Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 267

Question Number 194709    Answers: 1   Comments: 0

Show that in fibonacci sequence f_(3n) =f_n ^3 +f_(n+1) ^3 −f_(n−1) ^3

$${Show}\:{that}\:\:{in}\:{fibonacci}\:{sequence} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{f}_{\mathrm{3}{n}} ={f}_{{n}} ^{\mathrm{3}} +{f}_{{n}+\mathrm{1}} ^{\mathrm{3}} −{f}_{{n}−\mathrm{1}} ^{\mathrm{3}} \\ $$$$ \\ $$

Question Number 194710    Answers: 0   Comments: 21

let p be a prime number & let a_1 ,a_2 ,a_3 ,...,a_(p ) be integers show that , there exists an integer k such that the numbers a_1 +k, a_2 +k,a_3 +k,....,a_p +k produce at least (1/2)p distinct remainders when divided by p.

$${let}\:{p}\:{be}\:{a}\:{prime}\:{number} \\ $$$$\&\:{let}\:{a}_{\mathrm{1}} \:,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} ,...,{a}_{{p}\:} {be}\:{integers} \\ $$$${show}\:{that}\:,\:{there}\:{exists}\:{an}\:{integer}\:{k}\:{such}\:{that}\:{the}\:{numbers} \\ $$$${a}_{\mathrm{1}} +{k},\:{a}_{\mathrm{2}} +{k},{a}_{\mathrm{3}} +{k},....,{a}_{{p}} +{k} \\ $$$${produce}\:{at}\:{least}\:\frac{\mathrm{1}}{\mathrm{2}}{p}\:{distinct}\:{remainders} \\ $$$${when}\:{divided}\:{by}\:{p}. \\ $$

Question Number 194700    Answers: 0   Comments: 2

Question Number 194697    Answers: 2   Comments: 0

((tan x)/(tan x−tan 3x)) = (1/3) then ((cot x)/(cot x+cot 3x)) =?

$$\:\:\: \frac{\mathrm{tan}\:\mathrm{x}}{\mathrm{tan}\:\mathrm{x}−\mathrm{tan}\:\mathrm{3x}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{then} \\ $$$$\:\:\:\frac{\mathrm{cot}\:\mathrm{x}}{\mathrm{cot}\:\mathrm{x}+\mathrm{cot}\:\mathrm{3x}}\:=? \\ $$

Question Number 194695    Answers: 1   Comments: 0

(x/(a+b−c)) =(y/(b+c−a))=(z/(c+a−b)) Then (a−b)x+(b−c)y+(c−a)z =?

$$\:\:\:\: \:\frac{\mathrm{x}}{\mathrm{a}+\mathrm{b}−\mathrm{c}}\:=\frac{\mathrm{y}}{\mathrm{b}+\mathrm{c}−\mathrm{a}}=\frac{\mathrm{z}}{\mathrm{c}+\mathrm{a}−\mathrm{b}} \\ $$$$\:\mathrm{Then}\:\left(\mathrm{a}−\mathrm{b}\right)\mathrm{x}+\left(\mathrm{b}−\mathrm{c}\right)\mathrm{y}+\left(\mathrm{c}−\mathrm{a}\right)\mathrm{z}\:=? \\ $$

Question Number 194693    Answers: 1   Comments: 0

if f_n =f_(n−1) +f_(n−2) ; f_1 =f_2 =1 then prove that 5∣f_(5n)

$${if}\:\:\:{f}_{{n}} ={f}_{{n}−\mathrm{1}} +{f}_{{n}−\mathrm{2}} \:\:;\:\:{f}_{\mathrm{1}} ={f}_{\mathrm{2}} =\mathrm{1} \\ $$$${then}\:\:\:{prove}\:{that}\:\:\:\mathrm{5}\mid{f}_{\mathrm{5}{n}} \:\: \\ $$

Question Number 194685    Answers: 1   Comments: 0

Question Number 194662    Answers: 0   Comments: 2

∫_0 ^(Π/2) (√(4sin^2 t+cos^2 t)) dt

$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \sqrt{\mathrm{4}{sin}^{\mathrm{2}} {t}+{cos}^{\mathrm{2}} {t}}\:\:{dt} \\ $$

Question Number 194654    Answers: 1   Comments: 0

Question Number 194652    Answers: 0   Comments: 0

Question Number 194649    Answers: 0   Comments: 3

calcul ∫_0 ^(Π/2) (√(4sin^2 t+cos^2 t ))dt

$${calcul}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \sqrt{\mathrm{4}{sin}^{\mathrm{2}} {t}+{cos}^{\mathrm{2}} {t}\:}{dt} \\ $$

Question Number 194648    Answers: 3   Comments: 3

Question Number 194642    Answers: 2   Comments: 0

If A= (((a b c)),((b c a)),((c a b)) ) and a,b,c >0 such that abc=1 and A^T .A=I find a^3 +b^3 +c^3 −3abc .

$$\:\mathrm{If}\:\mathrm{A}=\begin{pmatrix}{\mathrm{a}\:\:\:\:\mathrm{b}\:\:\:\:\:\:\mathrm{c}}\\{\mathrm{b}\:\:\:\:\mathrm{c}\:\:\:\:\:\:\mathrm{a}}\\{\mathrm{c}\:\:\:\:\:\mathrm{a}\:\:\:\:\:\:\mathrm{b}}\end{pmatrix}\:\mathrm{and}\:\mathrm{a},\mathrm{b},\mathrm{c}\:>\mathrm{0} \\ $$$$\:\:\mathrm{such}\:\mathrm{that}\:\mathrm{abc}=\mathrm{1}\:\mathrm{and}\:\mathrm{A}^{\mathrm{T}} .\mathrm{A}=\mathrm{I} \\ $$$$\:\mathrm{find}\:\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} −\mathrm{3abc}\:. \\ $$

Question Number 194640    Answers: 1   Comments: 0

lim_(x→∞) ((√x) (1−cos ((1/(2(√x))))).(1/(sin ((3/( (√x)))))))

$$\:\:\: \: \\ $$$$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt{\mathrm{x}}\:\left(\mathrm{1}−\mathrm{cos}\:\left(\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}}}\right)\right).\frac{\mathrm{1}}{\mathrm{sin}\:\left(\frac{\mathrm{3}}{\:\sqrt{\mathrm{x}}}\right)}\right)\: \\ $$

Question Number 194638    Answers: 1   Comments: 1

Prove that ∀n∈IN^∗ Σ_(k=1) ^(2^n −1) (1/(sin^2 (((kπ)/2^(n+1) ))))= ((2^(2n+1) −2)/3) Give in terms of n Σ_(k=1) ^(2^n −1) (1/(sin^4 (((kπ)/2^(n+1) ))))

$$\mathrm{Prove}\:\mathrm{that}\:\forall{n}\in\mathrm{IN}^{\ast} \:\:\:\:\: \\ $$$$\:\:\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}^{{n}} −\mathrm{1}} {\sum}}\:\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)}=\:\frac{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} −\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{Give}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{n}\:\:\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}^{{n}} −\mathrm{1}} {\sum}}\:\frac{\mathrm{1}}{{sin}^{\mathrm{4}} \left(\frac{{k}\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)} \\ $$

Question Number 194637    Answers: 4   Comments: 1

x+y=1 x^2 +y^2 =2 x^(11) +y^(11) =?

$$ \\ $$$${x}+{y}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{2} \\ $$$${x}^{\mathrm{11}} +{y}^{\mathrm{11}} =? \\ $$$$ \\ $$$$ \\ $$

Question Number 194636    Answers: 0   Comments: 3

Question Number 194634    Answers: 1   Comments: 0

a_1 ,a_2 ,a_3 ,....,a_n >0 such that a_i ∈[0,i] ∀ i∈{1,2,3,4,...,n} prove that 2^n .a_1 (a_1 +a_2 )...(a_1 +a_2 +...+a_n )≥(n+1)(a_1 ^2 .a_2 ^2 ...a_n ^2 )

$${a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} ,....,{a}_{{n}} >\mathrm{0}\:{such}\:{that}\:{a}_{{i}} \in\left[\mathrm{0},{i}\right]\: \\ $$$$\forall\:{i}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},...,{n}\right\}\:{prove}\:{that} \\ $$$$\mathrm{2}^{{n}} .{a}_{\mathrm{1}} \left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} \right)...\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} +...+{a}_{{n}} \right)\geqslant\left({n}+\mathrm{1}\right)\left({a}_{\mathrm{1}} ^{\mathrm{2}} .{a}_{\mathrm{2}} ^{\mathrm{2}} ...{a}_{{n}} ^{\mathrm{2}} \right) \\ $$

Question Number 194624    Answers: 2   Comments: 2

Question Number 194619    Answers: 1   Comments: 0

Find the sum of the roots of the equation: −3x^3 + 8x^2 − 6x − 7 = 0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}: \\ $$$$−\mathrm{3x}^{\mathrm{3}} \:+\:\mathrm{8x}^{\mathrm{2}} \:−\:\mathrm{6x}\:−\:\mathrm{7}\:=\:\mathrm{0} \\ $$

Question Number 194612    Answers: 1   Comments: 2

Question Number 194613    Answers: 2   Comments: 0

log _(4x) (x)+ log _(x/2) (x)= 2

$$\:\:\:\:\: \\ $$$$\:\:\mathrm{log}\:_{\mathrm{4x}} \left(\mathrm{x}\right)+\:\mathrm{log}\:_{\mathrm{x}/\mathrm{2}} \left(\mathrm{x}\right)=\:\mathrm{2}\: \\ $$

Question Number 194610    Answers: 1   Comments: 0

where can I learn about multiple sigma notaions of dependent and independent variables something like this Σ_(1≤i) Σ_(<j) Σ_(<k≤1) (i+j+k)=λ find λ I want to know what to study

$${where}\:{can}\:{I}\:{learn}\:{about}\:{multiple}\:{sigma}\:{notaions} \\ $$$${of}\:{dependent}\:{and}\:{independent}\:{variables} \\ $$$$ \\ $$$${something}\:{like}\:{this} \\ $$$$\underset{\mathrm{1}\leqslant{i}} {\sum}\underset{<{j}} {\sum}\underset{<{k}\leqslant\mathrm{1}} {\sum}\left({i}+{j}+{k}\right)=\lambda \\ $$$${find}\:\lambda \\ $$$${I}\:{want}\:{to}\:{know}\:{what}\:{to}\:{study} \\ $$

Question Number 194606    Answers: 0   Comments: 0

When a kichen is removed from an oven, its temperature is measured at 300^0 F. Three minutes later, its temperature is 200^0 F. How longwill it take the kitchen to cool of to a room temperature of 70^0 F?

$$\mathrm{When}\:\mathrm{a}\:\mathrm{kichen}\:\mathrm{is}\:\mathrm{removed}\:\mathrm{from}\:\mathrm{an} \\ $$$$\:\mathrm{oven},\:\mathrm{its}\:\mathrm{temperature}\:\mathrm{is}\:\mathrm{measured}\:\mathrm{at} \\ $$$$\:\mathrm{300}^{\mathrm{0}} \mathrm{F}.\:\mathrm{Three}\:\mathrm{minutes}\:\mathrm{later},\:\mathrm{its} \\ $$$$\:\mathrm{temperature}\:\mathrm{is}\:\mathrm{200}^{\mathrm{0}} \mathrm{F}.\:\mathrm{How}\:\mathrm{longwill} \\ $$$$\:\mathrm{it}\:\mathrm{take}\:\mathrm{the}\:\mathrm{kitchen}\:\mathrm{to}\:\mathrm{cool}\:\mathrm{of}\:\mathrm{to}\:\mathrm{a}\: \\ $$$$\mathrm{room}\:\mathrm{temperature}\:\mathrm{of}\:\mathrm{70}^{\mathrm{0}} \mathrm{F}? \\ $$

Question Number 194604    Answers: 0   Comments: 0

Question Number 194602    Answers: 1   Comments: 0

A ball is thrown vertically upwards with a velocity of 10m/s from a point 75 m above the ground. Calculate the velocity with which it hits the ground.

$$ \\ $$A ball is thrown vertically upwards with a velocity of 10m/s from a point 75 m above the ground. Calculate the velocity with which it hits the ground.

  Pg 262      Pg 263      Pg 264      Pg 265      Pg 266      Pg 267      Pg 268      Pg 269      Pg 270      Pg 271   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com