Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 269
Question Number 194928 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1}}\:+\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{9}}−\sqrt{\mathrm{16}{x}^{\mathrm{2}} −\mathrm{8}}\:=?\right. \\ $$
Question Number 194903 Answers: 1 Comments: 1
Question Number 194915 Answers: 2 Comments: 4
$$ \\ $$$$\frac{\mathrm{3}}{{x}−\mathrm{3}}+\frac{\mathrm{5}}{{x}−\mathrm{5}}+\frac{\mathrm{7}}{{x}−\mathrm{17}}+\frac{\mathrm{19}}{{x}−\mathrm{19}}={x}^{\mathrm{2}} −\mathrm{11}{x}−\mathrm{4} \\ $$
Question Number 194914 Answers: 2 Comments: 0
Question Number 194913 Answers: 2 Comments: 0
Question Number 194899 Answers: 1 Comments: 0
Question Number 194900 Answers: 1 Comments: 0
$$\:\:\:\:\:\:{Given}\:\:\:{d}\:=\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}+\:\sqrt{\mathrm{5}}}}{\mathrm{1}+\sqrt{\mathrm{5}}}\:\: \\ $$$$\:\:\:\:\:\:{then}\:\:{d}^{\mathrm{3}} −\mathrm{4}{d}^{\mathrm{2}} \:+\mathrm{8}{d}\:−\mathrm{2}\:=?\: \\ $$$$\:\:\:\:\: \\ $$
Question Number 194896 Answers: 1 Comments: 0
$$\:\:\:\:\:\: \\ $$$$ {x}^{\mathrm{4}} \:+\:{f}^{\:\mathrm{2}} \left({x}\right)\:=\:\mathrm{1}+\:\mathrm{2}{x}^{\mathrm{2}} \:{f}\left({x}\right) \\ $$$$\:\:\:\:\:{x}\in{R}\:,\: \\ $$
Question Number 194891 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{3}^{+} } {\mathrm{lim}}\:\left(\frac{\sqrt{{x}}−\sqrt{{x}−\mathrm{3}}−\sqrt{\mathrm{3}}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}\:\right)=? \\ $$
Question Number 194888 Answers: 1 Comments: 0
Question Number 194887 Answers: 1 Comments: 0
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{Inverse}\:\mathrm{laplace}\:\mathrm{transform}\:\mathrm{of} \\ $$$$\frac{\mathrm{S}\:+\:\mathrm{2}}{\mathrm{S}^{\mathrm{2}} \:+\mathrm{4S}\:+\:\mathrm{7}} \\ $$$$ \\ $$$$\mathrm{Urgent}! \\ $$
Question Number 194881 Answers: 1 Comments: 0
$${Give}\:\bigtriangleup{ABC}\: \\ $$$${Proof}:\:{sin}\:{A}\:+\:{sin}\:{B}\:+\:{sin}\:{C}\:>\:\mathrm{2} \\ $$
Question Number 194884 Answers: 1 Comments: 0
$$\:\:\:\:\:\:{x}!\:=\:\mathrm{6}!.\:\mathrm{7}!\: \\ $$$$\:\:\:\:\:\:{x}^{\mathrm{2}} \:=?\: \\ $$
Question Number 194879 Answers: 1 Comments: 0
Question Number 194878 Answers: 2 Comments: 0
Question Number 194877 Answers: 0 Comments: 1
$${without}\:{calculator}\:{Prove}:\:\sqrt[{\mathrm{6}}]{\pi^{\mathrm{5}} +\pi^{\mathrm{4}} }<{e} \\ $$
Question Number 194869 Answers: 1 Comments: 0
Question Number 194868 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\forall{n}\in\mathrm{IN} \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} {t}\:{sin}^{\mathrm{2}{n}} \left({lnt}\right){dt}=\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}\pi} }\:\underset{\:\mathrm{0}} {\int}^{\:\pi} {e}^{−\mathrm{2}{t}} {sin}^{\mathrm{2}{n}} \left({t}\right){dt} \\ $$
Question Number 194861 Answers: 1 Comments: 0
Question Number 194853 Answers: 3 Comments: 0
Question Number 194852 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{cosx}\right)^{\mathrm{log}\left(\mathrm{x}\right)} =? \\ $$$$ \\ $$
Question Number 194847 Answers: 0 Comments: 2
$$\:\:\:\:\: {z}^{{n}} =\:−\mathrm{512}+\mathrm{512}{i}\: \\ $$$$\:\:\:\:{find}\:{n}. \\ $$
Question Number 194846 Answers: 1 Comments: 0
$$\:\:\:\:\: {x}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{10}+\mathrm{6}\sqrt{\mathrm{3}}}\:\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)}{\:\sqrt{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}}−\sqrt{\mathrm{5}}} \\ $$$$\:\:\:\: {G}=\left(\mathrm{12}{x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{2}} −\mathrm{55}\right)^{\mathrm{2023}} \:=? \\ $$
Question Number 194844 Answers: 1 Comments: 0
$$\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} +\left({x}+\mathrm{3}\right)^{\mathrm{2}} =\left({x}^{\mathrm{2}} +{ax}+{b}\right)\left({x}^{\mathrm{2}} +{cx}+{d}\right) \\ $$$${Find}\:{a},{b},{c},{d}. \\ $$
Question Number 194837 Answers: 2 Comments: 0
$${for}\:{x}>\mathrm{0}\:{find}\:{the}\:{minimum}\:{of}\:{the} \\ $$$${function}\:{f}\left({x}\right)={x}^{\mathrm{3}} +\frac{\mathrm{5}}{{x}}. \\ $$
Question Number 194836 Answers: 0 Comments: 1
Pg 264 Pg 265 Pg 266 Pg 267 Pg 268 Pg 269 Pg 270 Pg 271 Pg 272 Pg 273
Terms of Service
Privacy Policy
Contact: info@tinkutara.com