} \\ $$2) determine a and b such that h is odd
Question Number 193538 Answers: 2 Comments: 0
$$\:\:\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{6}} +\mathrm{1}}\:=? \\ $$
Question Number 193540 Answers: 0 Comments: 0
Question Number 193533 Answers: 2 Comments: 0
$$\:\:\:\mathrm{If}\:\mathrm{cot}\:\mathrm{x}−\mathrm{tan}\:\mathrm{x}=\mathrm{4}\:\mathrm{then} \\ $$$$\:\:\:\:\mathrm{cot}\:^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{sin}\:\mathrm{2x}}\:−\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}\:=? \\ $$
Question Number 193532 Answers: 2 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\pi\mathrm{x}}{\left(\mathrm{2}−\mathrm{x}\right)^{\mathrm{2}} }\:=? \\ $$
Question Number 193526 Answers: 2 Comments: 0
Question Number 193525 Answers: 2 Comments: 0
$$\:\:\:\:\:\frac{\mathrm{27t73}}{\mathrm{11}} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{R}=\mathrm{0}\:\:\:\mathrm{then}\:\mathrm{t}=? \\ $$$$\:\:\:\:\:\:\mathrm{how}\:\mathrm{is}\:\mathrm{explontry}\:\mathrm{solution} \\ $$
Question Number 193521 Answers: 0 Comments: 0
Question Number 193522 Answers: 1 Comments: 0
Question Number 193513 Answers: 1 Comments: 0
$$\mathrm{Evaluate}\:\mathrm{I}=\underset{\mathrm{s}} {\int}\int\mathrm{x}^{\mathrm{3}} \mathrm{dydz}\:+\:\mathrm{x}^{\mathrm{2}} \mathrm{ydzdx}. \\ $$$$\mathrm{where}\:\mathrm{S}\:\mathrm{is}\:\mathrm{the}\:\mathrm{closed}\:\mathrm{surface}\:\mathrm{consis}− \\ $$$$\mathrm{ting}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cylinder}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} ,\:\mathrm{0}\leqslant\mathrm{z}\leqslant\mathrm{b} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{cylinder}\:\:\mathrm{disks}\:\mathrm{z}=\mathrm{0}\:\mathrm{and}\:\mathrm{z}=\mathrm{b}, \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{b},\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \leqslant\mathrm{a}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Question Number 193512 Answers: 1 Comments: 0
Question Number 193511 Answers: 1 Comments: 0
Question Number 193504 Answers: 0 Comments: 1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}x}^{\mathrm{x}^{\mathrm{x}} } =? \\ $$
Question Number 193502 Answers: 2 Comments: 0
$$ \mathrm{olve}\: \\ $$$$\:\:\mathrm{cos}\:\mathrm{2x}\:.\mathrm{tan}\:\left(\frac{\mathrm{7}\pi}{\mathrm{19}}\right)=\mathrm{tan}\:\left(\frac{\mathrm{17}\pi}{\mathrm{23}}\right)+\mathrm{tan}\:\left(\frac{\mathrm{6}\pi}{\mathrm{23}}\right)+\mathrm{tan}\:\left(\frac{\mathrm{12}\pi}{\mathrm{19}}\right) \\ $$
Question Number 193492 Answers: 1 Comments: 0
Question Number 193494 Answers: 3 Comments: 1
$$\boldsymbol{\mathrm{Let}}\:\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{fixed}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{integer}}\:\boldsymbol{\mathrm{such}}\:\boldsymbol{\mathrm{that}} \\ $$$$\mathrm{sin}\left(\frac{\pi}{\mathrm{2n}}\right)+\mathrm{cos}\left(\frac{\boldsymbol{\pi}}{\mathrm{2n}}\right)=\frac{\sqrt{\mathrm{n}}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{Then}}\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{n}} \\ $$
Question Number 193490 Answers: 0 Comments: 0
Question Number 193486 Answers: 1 Comments: 0
Question Number 193485 Answers: 2 Comments: 0
$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}\:\mathrm{2}^{\boldsymbol{\mathrm{n}}} −\left(−\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} \:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{divisible}}\:\boldsymbol{\mathrm{by}} \\ $$$$\:\:\:\:\:\:\:\mathrm{3}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{all}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{integers}}\:\boldsymbol{\mathrm{n}}. \\ $$
Question Number 193484 Answers: 0 Comments: 0
$$\mathrm{Nice}\:\mathrm{problem}: \\ $$$$\mathrm{Find}\:\mathrm{8}\:\mathrm{distinctive}\:\mathrm{numbers}\:\in\mathbb{N}\backslash\left\{\mathrm{0}\right\}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{these}\:\mathrm{are}\:\mathrm{simultaniously}\:\mathrm{true}: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:{a}+{b}+{c}+{d}\:=\:{e}+{f}+{g}+{h} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \:=\:{e}^{\mathrm{2}} +{f}^{\mathrm{2}} +{g}^{\mathrm{2}} +{h}^{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} +{d}^{\mathrm{3}} \:=\:{e}^{\mathrm{3}} +{f}^{\mathrm{3}} +{g}^{\mathrm{3}} +{h}^{\mathrm{3}} \\ $$$$\left[\mathrm{Find}\:\mathrm{a}\:\mathrm{method}\:\mathrm{to}\:\mathrm{generate}\:\mathrm{such}\:\mathrm{numbers}\right] \\ $$
Question Number 193469 Answers: 0 Comments: 0
Question Number 193467 Answers: 3 Comments: 3
$$\mathrm{Proof}\:: \\ $$$$\mathrm{cot}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}+\mathrm{sint}}+\sqrt{\mathrm{1}−\mathrm{sint}}}{\:\sqrt{\mathrm{1}+\mathrm{sint}}−\sqrt{\mathrm{1}−\mathrm{sint}}}\right)=\frac{\mathrm{t}}{\mathrm{2}}\: \\ $$
Question Number 193464 Answers: 1 Comments: 3
Question Number 193461 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}−\mathrm{1}}{\mathrm{sin}\:\mathrm{2x}}\right)\:=\:?? \\ $$
Question Number 193458 Answers: 1 Comments: 1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{x}\right)}{\mathrm{x}\:\mathrm{sin}\left(\mathrm{x}\right)}\right)\:=\:\:\:??? \\ $$
Question Number 193449 Answers: 1 Comments: 4
Pg 268 Pg 269 Pg 270 Pg 271 Pg 272 Pg 273 Pg 274 Pg 275 Pg 276 Pg 277
Terms of Service
Privacy Policy
Contact: info@tinkutara.com