Let′s R(z) define as
R(z)=((π ∫_0 ^( z) f^2 (t)dt)/(2π ∫_0 ^( z) f(t)(√(1+(f^((1)) (t))^2 ))dt))
and both integral
∫_0 ^( ∞) f^( 2) (t)dt , ∫_0 ^( ∞) f(t)(√(1+(f^((1)) (t))^2 ))dt =∞
lim_(z→∞) ((π ∫_0 ^( z) f^( 2) (t)dt)/(2π ∫_0 ^( z) f(t)(√(1+(f^((1)) (t))^2 ))dt))
=lim_(z→∞) ((π f(z))/(2π (√(1+(f^((1)) (z))^2 )))) ..??
|