Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 26
Question Number 219696 Answers: 2 Comments: 0
Question Number 219695 Answers: 1 Comments: 0
Question Number 219682 Answers: 0 Comments: 0
$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{log}\left(\mathrm{1}+{x}\right)\centerdot\mathrm{Li}_{{s}} \left({x}\right)}{{x}\centerdot\zeta\left({s}+\mathrm{1},{x}\right)}\:{dx} \\ $$$$ \\ $$
Question Number 219678 Answers: 2 Comments: 2
Question Number 219676 Answers: 0 Comments: 0
$$\mathrm{The}\:\mathrm{latex}\:\mathrm{converter}\:\mathrm{is}\:\mathrm{not}\:\mathrm{converting}\:\mathrm{some}\:\mathrm{symbols}.\:\mathrm{Any}\:\mathrm{reason}\:\mathrm{why}?\: \\ $$
Question Number 219668 Answers: 2 Comments: 0
Question Number 219663 Answers: 0 Comments: 0
Question Number 219662 Answers: 0 Comments: 0
Question Number 219660 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{2}\pi} \frac{\mathrm{1}}{{a}\:+\:{b}\:{cos}\:\left({x}\right)}\:{dx} \\ $$$$ \\ $$
Question Number 219659 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}; \\ $$$$\:\:{cos}\:\left({B}+{C}−{A}\right)−{cos}\left({C}+{A}−{B}\right)+{cos}\left({A}+{B}−{C}\right)−{cos}\left({A}+{B}+{C}\right)\:=\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}{sinAcosBsinC} \\ $$$$ \\ $$
Question Number 219658 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{prove} \\ $$$$\:\:\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\prod}}\:{e}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\overset{{n}^{\mathrm{2}} } {\right)}=\:\frac{\pi}{{e}\sqrt{{e}}} \\ $$$$ \\ $$
Question Number 219657 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{prove}; \\ $$$$\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\:\frac{\left(\mathrm{5}{n}−\mathrm{2}\right)\left(\mathrm{5}{n}−\mathrm{3}\right)}{\left(\mathrm{5}{n}−\mathrm{1}\right)\left(\mathrm{5}{n}−\mathrm{4}\right)}\:=\:\varphi \\ $$$$ \\ $$
Question Number 219651 Answers: 1 Comments: 0
$$\mathrm{Solve} \\ $$$${x}^{\mathrm{2}} {y}^{\left(\mathrm{2}\right)} \left({x}\right)+{xy}^{\left(\mathrm{1}\right)} \left({x}\right)+\left({x}^{\mathrm{2}} −\nu^{\mathrm{2}} \right){y}\left({x}\right)={e}^{−{kx}} \\ $$
Question Number 219649 Answers: 0 Comments: 0
$$\mathrm{Solve}\:{y}^{\left(\mathrm{2}\right)} \left({t}\right)−{t}\centerdot{y}\left({t}\right)=\mathrm{0} \\ $$
Question Number 219642 Answers: 1 Comments: 0
Question Number 219685 Answers: 2 Comments: 0
Question Number 219637 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{J}_{\nu} \left({s}\right){e}^{−\mu{s}} }{\:\sqrt{{s}^{\mathrm{2}} +{R}^{\mathrm{2}} }}\mathrm{d}{s}\:,\:\left(\nu,\mu\in\mathbb{R}^{+} \:,\:\mathrm{R}\in\mathbb{R}^{+} \backslash\left\{\mathrm{0}\right\}\right) \\ $$
Question Number 219634 Answers: 1 Comments: 0
Question Number 219624 Answers: 1 Comments: 0
Question Number 219625 Answers: 0 Comments: 0
$$ \\ $$$$\:\mathrm{Determine}\:\mathrm{all}\:\mathrm{real}\:\mathrm{numbers}\:{x}\: \\ $$$$\:\:\:\mathrm{that}\:\mathrm{statisfy}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inequality}; \\ $$$$\:\:\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}}\:\leqslant\:\sqrt{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}\:+\:\mid{x}\mid\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 219621 Answers: 2 Comments: 1
Question Number 219620 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{Prove};\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{50}{x}^{\mathrm{8}} }{{x}^{\mathrm{20}} +\mathrm{2}{x}^{\mathrm{10}} +\mathrm{1}}\:{dx}\:=\:\phi\pi \\ $$$$ \\ $$
Question Number 219619 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \left({x}^{\mathrm{2}} +\mathrm{1}\right)^{−\mathrm{1}/\mathrm{2}} {dx} \\ $$$$ \\ $$
Question Number 219618 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:{Prove}; \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\:\frac{{ln}\:{ln}\:\frac{\mathrm{1}}{{x}}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }\:{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left({ln}\left(\frac{\pi}{\mathrm{2}}\right)−\gamma\right) \\ $$$$ \\ $$
Question Number 219617 Answers: 0 Comments: 0
$$\mathrm{ok},\:\mathrm{let}'\mathrm{s}\:\mathrm{all}\:\mathrm{answer}\:\mathrm{questions}\:\mathrm{from}\:\mathrm{anywhere} \\ $$$$\mathrm{on}\:\mathrm{the}\:{www}\:\mathrm{using}\:\mathrm{the}\:\mathrm{given}\:\mathrm{results}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{sources}\:\mathrm{or}\:{wolframalpha}\:\mathrm{or}\:\mathrm{any}\:\mathrm{AI} \\ $$$$\mathrm{available}.\:\mathrm{this}\:\mathrm{promises}\:\mathrm{great}\:\mathrm{fun}! \\ $$
Question Number 219606 Answers: 2 Comments: 0
$$ \\ $$$$\:\mathrm{prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers}\:{a},{b},{c},\:\:\: \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{inequality}\:\mathrm{holds}; \\ $$$$\:\:\frac{{a}^{\mathrm{2}} }{{b}\:+\:{c}}\:+\:\frac{{b}^{\mathrm{2}} }{{c}\:+\:{a}}\:+\:\frac{{c}^{\mathrm{2}} }{{a}\:+\:{b}}\:\:\geqslant\:\frac{{a}\:+\:{b}\:+\:{c}}{\mathrm{2}} \\ $$$$ \\ $$
Pg 21 Pg 22 Pg 23 Pg 24 Pg 25 Pg 26 Pg 27 Pg 28 Pg 29 Pg 30
Terms of Service
Privacy Policy
Contact: info@tinkutara.com