Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 27
Question Number 220972 Answers: 1 Comments: 2
$$\int_{−\infty} ^{+\infty} \int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\:\mathrm{d}{x}\mathrm{d}{y} \\ $$$${x}={r}\mathrm{cos}\left(\theta\right) \\ $$$${y}={r}\mathrm{sin}\left(\theta\right) \\ $$$$\mid\mid\boldsymbol{{J}}\mid\mid={r}\mathrm{d}{r}\mathrm{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{{r}}{\left({r}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\mathrm{d}{r}\mathrm{d}\theta=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:\mathrm{d}\theta=\frac{\pi}{\mathrm{4}} \\ $$$${Q}.\:\mathrm{if}\:\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\:\mathrm{d}{x}\mathrm{d}{y} \\ $$$$\mathrm{0}\leq{r}<\infty\:,\:\mathrm{0}\leq\theta\leq\frac{\pi}{\mathrm{2}}.....??? \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{confuse}\:\mathrm{how}\:\mathrm{could}\:\:\mathrm{i}\:\mathrm{select}\:\mathrm{interval}\:\mathrm{of}\:\mathrm{integral} \\ $$
Question Number 220971 Answers: 1 Comments: 6
Question Number 221680 Answers: 2 Comments: 4
$${I}\:{suspect} \\ $$$$\pi={i}\underset{\boldsymbol{{i}}} {\overset{−\mathrm{1}} {\int}}\frac{\left({z}−\mathrm{1}\right){dz}}{\:{z}\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}} \\ $$$${someone}\:{please}\:{help}\:{confirm}\:{or}\:{reject}! \\ $$
Question Number 220968 Answers: 0 Comments: 0
Question Number 220964 Answers: 0 Comments: 0
$${Find}\:{the}\:{general}\:{solution}\:{of}\:{the}\:{differential}\:{equation} \\ $$$${x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{3}} {y}}{{dx}^{\mathrm{3}} }\:+\:{x}\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\mathrm{6}\frac{{dy}}{{dx}}+\mathrm{6}\frac{{y}}{{x}}=\frac{{x}\:\mathrm{ln}\:{x}+\mathrm{1}}{{x}^{\mathrm{2}} },\left[{x}>\mathrm{0}\right] \\ $$
Question Number 220963 Answers: 1 Comments: 0
$${Let}\:{f}:\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}\:{be}\:{defined}\:{by}\:{f}\left({x},{y}\right)=\left\{\frac{{y}}{\underset{\:\:\mathrm{1},\:{y}=\mathrm{0}} {\mathrm{sin}\:{y}}},\:{y}\neq\mathrm{0}\right. \\ $$$${Then}\:{the}\:{integral}\:\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\underset{{x}=\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{{y}=\mathrm{sin}^{−\mathrm{1}} {x}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}{f}\left({x},{y}\right){dy}\:{dx}\:{correct}\:{upto}\:{three}\:{decimal}\:{places},{is}... \\ $$
Question Number 220958 Answers: 1 Comments: 1
$${for}\:{x},\:{y},\:{z}\:>\mathrm{0}\:{find}\:{the}\:{maximum}\:{of} \\ $$$${x}^{{m}} {y}^{{n}} {z}^{{k}} \:{subject}\:{to}\:{ax}+{by}+{cz}={d}. \\ $$
Question Number 220950 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\int_{\:\mathrm{0}} ^{\:\pi} \int_{\:\mathrm{0}} ^{\:\mathrm{1}} \int_{\:\mathrm{0}} ^{\:\:\pi} \:\mathrm{sin}^{\:\mathrm{2}} \:{x}\:+\:{y}\:\mathrm{sin}\:{z}\:{dxdydz}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\pi\:\left(\mathrm{2}\:+\:\pi\right)\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220948 Answers: 1 Comments: 0
$$\int\:{x}^{\mathrm{2}} \sqrt{\mathrm{5}−{x}^{\mathrm{6}} }{dx} \\ $$
Question Number 220947 Answers: 1 Comments: 0
$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{13}} {\sum}}\:\:\frac{\mathrm{1}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\frac{\left({k}−\mathrm{1}\right)\pi}{\mathrm{6}}\right)\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\frac{{k}\pi}{\mathrm{6}}\right)} \\ $$
Question Number 220913 Answers: 0 Comments: 4
$$\mathrm{Is}\:\mathrm{there}\:\mathrm{an}\:\mathrm{Manager}??? \\ $$$$\mathrm{pls}\:\mathrm{ban}\:\mathrm{Question}\:\mathrm{Spamming}\:\mathrm{and}... \\ $$$$\mathrm{pls}\:\mathrm{fix}\:\mathrm{invisible}\:\mathrm{line}\:\mathrm{matrix}\:\mathrm{bug} \\ $$
Question Number 220904 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{3}} } \frac{{x}^{\mathrm{4}} {y}^{\mathrm{3}} {z}^{\mathrm{2}} }{\left({x}+{y}+{z}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)−\left({x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} \right)}\:{dxdydz}\:\:\:\:\:\:\: \\ $$$$\: \\ $$
Question Number 220899 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\:\mathrm{3}} } \:\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)\left(\mathrm{1}+{xyz}\right)}\:{dxdydz}\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220898 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\:\mathrm{3}} \:\:} \frac{\mathrm{1}}{\:\sqrt{\left(\mathrm{1}\:−{x}\right)\left(\mathrm{1}\:−\:{y}\right)\left(\mathrm{1}\:−{z}\right)\left(\mathrm{1}\:−\:{xyz}\right)}}\:{dxdydz}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220897 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\int\int\int_{\:\left[\mathrm{0},\mathrm{1}\right]^{\:\mathrm{3}} } \:\frac{\mathrm{1}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} {y}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} {z}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} {x}^{\mathrm{2}} }\:{dxdydz}\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220896 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\int\int\int_{\:\left[\mathrm{0},\infty\right]^{\:\mathrm{3}} } \frac{{x}^{\mathrm{2}} {y}^{\mathrm{2}} {z}^{\mathrm{2}} }{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \right)^{\mathrm{5}} }\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220895 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{3}} } \frac{{ln}\:\left(\mathrm{1}\:+\:{xyz}\right)}{\left(\mathrm{1}\:+\:{x}\right)\left(\mathrm{1}\:+\:{y}\right)\left(\mathrm{1}\:+\:{z}\right)}\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220892 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\int\int\int_{\boldsymbol{{x}}^{\mathrm{2}} \:+\:\boldsymbol{{y}}^{\mathrm{2}} \:+\:\boldsymbol{{z}}^{\mathrm{2}} \:\:\leqslant\:\mathrm{1}} \:\frac{\mathrm{1}}{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220891 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\int\int\int_{\left[\mathrm{0},\infty\right]^{\:\mathrm{3}} } \:\frac{{e}^{−\left({x}\:+\:{y}\:+\:{z}\:\right)} }{\mathrm{1}\:+\:{xyz}}\:{dxdydz} \\ $$$$ \\ $$
Question Number 220889 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\int\int\int_{\:\left[\mathrm{0},\mathrm{1}\left[^{\:\mathrm{3}} \right.\right.} \:\frac{\mathrm{1}}{\mathrm{1}\:+\:{xyz}}\:{dxdydz} \\ $$$$ \\ $$
Question Number 220878 Answers: 1 Comments: 0
Question Number 220877 Answers: 4 Comments: 0
Question Number 220876 Answers: 3 Comments: 0
Question Number 220874 Answers: 1 Comments: 2
Question Number 220873 Answers: 1 Comments: 0
Question Number 220872 Answers: 1 Comments: 0
Pg 22 Pg 23 Pg 24 Pg 25 Pg 26 Pg 27 Pg 28 Pg 29 Pg 30 Pg 31
Terms of Service
Privacy Policy
Contact: info@tinkutara.com