Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 267
Question Number 194252 Answers: 2 Comments: 0
$$\:\:\mathrm{Find}\:\mathrm{V}\:=\:\mathrm{tan}\:\mathrm{9}°−\mathrm{tan}\:\mathrm{27}°−\mathrm{tan}\:\mathrm{63}°+\mathrm{tan}\:\mathrm{81}° \\ $$
Question Number 194250 Answers: 2 Comments: 0
$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{limit} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{ax}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)−\mathrm{x}}{\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{4}} }\:\mathrm{is}\:\mathrm{finite}\: \\ $$$$\:\mathrm{and}\:\mathrm{then}\:\mathrm{evaluate}\:\mathrm{the}\:\mathrm{limit}\: \\ $$
Question Number 194248 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Gyanashram}\:{classes} \\ $$$${weekly}\:{test}\:\:\:\:\:\:\:\:\:\:{by}−{Bittu}\:{sir}\:\: \\ $$$$\:\:\:\mathbb{CHEMISTRY}\:\:\mathbb{TEST} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Electrochemistry} \\ $$$$\mathrm{1}.\: \: \: \: \: \: \: \: \\ $$$$\mathrm{2}.\:\: \: \: \: \: \\ $$$$\:\mathrm{3}. \: \: \: \: \\ $$$$\mathrm{4}.\: \: \: \: \\ $$$$\mathrm{5}. \: \: \: \: \: \\ $$$$\mathrm{6}. \: \: \: \: \: \: \: ? \\ $$$$\mathrm{7}. \: \: \: \\ $$$$\mathrm{8}. \: \: \: \: \: \: \: \: \: \\ $$$$\mathrm{9}. \: \: \: \: \: \\ $$$$\mathrm{10}. \: \: \: ? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}\:\: \: \: \\ $$$$\mathrm{1}.\: \: \: \: ?\: \: \: \: \: \: \\ $$$$ \: \: \: \: \: \\ $$$$\mathrm{2}. \: \: \: \: \: \: \: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{object}\mathrm{ive} \\ $$$$\mathrm{1}.\:\:\mathrm{1f}\:\: \: \: \: \: \: \\ $$$$\mathrm{2}. \: \: \:\mathrm{127}\:{g}\:{cu}\: \: \: \: \: \\ $$$$\: \: \: \: \\ $$$$\mathrm{3}\: \: \: \: \: \\ $$$$\:\mathrm{4}.\: \: \: \: \: \: ? \\ $$$$\mathrm{5}.\: \: \: \: \: \: \: \\ $$
Question Number 194241 Answers: 1 Comments: 0
Question Number 194240 Answers: 2 Comments: 0
Question Number 194238 Answers: 1 Comments: 0
Question Number 194237 Answers: 0 Comments: 1
$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{evaluate}}\: \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{k}^{{n}} {n}!\left({zn}+\mathrm{1}\right)} \\ $$
Question Number 194236 Answers: 1 Comments: 0
Question Number 194226 Answers: 3 Comments: 0
$$ \\ $$$$\mathrm{If}\:{x}^{\mathrm{2}} \:−\:\mathrm{65}{x}\:=\:\mathrm{64}\sqrt{{x}}\:\mathrm{then}\:\sqrt{{x}\:−\:\sqrt{{x}}\:}\:=\:? \\ $$$$ \\ $$
Question Number 194219 Answers: 1 Comments: 0
Question Number 194218 Answers: 1 Comments: 2
Question Number 194216 Answers: 1 Comments: 0
Question Number 194211 Answers: 1 Comments: 0
$$\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=? \\ $$
Question Number 194208 Answers: 0 Comments: 0
Question Number 194209 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\sqrt[{\mathrm{3}}]{\mathrm{1}+{kx}}\:+{x}\:=\:\mathrm{1}\:\:\:{has} \\ $$$$\:\:\:\:\:\:{two}\:{real}\:{roots}\:.\:\:\Rightarrow\:{k}=? \\ $$$$\:\:\:{kx}+\mathrm{1}=\:\mathrm{1}−\mathrm{3}{x}+\mathrm{3}{x}^{\mathrm{2}} −{x}^{\:\mathrm{3}} \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:{x}^{\:\mathrm{3}} \:−\mathrm{3}{x}^{\:\mathrm{2}} +\:\left({k}+\mathrm{3}\right){x}=\mathrm{0} \\ $$$$\:\:\:\:\:{x}=\mathrm{0} \\ $$$$\:\:\:\:\:{x}^{\:\mathrm{2}} −\mathrm{3}{x}\:+{k}+\mathrm{3}=\mathrm{0} \\ $$$$\:\:\:\:\mathrm{1}:\:\:\Delta=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{9}\:−\:\mathrm{4}{k}\:−\mathrm{12}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:{k}=\:\frac{−\mathrm{3}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\mathrm{2}:\:\:{k}=−\mathrm{3}\:\Rightarrow\:{x}=\mathrm{0}\:{is}\:{a}\:{root}\:{of} \\ $$$$\:\:\:\:\:\:{x}^{\:\mathrm{2}} −\mathrm{3}{x}+{k}+\mathrm{3}=\mathrm{0} \\ $$$$\:\:\:\:\therefore\:\:\:\:\:\:{k}=\:\frac{−\mathrm{3}}{\mathrm{4}}\:\:\:\:{or}\:\:\:{k}=−\mathrm{3} \\ $$
Question Number 194207 Answers: 0 Comments: 0
$$\:\:\:\:\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\: \\ $$$$\:\:\:\:\mathrm{x}^{\mathrm{x}−\mathrm{4}} \:\:=\sqrt{\mathrm{3}\:} \\ $$
Question Number 194206 Answers: 1 Comments: 0
Question Number 194204 Answers: 1 Comments: 0
Question Number 194201 Answers: 1 Comments: 3
Question Number 194197 Answers: 1 Comments: 0
Question Number 194194 Answers: 0 Comments: 0
Question Number 194193 Answers: 0 Comments: 0
Question Number 194191 Answers: 1 Comments: 0
Question Number 194190 Answers: 0 Comments: 1
$${Explanation}\:{Why}: \\ $$$${While}\:{f}\left({ax}+{b}\right)+{f}\left({cx}+{d}\right)={ex}+{g} \\ $$$${then}\:{f}\left({x}\right)={Ax}^{\mathrm{2}} +{Bx}+{C}\:¿ \\ $$
Question Number 194185 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{0}^{\:−} } \:\left\{\:\frac{\:{x}^{\:\mathrm{2}} \:+\mathrm{2}{cos}\left({x}\right)\:+\:\lfloor−\frac{{tan}\left({x}\right)}{{x}}\:\rfloor}{{ax}^{\:\mathrm{4}} }\:\right\}\:=\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}\:=\:? \\ $$$$\:\:\:\:\:\:\:\:{a}:\:\:\:\frac{\mathrm{1}}{\mathrm{12}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{b}:\:\:−\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{c}:\:\:\:\mathrm{12}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{d}:\:\:−\mathrm{12}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$
Question Number 194183 Answers: 1 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{15}\right)\left({n}+\mathrm{30}\right)} \\ $$
Pg 262 Pg 263 Pg 264 Pg 265 Pg 266 Pg 267 Pg 268 Pg 269 Pg 270 Pg 271
Terms of Service
Privacy Policy
Contact: info@tinkutara.com