Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 262

Question Number 194327    Answers: 1   Comments: 0

If ta4θ = 1, find the values of θ.

$$\mathrm{If}\:\mathrm{ta4}\theta\:=\:\mathrm{1},\:\mathrm{find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\theta. \\ $$

Question Number 194326    Answers: 1   Comments: 0

(√(((√(x^2 +66^2 +x))/x) )) −(√(x(√(x^2 +66^2 ))−x^2 )) = 5

$$\:\:\sqrt{\frac{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{66}^{\mathrm{2}} +\mathrm{x}}}{\mathrm{x}}\:}\:−\sqrt{\mathrm{x}\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{66}^{\mathrm{2}} }−\mathrm{x}^{\mathrm{2}} }\:=\:\mathrm{5}\: \\ $$

Question Number 194325    Answers: 1   Comments: 0

value of f(x,y,z)= x^4 +y^4 +z^4 subject to x^2 +y^2 +z^2 =5

$$\: \: \: \: \\ $$$$ \mathrm{value}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)=\:\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} +\mathrm{z}^{\mathrm{4}} \: \\ $$$$\:\mathrm{subject}\:\mathrm{to}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{5}\: \\ $$

Question Number 194322    Answers: 0   Comments: 0

Question Number 194321    Answers: 1   Comments: 0

find min −(((x−y)(((xy)/4)−4)^2 )/(xy)) s. t. x>0>y

$$\mathrm{find}\:\mathrm{min}\:\:−\frac{\left({x}−{y}\right)\left(\frac{{xy}}{\mathrm{4}}−\mathrm{4}\right)^{\mathrm{2}} }{{xy}} \\ $$$$\mathrm{s}.\:\mathrm{t}.\:\:{x}>\mathrm{0}>{y} \\ $$

Question Number 194317    Answers: 0   Comments: 0

Question Number 194316    Answers: 0   Comments: 1

if x∈R & x^x^6 =((√2))^(√2) ⇒ x=?

$${if}\:\:{x}\in{R}\:\:\&\:\:{x}^{{x}^{\mathrm{6}} } =\left(\sqrt{\mathrm{2}}\right)^{\sqrt{\mathrm{2}}} \:\Rightarrow\:\:{x}=? \\ $$

Question Number 194315    Answers: 1   Comments: 0

4sin 2x cos x +1 = 2cos 4x

$$\:\:\:\: \\ $$$$ \mathrm{4sin}\:\mathrm{2x}\:\mathrm{cos}\:\mathrm{x}\:+\mathrm{1}\:=\:\mathrm{2cos}\:\mathrm{4x}\: \\ $$$$\: \\ $$

Question Number 194312    Answers: 0   Comments: 0

Question Number 194304    Answers: 1   Comments: 0

Question Number 194301    Answers: 1   Comments: 0

Resolution de l exercice du 28.6.23 (envoye par universe ) Q194116

$$\boldsymbol{\mathrm{Resolution}}\:\boldsymbol{\mathrm{de}}\:\boldsymbol{\mathrm{l}}\:\boldsymbol{\mathrm{exercice}}\:\boldsymbol{\mathrm{du}}\:\mathrm{28}.\mathrm{6}.\mathrm{23} \\ $$$$\:\:\left({env}\mathrm{o}{ye}\:{par}\:{universe}\:\right) \\ $$$$\boldsymbol{{Q}}\mathrm{194116} \\ $$$$ \\ $$

Question Number 194297    Answers: 1   Comments: 0

Let a , b , c be real positive numbers & abc=1 prove that ((ab)/(a^5 +b^5 +ab))+((bc)/(b^5 +c^5 +bc))+((ac)/(a^5 +c^5 +ac))≤1

$${Let}\:{a}\:,\:{b}\:,\:{c}\:{be}\:\:{real}\:{positive}\:{numbers}\:\&\: \\ $$$${abc}=\mathrm{1}\: \\ $$$${prove}\:{that} \\ $$$$\frac{{ab}}{{a}^{\mathrm{5}} +{b}^{\mathrm{5}} +{ab}}+\frac{{bc}}{{b}^{\mathrm{5}} +{c}^{\mathrm{5}} +{bc}}+\frac{{ac}}{{a}^{\mathrm{5}} +{c}^{\mathrm{5}} +{ac}}\leqslant\mathrm{1} \\ $$

Question Number 194295    Answers: 1   Comments: 0

Question Number 194292    Answers: 0   Comments: 0

Question Number 194286    Answers: 2   Comments: 0

find lim_(x→0) ⌊ ((tan(x))/x)⌋

$$ \\ $$$$\:\:\boldsymbol{{find}}\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\:\lfloor\:\frac{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)}{\boldsymbol{{x}}}\rfloor \\ $$

Question Number 194282    Answers: 1   Comments: 0

f(f(x)) = ax + b 1. show that f(ax+b) = af(x) + b deduce f ′(ax + b) 2. Show that f ′(x) is a constant hence deduce f

$${f}\left({f}\left({x}\right)\right)\:=\:{ax}\:+\:{b} \\ $$$$\mathrm{1}.\:{show}\:{that}\:{f}\left({ax}+{b}\right)\:=\:{af}\left({x}\right)\:+\:{b} \\ $$$${deduce}\:{f}\:'\left({ax}\:+\:{b}\right) \\ $$$$\mathrm{2}.\:{Show}\:{that}\:{f}\:'\left({x}\right)\:{is}\:{a}\:{constant}\: \\ $$$${hence}\:{deduce}\:{f} \\ $$

Question Number 194279    Answers: 1   Comments: 0

lim_(x→0) ((18x^4 )/( ((cos 6x))^(1/3) −1+6x^2 ))

$$ \\ $$$$ \underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{18x}^{\mathrm{4}} }{\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\mathrm{6x}}−\mathrm{1}+\mathrm{6x}^{\mathrm{2}} } \\ $$

Question Number 194278    Answers: 0   Comments: 0

Question Number 194270    Answers: 1   Comments: 1

Question Number 194257    Answers: 1   Comments: 2

Know x,y,z ∈ R^+ such that: 2x + 4y + 7z = 2xyz Find Min(x+y+z)¿

$${Know}\:{x},{y},{z}\:\in\:{R}^{+} \:{such}\:{that}: \\ $$$$\mathrm{2}{x}\:+\:\mathrm{4}{y}\:+\:\mathrm{7}{z}\:=\:\mathrm{2}{xyz} \\ $$$${Find}\:{Min}\left({x}+{y}+{z}\right)¿ \\ $$

Question Number 194256    Answers: 2   Comments: 0

lim_(x→0) ((((1+tan x)/(1−tan x)) −1)/x) =?

$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}+\mathrm{tan}\:\mathrm{x}}{\mathrm{1}−\mathrm{tan}\:\mathrm{x}}\:−\mathrm{1}}{\mathrm{x}}\:=? \\ $$

Question Number 194255    Answers: 0   Comments: 0

Find value m so that the function y=∣x^2 −2mx∣−6x covariaties on the interval (1;4)

$${Find}\:{value}\:{m}\:{so}\:{that}\:{the}\:{function}\: \\ $$$${y}=\mid{x}^{\mathrm{2}} −\mathrm{2}{mx}\mid−\mathrm{6}{x}\:{covariaties} \\ $$$$\:{on}\:{the}\:{interval}\:\left(\mathrm{1};\mathrm{4}\right) \\ $$

Question Number 194252    Answers: 2   Comments: 0

Find V = tan 9°−tan 27°−tan 63°+tan 81°

$$\:\:\mathrm{Find}\:\mathrm{V}\:=\:\mathrm{tan}\:\mathrm{9}°−\mathrm{tan}\:\mathrm{27}°−\mathrm{tan}\:\mathrm{63}°+\mathrm{tan}\:\mathrm{81}° \\ $$

Question Number 194250    Answers: 2   Comments: 0

find the value of a for which the limit lim_(x→0) ((sin (ax)−tan^(−1) (x)−x)/(x^3 +x^4 )) is finite and then evaluate the limit

$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{limit} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{ax}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)−\mathrm{x}}{\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{4}} }\:\mathrm{is}\:\mathrm{finite}\: \\ $$$$\:\mathrm{and}\:\mathrm{then}\:\mathrm{evaluate}\:\mathrm{the}\:\mathrm{limit}\: \\ $$

Question Number 194248    Answers: 0   Comments: 0

Gyanashram classes weekly test by−Bittu sir CHEMISTRY TEST Electrochemistry 1. 2. 3. 4. 5. 6. ? 7. 8. 9. 10. ? 5 1. ? 2. objective 1. 1f 2. 127 g cu 3 4. ? 5.

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Gyanashram}\:{classes} \\ $$$${weekly}\:{test}\:\:\:\:\:\:\:\:\:\:{by}−{Bittu}\:{sir}\:\: \\ $$$$\:\:\:\mathbb{CHEMISTRY}\:\:\mathbb{TEST} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Electrochemistry} \\ $$$$\mathrm{1}.\: \: \: \: \: \: \: \: \\ $$$$\mathrm{2}.\:\: \: \: \: \: \\ $$$$\:\mathrm{3}. \: \: \: \: \\ $$$$\mathrm{4}.\: \: \: \: \\ $$$$\mathrm{5}. \: \: \: \: \: \\ $$$$\mathrm{6}. \: \: \: \: \: \: \: ? \\ $$$$\mathrm{7}. \: \: \: \\ $$$$\mathrm{8}. \: \: \: \: \: \: \: \: \: \\ $$$$\mathrm{9}. \: \: \: \: \: \\ $$$$\mathrm{10}. \: \: \: ? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}\:\: \: \: \\ $$$$\mathrm{1}.\: \: \: \: ?\: \: \: \: \: \: \\ $$$$ \: \: \: \: \: \\ $$$$\mathrm{2}. \: \: \: \: \: \: \: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{object}\mathrm{ive} \\ $$$$\mathrm{1}.\:\:\mathrm{1f}\:\: \: \: \: \: \: \\ $$$$\mathrm{2}. \: \: \:\mathrm{127}\:{g}\:{cu}\: \: \: \: \: \\ $$$$\: \: \: \: \\ $$$$\mathrm{3}\: \: \: \: \: \\ $$$$\:\mathrm{4}.\: \: \: \: \: \: ? \\ $$$$\mathrm{5}.\: \: \: \: \: \: \: \\ $$

Question Number 194241    Answers: 1   Comments: 0

  Pg 257      Pg 258      Pg 259      Pg 260      Pg 261      Pg 262      Pg 263      Pg 264      Pg 265      Pg 266   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com