Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 27

Question Number 223449    Answers: 2   Comments: 0

Question Number 223429    Answers: 2   Comments: 1

....

$$.... \\ $$

Question Number 223424    Answers: 1   Comments: 3

Question Number 223386    Answers: 1   Comments: 0

Question Number 223383    Answers: 3   Comments: 3

Question Number 223374    Answers: 3   Comments: 0

Question Number 223412    Answers: 0   Comments: 4

Good day great problem solvers. Please I need links to resources helpful for preparations for Olympiad mathematics especially books and video recommendations. I′ll be grateful to get our responses.

$${Good}\:{day}\:{great}\:{problem}\:{solvers}. \\ $$$${Please}\:{I}\:{need}\:{links}\:{to}\:{resources}\:{helpful} \\ $$$${for}\:{preparations}\:{for}\:{Olympiad}\:{mathematics} \\ $$$${especially}\:{books}\:{and}\:{video}\:{recommendations}. \\ $$$${I}'{ll}\:{be}\:{grateful}\:{to}\:{get}\:{our}\:{responses}. \\ $$

Question Number 223410    Answers: 0   Comments: 0

Question Number 223405    Answers: 2   Comments: 0

Question Number 223403    Answers: 1   Comments: 1

Question Number 223401    Answers: 1   Comments: 0

Question Number 223414    Answers: 1   Comments: 0

is it possible to prove that mn(m+n)(m−n) divisible by 6 always

$${is}\:{it}\:{possible}\:{to}\:{prove}\:{that}\:{mn}\left({m}+{n}\right)\left({m}−{n}\right)\: \\ $$$${divisible}\:{by}\:\mathrm{6}\:{always}\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 223400    Answers: 1   Comments: 0

f(1)=2025 𝚺_1 ^n f(k)=n^2 .f(n) f(2025)=?

$$\boldsymbol{{f}}\left(\mathrm{1}\right)=\mathrm{2025} \\ $$$$\underset{\mathrm{1}} {\overset{\boldsymbol{{n}}} {\boldsymbol{\sum}}{f}}\left(\boldsymbol{{k}}\right)=\boldsymbol{{n}}^{\mathrm{2}} .\boldsymbol{{f}}\left(\boldsymbol{{n}}\right) \\ $$$$\boldsymbol{{f}}\left(\mathrm{2025}\right)=? \\ $$

Question Number 223368    Answers: 1   Comments: 0

∫_0 ^1 ln(((2 cos(x^2 ) + ln^2 (x/2))/(1 + cos (x/2)))) dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\boldsymbol{\mathrm{ln}}\left(\frac{\mathrm{2}\:\boldsymbol{\mathrm{cos}}\left({x}^{\mathrm{2}} \right)\:+\:\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left({x}/\mathrm{2}\right)}{\mathrm{1}\:+\:\boldsymbol{\mathrm{cos}}\:\left({x}/\mathrm{2}\right)}\right)\:\boldsymbol{\mathrm{d}}{x} \\ $$$$ \\ $$

Question Number 223367    Answers: 0   Comments: 1

∫_0 ^1 ln(2 cos(x^2 ) + ln^2 ((x/2)) dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\mathrm{ln}\left(\mathrm{2}\:\mathrm{cos}\left({x}^{\mathrm{2}} \right)\:+\:\mathrm{ln}^{\mathrm{2}} \:\left(\frac{{x}}{\mathrm{2}}\right)\:\mathrm{d}{x}\right. \\ $$$$ \\ $$

Question Number 223354    Answers: 0   Comments: 6

Question Number 223349    Answers: 0   Comments: 0

let gcd(n,m)=1. Determine gcd(5^m +7^m ,5^n +7^n )

$${let}\:{gcd}\left({n},{m}\right)=\mathrm{1}.\:{Determine}\:{gcd}\left(\mathrm{5}^{{m}} +\mathrm{7}^{{m}} ,\mathrm{5}^{{n}} +\mathrm{7}^{{n}} \right) \\ $$

Question Number 223348    Answers: 1   Comments: 1

Determine gcd(13a+19b,ab) given that gcd(a,19)=gcd(b,13)=1

$${Determine}\:{gcd}\left(\mathrm{13}{a}+\mathrm{19}{b},{ab}\right)\:{given}\:{that}\:{gcd}\left({a},\mathrm{19}\right)={gcd}\left({b},\mathrm{13}\right)=\mathrm{1} \\ $$

Question Number 223346    Answers: 1   Comments: 0

proof gcd(2^m −1,2^n −1)=2^(gcd(m,n)) −1

$${proof}\:{gcd}\left(\mathrm{2}^{{m}} −\mathrm{1},\mathrm{2}^{{n}} −\mathrm{1}\right)=\mathrm{2}^{{gcd}\left({m},{n}\right)} −\mathrm{1} \\ $$

Question Number 223340    Answers: 3   Comments: 1

Question Number 223317    Answers: 3   Comments: 0

Question Number 223315    Answers: 0   Comments: 4

Question Number 223304    Answers: 2   Comments: 0

lim_(x→0) ((∫_0 ^x^2 sin((√t))dt )/x^3 ) =...?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\underset{\mathrm{0}} {\overset{{x}^{\mathrm{2}} } {\int}}\boldsymbol{{sin}}\left(\sqrt{\boldsymbol{{t}}}\right)\boldsymbol{{dt}}\:}{\boldsymbol{{x}}^{\mathrm{3}} }\:=...? \\ $$

Question Number 223301    Answers: 2   Comments: 0

Question Number 223286    Answers: 2   Comments: 3

OC=4.5 & EF=2 & DE^⌢ =EC^⌢ & AC=2AF⇒AB=? ⇓⇓⇓

$${OC}=\mathrm{4}.\mathrm{5}\:\:\:\&\:\:{EF}=\mathrm{2}\:\:\&\:\:{D}\overset{\frown} {{E}}={E}\overset{\frown} {{C}}\:\:\&\:\:{AC}=\mathrm{2}{AF}\Rightarrow{AB}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Downarrow\Downarrow\Downarrow \\ $$

Question Number 223270    Answers: 2   Comments: 0

At a given instant, two cars are at distances 600m and 800m from the point of intersection of the straight roads crossing at right angles and approaching O at uniform speeds of 20 m/s and 30 m/s respectively. Find the shortest distance between the cars and the time taken to reach this position.

At a given instant, two cars are at distances 600m and 800m from the point of intersection of the straight roads crossing at right angles and approaching O at uniform speeds of 20 m/s and 30 m/s respectively. Find the shortest distance between the cars and the time taken to reach this position.

  Pg 22      Pg 23      Pg 24      Pg 25      Pg 26      Pg 27      Pg 28      Pg 29      Pg 30      Pg 31   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com