Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 26
Question Number 221056 Answers: 1 Comments: 0
Question Number 221052 Answers: 2 Comments: 0
Question Number 221050 Answers: 0 Comments: 1
Question Number 221049 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\int\:\:\frac{\mathrm{cos}\:{x}}{\left({x}\:+\:\mathrm{cos}\:{x}\right)^{\mathrm{2}} }\:+\:\frac{\mathrm{2}\left(\mathrm{1}\:−\:\mathrm{sin}\:{x}\right)^{\mathrm{2}} }{\left({x}\:+\:\mathrm{cos}\:{x}\right)^{\mathrm{3}} }\:\:\mathrm{d}{x}\: \\ $$$$\: \\ $$
Question Number 221048 Answers: 2 Comments: 0
$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{cosec}\:\left({x}−\frac{\pi}{\mathrm{3}}\right)\mathrm{cosec}\:\left({x}−\frac{\pi}{\mathrm{6}}\right){dx}\: \\ $$
Question Number 221047 Answers: 1 Comments: 0
Question Number 221044 Answers: 0 Comments: 1
$${If}\:{V}\:{be}\:{a}\:{function}\:{of}\:{x}\:{and}\:{y},\:{prove}\:{that} \\ $$$$\frac{\partial^{\mathrm{2}} {V}}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {V}}{\partial{y}^{\mathrm{2}} }=\frac{\partial^{\mathrm{2}} {V}}{\partial{r}^{\mathrm{2}} }+\frac{\mathrm{1}}{{r}}\:\frac{\partial{V}}{\partial{r}}+\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\:\frac{\partial^{\mathrm{2}} {V}}{\partial\theta^{\mathrm{2}} }, \\ $$$${where}\:{x}={r}\:\mathrm{cos}\:\theta\:,\:{y}={r}\mathrm{sin}\:\theta \\ $$
Question Number 221036 Answers: 0 Comments: 0
$$\mathrm{prove} \\ $$$$\int_{{P}\in\left[\epsilon,\epsilon+\delta\right]} \sqrt{\left(\frac{\mathrm{d}\:\:}{\mathrm{d}{t}}{f}\left({t}\right)\right)^{\mathrm{2}} +\left(\frac{\mathrm{d}\:\:}{\mathrm{d}{t}}\mathrm{g}\left({t}\right)\right)^{\mathrm{2}} }\:\mathrm{d}{t}\leq\int_{{P}\in\left[\epsilon,\epsilon+\delta\right]} \:\frac{{C}_{\mathrm{1}} {f}^{\left(\mathrm{1}\right)} \left({t}\right)+{C}_{\mathrm{2}} \mathrm{g}^{\left(\mathrm{1}\right)} \left({t}\right)}{\:\sqrt{{C}_{\mathrm{1}} ^{\mathrm{2}} +{C}_{\mathrm{2}} ^{\mathrm{2}} }}\:\mathrm{d}{t} \\ $$
Question Number 221025 Answers: 1 Comments: 0
Question Number 221017 Answers: 1 Comments: 0
Question Number 221034 Answers: 1 Comments: 0
Question Number 221012 Answers: 3 Comments: 4
Question Number 221008 Answers: 0 Comments: 0
Question Number 220995 Answers: 2 Comments: 0
Question Number 220987 Answers: 1 Comments: 0
$${Let}\:{a},{b},{c}\:{be}\:{positive}\:{reals}\:{such}\:{that}\:{abc}=\mathrm{1}.{prove}\:{that} \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{3}} \left({b}+{c}\right)}+\frac{\mathrm{1}}{{b}^{\mathrm{3}} \left({c}+{a}\right)}+\frac{\mathrm{1}}{{c}^{\mathrm{3}} \left({a}+{b}\right)}\geqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Question Number 220973 Answers: 1 Comments: 0
$$\mathrm{Prove}:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\frac{\mathrm{1}}{\mathrm{3}}\right)^{{k}} \mathrm{cos}^{\mathrm{3}} \left(\mathrm{3}^{{k}−{n}} \pi\right)=\frac{\mathrm{3}}{\mathrm{4}}\left[\left(−\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}+\mathrm{1}} +\mathrm{cos}\frac{\pi}{\mathrm{3}^{{n}} }\right] \\ $$
Question Number 220972 Answers: 1 Comments: 2
$$\int_{−\infty} ^{+\infty} \int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\:\mathrm{d}{x}\mathrm{d}{y} \\ $$$${x}={r}\mathrm{cos}\left(\theta\right) \\ $$$${y}={r}\mathrm{sin}\left(\theta\right) \\ $$$$\mid\mid\boldsymbol{{J}}\mid\mid={r}\mathrm{d}{r}\mathrm{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{{r}}{\left({r}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\mathrm{d}{r}\mathrm{d}\theta=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:\mathrm{d}\theta=\frac{\pi}{\mathrm{4}} \\ $$$${Q}.\:\mathrm{if}\:\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\:\mathrm{d}{x}\mathrm{d}{y} \\ $$$$\mathrm{0}\leq{r}<\infty\:,\:\mathrm{0}\leq\theta\leq\frac{\pi}{\mathrm{2}}.....??? \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{confuse}\:\mathrm{how}\:\mathrm{could}\:\:\mathrm{i}\:\mathrm{select}\:\mathrm{interval}\:\mathrm{of}\:\mathrm{integral} \\ $$
Question Number 220971 Answers: 1 Comments: 6
Question Number 221680 Answers: 2 Comments: 4
$${I}\:{suspect} \\ $$$$\pi={i}\underset{\boldsymbol{{i}}} {\overset{−\mathrm{1}} {\int}}\frac{\left({z}−\mathrm{1}\right){dz}}{\:{z}\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}} \\ $$$${someone}\:{please}\:{help}\:{confirm}\:{or}\:{reject}! \\ $$
Question Number 220968 Answers: 0 Comments: 0
Question Number 220964 Answers: 0 Comments: 0
$${Find}\:{the}\:{general}\:{solution}\:{of}\:{the}\:{differential}\:{equation} \\ $$$${x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{3}} {y}}{{dx}^{\mathrm{3}} }\:+\:{x}\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\mathrm{6}\frac{{dy}}{{dx}}+\mathrm{6}\frac{{y}}{{x}}=\frac{{x}\:\mathrm{ln}\:{x}+\mathrm{1}}{{x}^{\mathrm{2}} },\left[{x}>\mathrm{0}\right] \\ $$
Question Number 220963 Answers: 1 Comments: 0
$${Let}\:{f}:\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}\:{be}\:{defined}\:{by}\:{f}\left({x},{y}\right)=\left\{\frac{{y}}{\underset{\:\:\mathrm{1},\:{y}=\mathrm{0}} {\mathrm{sin}\:{y}}},\:{y}\neq\mathrm{0}\right. \\ $$$${Then}\:{the}\:{integral}\:\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\underset{{x}=\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{{y}=\mathrm{sin}^{−\mathrm{1}} {x}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}{f}\left({x},{y}\right){dy}\:{dx}\:{correct}\:{upto}\:{three}\:{decimal}\:{places},{is}... \\ $$
Question Number 220958 Answers: 1 Comments: 1
$${for}\:{x},\:{y},\:{z}\:>\mathrm{0}\:{find}\:{the}\:{maximum}\:{of} \\ $$$${x}^{{m}} {y}^{{n}} {z}^{{k}} \:{subject}\:{to}\:{ax}+{by}+{cz}={d}. \\ $$
Question Number 220950 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\int_{\:\mathrm{0}} ^{\:\pi} \int_{\:\mathrm{0}} ^{\:\mathrm{1}} \int_{\:\mathrm{0}} ^{\:\:\pi} \:\mathrm{sin}^{\:\mathrm{2}} \:{x}\:+\:{y}\:\mathrm{sin}\:{z}\:{dxdydz}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\pi\:\left(\mathrm{2}\:+\:\pi\right)\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220948 Answers: 1 Comments: 0
$$\int\:{x}^{\mathrm{2}} \sqrt{\mathrm{5}−{x}^{\mathrm{6}} }{dx} \\ $$
Question Number 220947 Answers: 1 Comments: 0
$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{13}} {\sum}}\:\:\frac{\mathrm{1}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\frac{\left({k}−\mathrm{1}\right)\pi}{\mathrm{6}}\right)\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\frac{{k}\pi}{\mathrm{6}}\right)} \\ $$
Pg 21 Pg 22 Pg 23 Pg 24 Pg 25 Pg 26 Pg 27 Pg 28 Pg 29 Pg 30
Terms of Service
Privacy Policy
Contact: info@tinkutara.com