Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 27

Question Number 220972    Answers: 1   Comments: 2

∫_(−∞) ^(+∞) ∫_(−∞) ^(+∞) (1/((x^2 +y^2 +4)^2 )) dxdy x=rcos(θ) y=rsin(θ) ∣∣J∣∣=rdrdθ ∫_0 ^( 2π) ∫_0 ^( ∞) (r/((r^2 +4)^2 ))drdθ=(1/8)∫_0 ^( 2π) dθ=(π/4) Q. if ∫_0 ^( ∞) ∫_0 ^( ∞) (1/((x^2 +y^2 +4)^2 )) dxdy 0≤r<∞ , 0≤θ≤(π/2).....??? I really confuse how could i select interval of integral

$$\int_{−\infty} ^{+\infty} \int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\:\mathrm{d}{x}\mathrm{d}{y} \\ $$$${x}={r}\mathrm{cos}\left(\theta\right) \\ $$$${y}={r}\mathrm{sin}\left(\theta\right) \\ $$$$\mid\mid\boldsymbol{{J}}\mid\mid={r}\mathrm{d}{r}\mathrm{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{{r}}{\left({r}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\mathrm{d}{r}\mathrm{d}\theta=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:\mathrm{d}\theta=\frac{\pi}{\mathrm{4}} \\ $$$${Q}.\:\mathrm{if}\:\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\:\mathrm{d}{x}\mathrm{d}{y} \\ $$$$\mathrm{0}\leq{r}<\infty\:,\:\mathrm{0}\leq\theta\leq\frac{\pi}{\mathrm{2}}.....??? \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{confuse}\:\mathrm{how}\:\mathrm{could}\:\:\mathrm{i}\:\mathrm{select}\:\mathrm{interval}\:\mathrm{of}\:\mathrm{integral} \\ $$

Question Number 220971    Answers: 1   Comments: 6

Question Number 221680    Answers: 2   Comments: 4

I suspect π=i∫_i ^(−1) (((z−1)dz)/( z(√(z^2 +1)))) someone please help confirm or reject!

$${I}\:{suspect} \\ $$$$\pi={i}\underset{\boldsymbol{{i}}} {\overset{−\mathrm{1}} {\int}}\frac{\left({z}−\mathrm{1}\right){dz}}{\:{z}\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}} \\ $$$${someone}\:{please}\:{help}\:{confirm}\:{or}\:{reject}! \\ $$

Question Number 220968    Answers: 0   Comments: 0

Question Number 220964    Answers: 0   Comments: 0

Find the general solution of the differential equation x^2 (d^3 y/dx^3 ) + x(d^2 y/dx^2 )−6(dy/dx)+6(y/x)=((x ln x+1)/x^2 ),[x>0]

$${Find}\:{the}\:{general}\:{solution}\:{of}\:{the}\:{differential}\:{equation} \\ $$$${x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{3}} {y}}{{dx}^{\mathrm{3}} }\:+\:{x}\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\mathrm{6}\frac{{dy}}{{dx}}+\mathrm{6}\frac{{y}}{{x}}=\frac{{x}\:\mathrm{ln}\:{x}+\mathrm{1}}{{x}^{\mathrm{2}} },\left[{x}>\mathrm{0}\right] \\ $$

Question Number 220963    Answers: 1   Comments: 0

Let f:R^2 →R be defined by f(x,y)={(y/(sin y_( 1, y=0) )), y≠0 Then the integral (1/π^2 )∫_(x=0) ^1 ∫_(y=sin^(−1) x) ^(π/2) f(x,y)dy dx correct upto three decimal places,is...

$${Let}\:{f}:\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}\:{be}\:{defined}\:{by}\:{f}\left({x},{y}\right)=\left\{\frac{{y}}{\underset{\:\:\mathrm{1},\:{y}=\mathrm{0}} {\mathrm{sin}\:{y}}},\:{y}\neq\mathrm{0}\right. \\ $$$${Then}\:{the}\:{integral}\:\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\underset{{x}=\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{{y}=\mathrm{sin}^{−\mathrm{1}} {x}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}{f}\left({x},{y}\right){dy}\:{dx}\:{correct}\:{upto}\:{three}\:{decimal}\:{places},{is}... \\ $$

Question Number 220958    Answers: 1   Comments: 1

for x, y, z >0 find the maximum of x^m y^n z^k subject to ax+by+cz=d.

$${for}\:{x},\:{y},\:{z}\:>\mathrm{0}\:{find}\:{the}\:{maximum}\:{of} \\ $$$${x}^{{m}} {y}^{{n}} {z}^{{k}} \:{subject}\:{to}\:{ax}+{by}+{cz}={d}. \\ $$

Question Number 220950    Answers: 1   Comments: 0

∫_( 0) ^( π) ∫_( 0) ^( 1) ∫_( 0) ^( π) sin^( 2) x + y sin z dxdydz = (1/2) π (2 + π)

$$ \\ $$$$\:\:\:\:\int_{\:\mathrm{0}} ^{\:\pi} \int_{\:\mathrm{0}} ^{\:\mathrm{1}} \int_{\:\mathrm{0}} ^{\:\:\pi} \:\mathrm{sin}^{\:\mathrm{2}} \:{x}\:+\:{y}\:\mathrm{sin}\:{z}\:{dxdydz}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\pi\:\left(\mathrm{2}\:+\:\pi\right)\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 220948    Answers: 1   Comments: 0

∫ x^2 (√(5−x^6 ))dx

$$\int\:{x}^{\mathrm{2}} \sqrt{\mathrm{5}−{x}^{\mathrm{6}} }{dx} \\ $$

Question Number 220947    Answers: 1   Comments: 0

Σ_(k=1) ^(13) (1/(sin ((π/4)+(((k−1)π)/6))sin ((π/4)+((kπ)/6))))

$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{13}} {\sum}}\:\:\frac{\mathrm{1}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\frac{\left({k}−\mathrm{1}\right)\pi}{\mathrm{6}}\right)\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\frac{{k}\pi}{\mathrm{6}}\right)} \\ $$

Question Number 220913    Answers: 0   Comments: 4

Is there an Manager??? pls ban Question Spamming and... pls fix invisible line matrix bug

$$\mathrm{Is}\:\mathrm{there}\:\mathrm{an}\:\mathrm{Manager}??? \\ $$$$\mathrm{pls}\:\mathrm{ban}\:\mathrm{Question}\:\mathrm{Spamming}\:\mathrm{and}... \\ $$$$\mathrm{pls}\:\mathrm{fix}\:\mathrm{invisible}\:\mathrm{line}\:\mathrm{matrix}\:\mathrm{bug} \\ $$

Question Number 220904    Answers: 0   Comments: 0

∫∫∫_([0,1]^3 ) ((x^4 y^3 z^2 )/((x+y+z)(x^2 +y^2 +z^2 )−(x^3 +y^3 +z^3 ))) dxdydz

$$ \\ $$$$\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{3}} } \frac{{x}^{\mathrm{4}} {y}^{\mathrm{3}} {z}^{\mathrm{2}} }{\left({x}+{y}+{z}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)−\left({x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} \right)}\:{dxdydz}\:\:\:\:\:\:\: \\ $$$$\: \\ $$

Question Number 220899    Answers: 0   Comments: 0

∫∫∫_([0,1]^( 3) ) (1/((1+x^2 )(1+y^2 )(1+z^2 )(1+xyz))) dxdydz

$$ \\ $$$$\:\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\:\mathrm{3}} } \:\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)\left(\mathrm{1}+{xyz}\right)}\:{dxdydz}\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 220898    Answers: 0   Comments: 0

∫∫∫_([0,1]^( 3) ) (1/( (√((1 −x)(1 − y)(1 −z)(1 − xyz))))) dxdydz

$$ \\ $$$$\:\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\:\mathrm{3}} \:\:} \frac{\mathrm{1}}{\:\sqrt{\left(\mathrm{1}\:−{x}\right)\left(\mathrm{1}\:−\:{y}\right)\left(\mathrm{1}\:−{z}\right)\left(\mathrm{1}\:−\:{xyz}\right)}}\:{dxdydz}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 220897    Answers: 0   Comments: 0

∫∫∫_( [0,1]^( 3) ) (1/(1 + x^2 y^2 + y^2 z^2 + z^2 x^2 )) dxdydz

$$ \\ $$$$\:\:\:\int\int\int_{\:\left[\mathrm{0},\mathrm{1}\right]^{\:\mathrm{3}} } \:\frac{\mathrm{1}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} {y}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} {z}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} {x}^{\mathrm{2}} }\:{dxdydz}\:\:\:\:\: \\ $$$$ \\ $$

Question Number 220896    Answers: 1   Comments: 0

∫∫∫_( [0,∞]^( 3) ) ((x^2 y^2 z^2 )/((1 + x^2 + y^2 + z^2 )^5 )) dxdydz

$$ \\ $$$$\:\:\:\int\int\int_{\:\left[\mathrm{0},\infty\right]^{\:\mathrm{3}} } \frac{{x}^{\mathrm{2}} {y}^{\mathrm{2}} {z}^{\mathrm{2}} }{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \right)^{\mathrm{5}} }\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 220895    Answers: 0   Comments: 0

∫∫∫_([0,1]^3 ) ((ln (1 + xyz))/((1 + x)(1 + y)(1 + z))) dxdydz

$$ \\ $$$$\:\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{3}} } \frac{{ln}\:\left(\mathrm{1}\:+\:{xyz}\right)}{\left(\mathrm{1}\:+\:{x}\right)\left(\mathrm{1}\:+\:{y}\right)\left(\mathrm{1}\:+\:{z}\right)}\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 220892    Answers: 2   Comments: 0

∫∫∫_(x^2 + y^2 + z^2 ≤ 1) (1/((1 + x^2 +y^2 + z^2 )^2 )) dxdydz

$$ \\ $$$$\:\:\:\:\int\int\int_{\boldsymbol{{x}}^{\mathrm{2}} \:+\:\boldsymbol{{y}}^{\mathrm{2}} \:+\:\boldsymbol{{z}}^{\mathrm{2}} \:\:\leqslant\:\mathrm{1}} \:\frac{\mathrm{1}}{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 220891    Answers: 1   Comments: 0

∫∫∫_([0,∞]^( 3) ) (e^(−(x + y + z )) /(1 + xyz)) dxdydz

$$ \\ $$$$\:\:\:\:\:\int\int\int_{\left[\mathrm{0},\infty\right]^{\:\mathrm{3}} } \:\frac{{e}^{−\left({x}\:+\:{y}\:+\:{z}\:\right)} }{\mathrm{1}\:+\:{xyz}}\:{dxdydz} \\ $$$$ \\ $$

Question Number 220889    Answers: 2   Comments: 0

∫∫∫_( [0,1[^( 3) ) (1/(1 + xyz)) dxdydz

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\int\int\int_{\:\left[\mathrm{0},\mathrm{1}\left[^{\:\mathrm{3}} \right.\right.} \:\frac{\mathrm{1}}{\mathrm{1}\:+\:{xyz}}\:{dxdydz} \\ $$$$ \\ $$

Question Number 220878    Answers: 1   Comments: 0

Question Number 220877    Answers: 4   Comments: 0

Question Number 220876    Answers: 3   Comments: 0

Question Number 220874    Answers: 1   Comments: 2

Question Number 220873    Answers: 1   Comments: 0

Question Number 220872    Answers: 1   Comments: 0

  Pg 22      Pg 23      Pg 24      Pg 25      Pg 26      Pg 27      Pg 28      Pg 29      Pg 30      Pg 31   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com