Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 268
Question Number 194844 Answers: 1 Comments: 0
$$\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} +\left({x}+\mathrm{3}\right)^{\mathrm{2}} =\left({x}^{\mathrm{2}} +{ax}+{b}\right)\left({x}^{\mathrm{2}} +{cx}+{d}\right) \\ $$$${Find}\:{a},{b},{c},{d}. \\ $$
Question Number 194837 Answers: 2 Comments: 0
$${for}\:{x}>\mathrm{0}\:{find}\:{the}\:{minimum}\:{of}\:{the} \\ $$$${function}\:{f}\left({x}\right)={x}^{\mathrm{3}} +\frac{\mathrm{5}}{{x}}. \\ $$
Question Number 194836 Answers: 0 Comments: 1
Question Number 194831 Answers: 1 Comments: 1
Question Number 194851 Answers: 0 Comments: 1
$$\boldsymbol{\mathrm{Name}}\:\:\:\boldsymbol{\mathrm{Zainab}}\:\boldsymbol{\mathrm{Bibi}} \\ $$$$\boldsymbol{\mathrm{BC}}\mathrm{200400692} \\ $$$$\boldsymbol{\mathrm{A}}\mathrm{ssignmeng}\:\mathrm{No}#\mathrm{2}\: \\ $$$$\boldsymbol{\mathrm{Mth}}\:\mathrm{621} \\ $$$$\mathrm{solution}.. \\ $$$$\mathrm{a}_{\mathrm{n}} =\frac{\left(\mathrm{n}− \right)!}{\left(\mathrm{n}+ \right)^{\mathrm{2}} } \\ $$$$\mathrm{a}_{\mathrm{n}+ } =\frac{\left(\mathrm{n}+ − \right)!}{\left(\mathrm{n}+ + \right)^{\mathrm{2}} }=\frac{\left(\mathrm{n}\right)!}{\left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$\mathrm{by}\:\mathrm{ratio}\:\mathrm{test} \\ $$$$\frac{\mathrm{a}_{\mathrm{n}+ } }{\mathrm{a}_{\mathrm{n}} }=\frac{\frac{\left(\mathrm{n}\right)!}{\left(\mathrm{n}+\mathrm{2}\right)}}{\frac{\left(\mathrm{n}− \right)!}{\left(\mathrm{n}+ \right)^{\mathrm{2}} }}=\frac{\left(\mathrm{n}\right)!}{\left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{2}} }×\frac{\left(\mathrm{n}+ \right)^{\mathrm{2}} }{\left(\mathrm{n}+ \right)!} \\ $$$$\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\:\frac{\mathrm{a}_{\mathrm{n}+ } }{\mathrm{a}_{\mathrm{n}} }=\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\frac{\mathrm{n}\left(\mathrm{n}− \right)!}{\left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{2}} }×\frac{\left(\mathrm{n}+ \right)^{\mathrm{2}} }{\left(\mathrm{n}− \right)!}\:\:\:\:\:\because\left(\mathrm{n}\right)!=\mathrm{n}\left(\mathrm{n}− \right)! \\ $$$$\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\frac{\mathrm{a}_{\mathrm{n}+ } }{\mathrm{a}_{\mathrm{n}} }=\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\frac{\mathrm{n}\left(\mathrm{n}+ \right)^{\mathrm{2}} }{\left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{2}} }=\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\frac{\mathrm{n}\left(\mathrm{n}^{\mathrm{2}} +\mathrm{1}+\mathrm{2n}\right)}{\mathrm{n}^{\mathrm{2}} +\mathrm{4}+\mathrm{4n}} \\ $$$$\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\frac{\left(\mathrm{n}^{\mathrm{3}} +\mathrm{n}+\mathrm{2n}^{\mathrm{2}} \right)}{\mathrm{n}^{\mathrm{2}} +\mathrm{4}+\mathrm{4n}}=\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }+\frac{\mathrm{2}}{\mathrm{n}}\right)}{\frac{\mathrm{1}}{\mathrm{n}}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{3}} }+\frac{\mathrm{4}}{\mathrm{n}^{\mathrm{2}} }} \\ $$$$\mathrm{Divided}\:\mathrm{by}\:\mathrm{n}^{\mathrm{3}} \:\mathrm{to}\:\mathrm{numerator}\:\mathrm{and}\:\mathrm{denominator}\: \\ $$$$\mathrm{Now}\:\mathrm{by}\:\mathrm{Applying}\:\mathrm{limit} \\ $$$$\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\infty^{\mathrm{2}\:} }+\frac{\mathrm{2}}{\infty}\right)}{\frac{\mathrm{1}}{\infty}+\frac{\mathrm{4}}{\infty^{\mathrm{3}} }+\frac{\mathrm{4}}{\infty^{\mathrm{2}} }}=\frac{\mathrm{1}+\mathrm{0}+\mathrm{0}}{\mathrm{0}+\mathrm{0}+\mathrm{0}}=\frac{\mathrm{1}}{\mathrm{0}}=\infty \\ $$$$\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\frac{\mathrm{a}_{\mathrm{n}+\mathrm{1}} }{\mathrm{a}_{\mathrm{n}} }=\infty \\ $$
Question Number 194850 Answers: 0 Comments: 0
Question Number 194826 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\mathrm{tan}\:\mathrm{19}°\:=\:{p}\: \\ $$$$\:\:\:\:\:\:\mathrm{tan}\:\mathrm{7}°\:=? \\ $$
Question Number 194821 Answers: 0 Comments: 2
$${M}\:{a}\:{inside}\:{poin}\:{in}\:\:\Delta{ABC}. \\ $$$${M}\:=\:{bar}\:\left\{\left({A},\:{area}\left({MBC}\right)\right),\:\left({B},\:{area}\left({MAC}\right)\right),\left({C},{area}\left({MAB}\right)\right)\right\} \\ $$
Question Number 194819 Answers: 0 Comments: 0
Question Number 194818 Answers: 1 Comments: 0
Question Number 194815 Answers: 1 Comments: 0
Question Number 194812 Answers: 2 Comments: 0
Question Number 194809 Answers: 2 Comments: 0
$$\:\:\:\:{If}\:{f}\left({x}\right)={ax}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{3}\:{and}\: \\ $$$$\:\:\:{g}\left({x}\right)=\mathrm{3}{x}−\mathrm{3}\:{intersection}\:{at} \\ $$$$\:{points}\:\left(\mathrm{1},{h}\right)\:{and}\:\left(\mathrm{3},{t}\right). \\ $$$$\:\:{Find}\: \\ $$
Question Number 194808 Answers: 0 Comments: 4
$$ \\ $$$${suppose}\:{a},{b},{c}\:{are}\:{positive}\:{real}\:{numbers} \\ $$$${prove}\:{the}\:{inequality} \\ $$$$\left(\frac{{a}+{b}}{\mathrm{2}}\right)\left(\frac{{b}+{c}}{\mathrm{2}}\right)\left(\frac{{c}+{a}}{\mathrm{2}}\right)\geqslant\left(\frac{{a}+{b}+{c}}{\mathrm{3}}\right)\sqrt[{\mathrm{3}}]{\left({abc}\right)^{\mathrm{2}} } \\ $$
Question Number 194796 Answers: 1 Comments: 0
$${A}\:\mathrm{1}{m}^{\mathrm{2}} \:{rectangle}\:{which}\:{length}\:{is}\: \\ $$$${less}\:{than}\:\mathrm{1}\:{is}\:\:{a}\:{square}.\:{Why}? \\ $$
Question Number 194791 Answers: 1 Comments: 0
$$\:\: \: \: \:{of}\:{x}\: \\ $$$$\:\:\frac{\sqrt[{\mathrm{7}}]{{x}−\sqrt{\mathrm{2}}}}{\mathrm{2}}\:−\frac{\sqrt[{\mathrm{7}}]{{x}−\sqrt{\mathrm{2}}}}{{x}^{\mathrm{2}} }\:=\:\frac{{x}}{\mathrm{2}}\:\sqrt[{\mathrm{7}}]{\frac{{x}^{\mathrm{2}} }{{x}+\sqrt{\mathrm{2}}}}\:\:\: \\ $$
Question Number 194790 Answers: 1 Comments: 0
Question Number 194786 Answers: 1 Comments: 0
$${x}^{{n}} +{y}^{{n}} =¿\:\left({n}\in{N}^{\ast} \right) \\ $$
Question Number 194785 Answers: 0 Comments: 0
$$\int\int\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:{dxdy}\:\left({D}={x}^{\mathrm{4}} +{y}^{\mathrm{4}} \leqslant\mathrm{1}\right) \\ $$
Question Number 194781 Answers: 0 Comments: 0
$${f}_{{n}\:} \:\:{the}\:{general}\:{sentence}\:{is}\:{seqiencee} \\ $$$${fibonacci}.\: \\ $$$${prove}\:{that}\::\:\:{f}_{\mathrm{2}{n}−\mathrm{1}} ={f}_{{n}} ^{\mathrm{2}} +{f}_{{n}−\mathrm{1}} ^{\mathrm{2}} \\ $$$$ \\ $$
Question Number 194779 Answers: 1 Comments: 4
$${If}\:\:{a}\:\:{divided}\:{by}\:{b}\:{gives}\:{q}\:\:{remaining}\:{r} \\ $$$${Then}\:\:\frac{{a}}{{b}}\:=\:{q},{rrr}...\:\:{in}\:{base}\:{b}+\mathrm{1} \\ $$
Question Number 194767 Answers: 2 Comments: 0
$$\:\:\:\:\:\mathrm{tan}\:\theta\:=\:\mathrm{2}\: \\ $$$$\:\:\:\frac{\mathrm{8sin}\:\theta+\mathrm{5cos}\:\theta}{\mathrm{sin}\:^{\mathrm{3}} \theta+\mathrm{cos}\:^{\mathrm{3}} \theta+\mathrm{cos}\:\theta}\:=? \\ $$
Question Number 194766 Answers: 2 Comments: 0
$$\:\:\:\mathrm{1}+\mathrm{2cot}\:\mathrm{2}{x}\:\mathrm{cot}\:{x}\:=\:\mathrm{3}\: \\ $$$$\:\:\:{x}=? \\ $$
Question Number 194759 Answers: 1 Comments: 1
$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\left(\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\right)\:\mathrm{dxdy}\: \\ $$
Question Number 194756 Answers: 3 Comments: 0
$$\:\:\:\:\: \\ $$$$ \:\frac{\mathrm{x}−\mathrm{a}}{\:\sqrt{\mathrm{x}}\:+\sqrt{\mathrm{a}}}\:=\:\frac{\sqrt{\mathrm{x}}−\sqrt{\mathrm{a}}}{\mathrm{3}}\:+\mathrm{2}\sqrt{\mathrm{a}}\: \\ $$
Question Number 194736 Answers: 0 Comments: 2
$$\:\:\:\: \\ $$$$ \left(\:\mathrm{log}\:_{\mathrm{sin}\:\mathrm{x}\:\mathrm{cos}\:\mathrm{x}} \:\left(\mathrm{cos}\:\mathrm{x}\right)\right)\left(\:\mathrm{log}\:_{\mathrm{sin}\:\mathrm{x}\:\mathrm{cos}\:\mathrm{x}} \left(\mathrm{sin}\:\mathrm{x}\right)\right)=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\:\: \\ $$
Pg 263 Pg 264 Pg 265 Pg 266 Pg 267 Pg 268 Pg 269 Pg 270 Pg 271 Pg 272
Terms of Service
Privacy Policy
Contact: info@tinkutara.com