Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 267

Question Number 184859    Answers: 2   Comments: 0

Lim_( x→∞) x^( 4) ( 1− cos (1− cos((2/x))))=?

$$ \\ $$$$\:\mathrm{Lim}_{\:{x}\rightarrow\infty} \:{x}^{\:\mathrm{4}} \:\left(\:\mathrm{1}−\:{cos}\:\left(\mathrm{1}−\:{cos}\left(\frac{\mathrm{2}}{{x}}\right)\right)\right)=? \\ $$$$ \\ $$

Question Number 184858    Answers: 1   Comments: 0

Σ_(n=o) ^(+oo) (((−1)^n x^(2n+1) )/(4n^2 −1))

$$\underset{{n}={o}} {\overset{+{oo}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$

Question Number 184856    Answers: 0   Comments: 0

f(x)= (√( ∣ x_ ^ ∣ −∣ x−_ ^ ⌊ax⌋ ∣)) ; a ∈ [ 3 , 4 ) find : { (( D_( f) =? (domain ))),(( R_( f) =? (range ))) :}

$$ \\ $$$$\:\:\:\:\:{f}\left({x}\right)=\:\sqrt{\:\mid\:\underset{} {\overset{} {{x}}}\:\:\mid\:−\mid\:\:{x}\underset{} {\overset{} {−}}\lfloor{ax}\rfloor\:\mid} \\ $$$$\:\:\:\:\:\:;\:\:\:{a}\:\in\:\left[\:\mathrm{3}\:,\:\mathrm{4}\:\right) \\ $$$$\:\:\:\:\:{find}\::\:\:\:\begin{cases}{\:\:{D}_{\:{f}} \:=?\:\left({domain}\:\right)}\\{\:\:\mathcal{R}_{\:{f}} \:=?\:\left({range}\:\right)}\end{cases} \\ $$$$ \\ $$

Question Number 184845    Answers: 0   Comments: 0

x ∈ [−0,5 ; 0,5] find the product of all x′s 1. 4sin^2 πx−4sinπx + 2 = 2sin^2 πy−1 2. 4sinπx = 4sinπy − 7 − (1/(sin^2 πx))

$$\mathrm{x}\:\in\:\left[−\mathrm{0},\mathrm{5}\:;\:\mathrm{0},\mathrm{5}\right] \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{all}\:\:\boldsymbol{\mathrm{x}}'\mathrm{s} \\ $$$$\mathrm{1}.\:\mathrm{4sin}^{\mathrm{2}} \pi\mathrm{x}−\mathrm{4sin}\pi\mathrm{x}\:+\:\mathrm{2}\:=\:\mathrm{2sin}^{\mathrm{2}} \pi\mathrm{y}−\mathrm{1} \\ $$$$\mathrm{2}.\:\mathrm{4sin}\pi\mathrm{x}\:=\:\mathrm{4sin}\pi\mathrm{y}\:−\:\mathrm{7}\:−\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \pi\mathrm{x}} \\ $$

Question Number 184843    Answers: 0   Comments: 0

Question Number 184841    Answers: 1   Comments: 0

Question Number 184839    Answers: 3   Comments: 0

xy − 3x = 27 −5y find all (x , y) in Z^2

$${xy}\:−\:\mathrm{3}{x}\:=\:\mathrm{27}\:−\mathrm{5}{y} \\ $$$${find}\:{all}\:\left({x}\:,\:{y}\right)\:{in}\:\mathbb{Z}^{\mathrm{2}} \\ $$

Question Number 184832    Answers: 4   Comments: 1

Given the acceleration a=−4sin2t, initial velocity v(0)=2, and the initial position of the body as s(0)=−3, find the body′s position at time t. Hi

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{acceleration}\: \\ $$$$\mathrm{a}=−\mathrm{4sin2t},\:\mathrm{initial}\:\mathrm{velocity}\: \\ $$$$\mathrm{v}\left(\mathrm{0}\right)=\mathrm{2},\:\mathrm{and}\:\mathrm{the}\:\mathrm{initial}\:\mathrm{position}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{body}\:\mathrm{as}\:\mathrm{s}\left(\mathrm{0}\right)=−\mathrm{3},\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{body}'\mathrm{s}\:\mathrm{position}\:\mathrm{at}\:\mathrm{time}\:\mathrm{t}. \\ $$$$ \\ $$$$\mathrm{Hi} \\ $$

Question Number 184828    Answers: 0   Comments: 1

Find x in terms of c ∀ 0<c<(2/(3(√3))) (3x^2 −1)(3x^2 +36x−1)^2 ={4(x^3 −x−c)+9(7x^2 +1)}^2

$${Find}\:{x}\:{in}\:{terms}\:{of}\:\:\:{c}\:\:\forall\:\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$$\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{36}{x}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:=\left\{\mathrm{4}\left({x}^{\mathrm{3}} −{x}−{c}\right)+\mathrm{9}\left(\mathrm{7}{x}^{\mathrm{2}} +\mathrm{1}\right)\right\}^{\mathrm{2}} \\ $$

Question Number 184823    Answers: 1   Comments: 0

Lim_( x→ 0^( +) ) (( 1− cos ( 1− cos((√x) )))/x^( 4) )

$$ \\ $$$$\:\:\:\mathrm{Lim}_{\:{x}\rightarrow\:\mathrm{0}^{\:+} } \:\:\frac{\:\:\mathrm{1}−\:\:\mathrm{cos}\:\left(\:\mathrm{1}−\:\mathrm{cos}\left(\sqrt{{x}}\:\right)\right)}{{x}^{\:\mathrm{4}} } \\ $$

Question Number 184822    Answers: 1   Comments: 0

Question Number 184819    Answers: 2   Comments: 0

For 0≤x≤1 , maximum value of f(x)=x(√(1−x+(√(1−x)))) is __

$$\:\:{For}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:,\:{maximum}\:{value} \\ $$$$\:\:{of}\:{f}\left({x}\right)={x}\sqrt{\mathrm{1}−{x}+\sqrt{\mathrm{1}−{x}}}\:{is}\:\_\_ \\ $$

Question Number 184798    Answers: 0   Comments: 1

Show that lim_(x→0) (x/(∣x∣)) does not exist

$${Show}\:{that}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{\mid{x}\mid}\:\:{does}\:{not}\:{exist} \\ $$

Question Number 184797    Answers: 0   Comments: 1

Show that lim_(x→0) ((e^(1/x) −1)/(e^(1/x) +1)) does not exist

$${Show}\:{that}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}}{{e}^{\frac{\mathrm{1}}{{x}}} +\mathrm{1}}\:\:\:{does}\:{not}\:{exist} \\ $$

Question Number 184796    Answers: 1   Comments: 2

Evaluate lim_(x→(π/6)) (((√3)sin x−cos x)/(x−(π/6)))

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{6}}} {\mathrm{lim}}\frac{\sqrt{\mathrm{3}}\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{{x}−\frac{\pi}{\mathrm{6}}} \\ $$

Question Number 184795    Answers: 1   Comments: 1

Evaluate lim_(x→0) ((1−cos x(√(cos 2x)) )/x^2 )

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{x}\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\:}{{x}^{\mathrm{2}} } \\ $$

Question Number 184794    Answers: 4   Comments: 2

Evaluate lim_(x→2) ((x^5 −32)/(x^3 −8))

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{5}} −\mathrm{32}}{{x}^{\mathrm{3}} −\mathrm{8}} \\ $$

Question Number 184793    Answers: 1   Comments: 0

Evaluate lim_(x→2) ((x^2 −4)/( (√(3x−2))−(√(x+2))))

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\:\frac{{x}^{\mathrm{2}} −\mathrm{4}}{\:\sqrt{\mathrm{3}{x}−\mathrm{2}}−\sqrt{{x}+\mathrm{2}}} \\ $$$$ \\ $$

Question Number 184792    Answers: 1   Comments: 2

Evaluate lim_(x→0) ((tan x−sin x)/(sin^3 x))

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:{x}−\mathrm{sin}\:{x}}{\mathrm{sin}\:^{\mathrm{3}} {x}} \\ $$$$ \\ $$

Question Number 184791    Answers: 0   Comments: 2

Evaluate lim_(x→0) ((e^x +e^(−x) −2)/x^2 )

$${Evaluate}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{e}^{{x}} +{e}^{−{x}} −\mathrm{2}}{{x}^{\mathrm{2}} } \\ $$

Question Number 184790    Answers: 2   Comments: 2

Evaluate lim_(x→0) (((1+x)^6 −1)/((1+x)^5 −1))

$${Evaluate} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+{x}\right)^{\mathrm{6}} −\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{5}} −\mathrm{1}} \\ $$

Question Number 184787    Answers: 0   Comments: 2

x^4 +16x^3 +9x^2 +256x+256=0 Find the values of x?

$$\mathrm{x}^{\mathrm{4}} +\mathrm{16x}^{\mathrm{3}} +\mathrm{9x}^{\mathrm{2}} +\mathrm{256x}+\mathrm{256}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}? \\ $$

Question Number 184775    Answers: 1   Comments: 2

(1/(6 + (9/(6 + ((25)/(6 + ((49)/(6 + ((81)/(6+ ......)) )) )) )) )) =?

$$\:\:\:\: \\ $$$$\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{6}\:+\:\frac{\mathrm{9}}{\mathrm{6}\:+\:\:\frac{\mathrm{25}}{\mathrm{6}\:\:+\:\:\frac{\mathrm{49}}{\mathrm{6}\:+\:\frac{\mathrm{81}}{\mathrm{6}+\:......}\:\:\:\:\:}\:\:\:\:\:}\:\:}\:\:\:\:\:\:\:\:}\:\:=? \\ $$$$ \\ $$$$ \\ $$

Question Number 184774    Answers: 1   Comments: 2

Calcul the sum 1.Σx(1+x^2 )^(1/2) 2.Σxarctan(x) 3.Σe^x sinx 4.Σ(2x+1)^(20) 5.Σ(√(a^2 −x^2 )) a>0 6.Σxsinx

$${Calcul}\:{the}\:{sum} \\ $$$$\mathrm{1}.\Sigma{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{2}.\Sigma{xarctan}\left({x}\right) \\ $$$$\mathrm{3}.\Sigma{e}^{{x}} {sinx} \\ $$$$\mathrm{4}.\Sigma\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{20}} \\ $$$$\mathrm{5}.\Sigma\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} \:}\:{a}>\mathrm{0} \\ $$$$\mathrm{6}.\Sigma{xsinx} \\ $$

Question Number 184773    Answers: 2   Comments: 1

lim_(x→1) ((ax+b)/( (√(1+3x))−2))=c 2a−2b+3c=? (a,b,c)≠0 pease solution????

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{ax}+\mathrm{b}}{\:\sqrt{\mathrm{1}+\mathrm{3x}}−\mathrm{2}}=\mathrm{c} \\ $$$$\mathrm{2a}−\mathrm{2b}+\mathrm{3c}=? \\ $$$$\left(\mathrm{a},\mathrm{b},\mathrm{c}\right)\neq\mathrm{0} \\ $$$$\mathrm{pease}\:\mathrm{solution}???? \\ $$

Question Number 184769    Answers: 0   Comments: 2

  Pg 262      Pg 263      Pg 264      Pg 265      Pg 266      Pg 267      Pg 268      Pg 269      Pg 270      Pg 271   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com