Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 26

Question Number 222411    Answers: 3   Comments: 0

[ 1 .] ∫_0 ^( 1) ((ln(x) ln(1−x^2 )ln(1+x^2 ))/(1−x^2 )) dx [ 2 .] ∫_0 ^1 ((ln(x) ln(1−x) ln(1+x) ln(1+x^2 ))/(1+x)) dx [ 3 .] ∫_0 ^1 ((ln(x) ln(1−x^2 ) ln(1+x^2 ))/x) dx [ 4 .] ∫_0 ^( 1) ((ln(x) ln(1−x) ln(1+x) ln(1−x^2 ))/x) dx

$$\:\: \\ $$$$\:\:\:\left[\:\mathrm{1}\:.\right]\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\left({x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{2}} }\:\:\:{dx}\:\:\:\:\: \\ $$$$\:\:\:\left[\:\mathrm{2}\:.\right]\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{ln}\left({x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}\right)\:\mathrm{ln}\left(\mathrm{1}+{x}\right)\:\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}}\:{dx} \\ $$$$\:\left[\:\mathrm{3}\:.\right]\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left({x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\:\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}}\:\:{dx}\:\:\:\: \\ $$$$\:\:\:\left[\:\mathrm{4}\:.\right]\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\left({x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}\right)\:\mathrm{ln}\left(\mathrm{1}+{x}\right)\:\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}}\:\:{dx}\:\:\:\:\: \\ $$$$ \\ $$

Question Number 222568    Answers: 0   Comments: 0

f(x)=((√(x−2)))^0 and g(x)=(√((x−2)^0 )) dom f(x)=? , dom g(x)=?

$${f}\left({x}\right)=\left(\sqrt{{x}−\mathrm{2}}\right)^{\mathrm{0}} \:\:{and}\:{g}\left({x}\right)=\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{0}} } \\ $$$${dom}\:{f}\left({x}\right)=?\:,\:{dom}\:{g}\left({x}\right)=? \\ $$

Question Number 222436    Answers: 1   Comments: 0

Question Number 222409    Answers: 0   Comments: 0

Solve ; ∫_0 ^(π/2) ((ln^n sin θ)/(sin^p θ cos^q θ)) dθ , for n,p,q ∈ R_(≥ 0)

$$ \\ $$$$\:\:\:\mathrm{Solve}\:;\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{ln}^{{n}} \:\mathrm{sin}\:\theta}{\mathrm{sin}^{{p}} \:\theta\:\mathrm{cos}^{{q}} \:\theta}\:\mathrm{d}\theta\:,\:\mathrm{for}\:{n},{p},{q}\:\in\:\mathbb{R}_{\geqslant\:\mathrm{0}} \:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 222404    Answers: 1   Comments: 0

Question Number 222408    Answers: 1   Comments: 0

∫_1 ^∞ ((1/x))^(x/( (√(x−1)))) dx = ??

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{1}} ^{\infty} \:\left(\frac{\mathrm{1}}{{x}}\right)^{\frac{{x}}{\:\sqrt{{x}−\mathrm{1}}}} \:{dx}\:=\:\:\:?? \\ $$$$ \\ $$

Question Number 222389    Answers: 0   Comments: 0

Prove: ∫_0 ^∞ ((cos(nx)cos(p arctan x))/((1+x^2 )^(p/2) ))=(π/2) ((n^(p−1) e^(−n) )/(Γ(p))) (p>0)

$$\mathrm{Prove}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{cos}\left({nx}\right)\mathrm{cos}\left({p}\:\mathrm{arctan}\:{x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{p}}{\mathrm{2}}} }=\frac{\pi}{\mathrm{2}}\:\frac{{n}^{{p}−\mathrm{1}} {e}^{−{n}} }{\Gamma\left({p}\right)}\:\left({p}>\mathrm{0}\right) \\ $$

Question Number 222385    Answers: 1   Comments: 2

Question Number 222376    Answers: 1   Comments: 0

Question Number 222373    Answers: 2   Comments: 0

An 80 kg man floats with 4% of his volume above the surface in fresh water.what is his volume? what volume would be above the surface in Sea water?How great is the upthrust on him in air due to the air he displaces? density of sea water =1030kgm^-3, density of fresh water=1000kgm^-3?

An 80 kg man floats with 4% of his volume above the surface in fresh water.what is his volume? what volume would be above the surface in Sea water?How great is the upthrust on him in air due to the air he displaces? density of sea water =1030kgm^-3, density of fresh water=1000kgm^-3?

Question Number 222356    Answers: 1   Comments: 0

∫_0 ^( ∞) f(r)dr=1 , ∫_0 ^( ∞) g(r)dr=1 ∫_(−∞i+𝛄) ^( ∞i+𝛄) F(t)G(t)dt=?? F(t)=∫_0 ^( ∞) f(r)e^(−rt) dr , G(t)=∫_0 ^( ∞) g(r)e^(−rt) dr

$$\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({r}\right)\mathrm{d}{r}=\mathrm{1}\:,\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{g}\left({r}\right)\mathrm{d}{r}=\mathrm{1} \\ $$$$\int_{−\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} ^{\:\:\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} \:{F}\left({t}\right){G}\left({t}\right)\mathrm{d}{t}=?? \\ $$$${F}\left({t}\right)=\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({r}\right){e}^{−{rt}} \mathrm{d}{r}\:,\:{G}\left({t}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{g}\left({r}\right){e}^{−{rt}} \mathrm{d}{r} \\ $$

Question Number 222353    Answers: 1   Comments: 1

solve; ((11)/(29)) = ? , no fraction and no decimal

$$ \\ $$$$\:\:\:\:\:\mathrm{solve};\:\:\frac{\mathrm{11}}{\mathrm{29}}\:=\:?\:,\:\mathrm{no}\:\mathrm{fraction}\:\mathrm{and}\:\mathrm{no}\:\mathrm{decimal}\:\:\:\:\: \\ $$$$ \\ $$

Question Number 222352    Answers: 1   Comments: 0

Prove that : (a−b)(a−c)(a−d)(b−c)(b−d)(c−d) divisible by 12, with a,b,c,d ∈Z

$${Prove}\:{that}\::\:\left({a}−{b}\right)\left({a}−{c}\right)\left({a}−{d}\right)\left({b}−{c}\right)\left({b}−{d}\right)\left({c}−{d}\right)\:{divisible}\:{by}\:\mathrm{12},\:{with}\:{a},{b},{c},{d}\:\in\mathbb{Z} \\ $$

Question Number 222339    Answers: 2   Comments: 0

Solve: ((36))^(1/x) + ((24))^(1/x) = ((16))^(1/x)

$$\mathrm{Solve}:\:\:\:\:\:\:\sqrt[{\mathrm{x}}]{\mathrm{36}}\:\:\:+\:\:\:\sqrt[{\mathrm{x}}]{\mathrm{24}}\:\:\:\:=\:\:\:\sqrt[{\mathrm{x}}]{\mathrm{16}} \\ $$

Question Number 222336    Answers: 0   Comments: 0

∫∫∫ ((−y ± (√(y^2 + 4xy)))/(2x)) dxdydz

$$ \\ $$$$\:\:\:\:\:\:\:\int\int\int\:\:\frac{−{y}\:\pm\:\sqrt{{y}^{\mathrm{2}} \:+\:\mathrm{4}{xy}}}{\mathrm{2}{x}}\:{dxdydz} \\ $$$$ \\ $$

Question Number 222334    Answers: 1   Comments: 4

Question Number 222331    Answers: 0   Comments: 0

Find closed form; ∫_( 0) ^( 1) ((Li_2 (z^2 )Li_2 (−z^2 ))/(1 + z^2 )) dz = ?

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{Find}\:\mathrm{closed}\:\mathrm{form}; \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{Li}_{\mathrm{2}} \left({z}^{\mathrm{2}} \right)\mathrm{Li}_{\mathrm{2}} \left(−{z}^{\mathrm{2}} \right)}{\mathrm{1}\:+\:{z}^{\mathrm{2}} }\:\mathrm{d}{z}\:=\:? \\ $$

Question Number 222329    Answers: 0   Comments: 1

lim_(x→∞) 4x+(√(16x^2 −3x))

$$\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\infty} \:\mathrm{4}\boldsymbol{\mathrm{x}}+\sqrt{\mathrm{16}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{3}\boldsymbol{\mathrm{x}}} \\ $$$$ \\ $$

Question Number 222323    Answers: 1   Comments: 0

a+3^b =b,3^b ∙a^(b+1) max=?

$${a}+\mathrm{3}^{{b}} ={b},\mathrm{3}^{{b}} \centerdot{a}^{{b}+\mathrm{1}} \:\mathrm{max}=? \\ $$

Question Number 222317    Answers: 1   Comments: 0

∫_0 ^( ∞) f(z)dz=(π/2) , ∫_0 ^( ∞) g(z)dz=1 (2/π)∫_0 ^( ∞) f(z)g(z)dz=??

$$\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({z}\right)\mathrm{d}{z}=\frac{\pi}{\mathrm{2}}\:,\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{g}\left({z}\right)\mathrm{d}{z}=\mathrm{1} \\ $$$$\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({z}\right)\mathrm{g}\left({z}\right)\mathrm{d}{z}=?? \\ $$

Question Number 222312    Answers: 1   Comments: 0

Question Number 222309    Answers: 2   Comments: 0

determinant (((4^x +6^x =9^x )))

$$\begin{array}{|c|}{\mathrm{4}^{{x}} +\mathrm{6}^{{x}} =\mathrm{9}^{{x}} }\\\hline\end{array} \\ $$

Question Number 222300    Answers: 0   Comments: 5

How do you put a box around something?? please tell me

$${How}\:{do}\:{you}\:{put}\:{a}\:{box}\:{around}\:{something}??\:{please}\:{tell}\:{me} \\ $$

Question Number 222299    Answers: 1   Comments: 0

For what value of k the roots of the equation ((x^2 −2x)/(4x−1))=((k−1)/(k+1)) will have same value but with opposite symbol(like x=a and −a) i mean the two valuea of x will be this type x=2 and −2(both 2 but opposite symbols)

$${For}\:{what}\:{value}\:{of}\:\:{k}\:\:{the}\:{roots}\:{of}\:{the}\:{equation} \\ $$$$\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}}{\mathrm{4}{x}−\mathrm{1}}=\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}} \\ $$$${will}\:{have}\:{same}\:{value}\:{but}\:\:{with}\:{opposite}\:{symbol}\left({like}\:{x}={a}\:{and}\:−{a}\right) \\ $$$${i}\:{mean}\:{the}\:{two}\:{valuea}\:{of}\:{x}\:{will}\:{be}\:{this}\:{type} \\ $$$${x}=\mathrm{2}\:{and}\:−\mathrm{2}\left({both}\:\mathrm{2}\:{but}\:{opposite}\:{symbols}\right) \\ $$

Question Number 222295    Answers: 1   Comments: 0

Question Number 222292    Answers: 1   Comments: 0

∫_(−∞) ^∞ sech(z) sech(z−a) dz

$$ \\ $$$$\:\:\:\int_{−\infty} ^{\infty} \mathrm{sech}\left({z}\right)\:\mathrm{sech}\left({z}−{a}\right)\:{dz} \\ $$$$ \\ $$

  Pg 21      Pg 22      Pg 23      Pg 24      Pg 25      Pg 26      Pg 27      Pg 28      Pg 29      Pg 30   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com