Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 27
Question Number 221754 Answers: 1 Comments: 0
$$\left.\sqrt[{\sqrt[{\sqrt[{\:\mathrm{3}^{\mathrm{4}^{\mathrm{0}^{\mathrm{4}^{\mathrm{3}} } } } }]{\mathrm{27}}}]{\mathrm{64}}}]{\mathrm{81}}\right)^{\sqrt{\mathrm{4}}} \\ $$
Question Number 221733 Answers: 0 Comments: 19
Question Number 221721 Answers: 2 Comments: 0
Question Number 221707 Answers: 1 Comments: 13
Question Number 221697 Answers: 2 Comments: 0
$${Is}\:\sqrt{{i}}\:{an}\:{imaginary}\:{number}\:\left({i}=\sqrt{−\mathrm{1}}\right)\:{answer}\:{with}\:{logic} \\ $$
Question Number 221686 Answers: 3 Comments: 2
Question Number 221668 Answers: 0 Comments: 0
Question Number 221663 Answers: 0 Comments: 3
$$\mathrm{Prove}:\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−{x}^{{k}} \right){dx}=\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{23}}}\centerdot\frac{\mathrm{sinh}\frac{\sqrt{\mathrm{23}}\pi}{\mathrm{6}}}{\mathrm{2}\:\mathrm{cosh}\frac{\sqrt{\mathrm{23}}\pi}{\mathrm{3}}−\mathrm{1}} \\ $$
Question Number 221661 Answers: 1 Comments: 1
Question Number 221647 Answers: 0 Comments: 1
$${solve}\:{for}\:{x}. \\ $$$${x}^{\mathrm{1}} \:+\:{x}^{\mathrm{2}} \:+\:{x}^{\mathrm{3}} \:\:=\:\:\mathrm{4096} \\ $$
Question Number 221638 Answers: 1 Comments: 0
Question Number 221637 Answers: 1 Comments: 0
Question Number 221626 Answers: 3 Comments: 0
Question Number 221620 Answers: 1 Comments: 0
$${Solve}\:{for}\:{x} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{7}{x}}=\sqrt{{x}}\left[{x}\neq\mathrm{0}\right] \\ $$
Question Number 221618 Answers: 3 Comments: 0
$${solve}\:{for}\:{x} \\ $$$$\mathrm{2}^{{x}} +\mathrm{4}^{{x}} =\mathrm{8}^{{x}} \\ $$
Question Number 221669 Answers: 2 Comments: 3
Question Number 221601 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\frac{{sin}\:\mathrm{2}{x}}{\mathrm{1}\:+\:{sin}\:\mathrm{3}{x}}\:{dx} \\ $$$$ \\ $$
Question Number 221592 Answers: 2 Comments: 0
Question Number 221588 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\int\:\frac{\mathrm{8}{t}\:−\:\mathrm{8}{t}^{\:\mathrm{3}} }{{t}^{\:\mathrm{6}} \:+\:\mathrm{6}{t}^{\mathrm{5}} \:+\:\mathrm{3}{t}^{\:\mathrm{4}} \:−\:\mathrm{20}{t}^{\mathrm{3}} \:+\:\mathrm{3}{t}^{\mathrm{2}} \:+\:\mathrm{6}{t}\:+\:\mathrm{1}}\:{dt}\:\:\:\: \\ $$$$ \\ $$
Question Number 221587 Answers: 1 Comments: 0
$$\int_{\:\mathrm{2}} ^{\:\mathrm{3}} \:\frac{\mathrm{tan}^{−\:\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{1}\:\:−\:\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$
Question Number 221586 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\:\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{1}\:+\:\mathrm{3}{x}\:}\:{dx} \\ $$$$ \\ $$
Question Number 221585 Answers: 6 Comments: 1
$${solve}\:{for}\:{x}\:\in{R} \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{6}\right)^{\mathrm{3}} ={x}+\mathrm{6} \\ $$
Question Number 221583 Answers: 1 Comments: 0
Question Number 221578 Answers: 1 Comments: 0
$$\:\: \\ $$$$ \left(\mathrm{3}+\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{2}} \:=\:\mathrm{4}−\mathrm{2sin}\:^{\mathrm{8}} \mathrm{x}\: \\ $$$$\:\:\mathrm{x}\:\epsilon\:\left[\:\mathrm{0},\:\mathrm{2025}\pi\:\right]\: \\ $$
Question Number 221576 Answers: 0 Comments: 0
Question Number 221577 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\mathrm{Prove};\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{x}\mathrm{d}{x}}{\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({e}^{\mathrm{2}\pi{x}} \:−\:\mathrm{1}\right)}\:=\:\frac{\gamma}{\mathrm{2}}\:−\:\frac{\mathrm{1}}{\mathrm{4}}\:\: \\ $$$$\:\:\:\:\mathrm{where};\:\gamma\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{Euler}'\mathrm{s}\:\mathrm{Mascheroni}\:\mathrm{constant}\:\:\:\: \\ $$$$ \\ $$
Pg 22 Pg 23 Pg 24 Pg 25 Pg 26 Pg 27 Pg 28 Pg 29 Pg 30 Pg 31
Terms of Service
Privacy Policy
Contact: info@tinkutara.com