Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 257

Question Number 195208    Answers: 4   Comments: 0

Question Number 195202    Answers: 0   Comments: 0

Question Number 195203    Answers: 1   Comments: 0

Calculer ∫^( +∞) _( 0) (dt/((e^t −e^(−t) )^2 +a^2 ))

$$\mathrm{Calculer}\:\underset{\:\mathrm{0}} {\int}^{\:+\infty} \frac{\mathrm{dt}}{\left(\mathrm{e}^{\mathrm{t}} −\mathrm{e}^{−\mathrm{t}} \right)^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} } \\ $$

Question Number 195195    Answers: 1   Comments: 1

find the limit: _(x→a ) ^(lim) (x^(1/3) /x^(1/2) ) − (a^(1/3) /a^(1/2) )

$$\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{limit}: \\ $$$$\:\underset{\mathrm{x}\rightarrow\mathrm{a}\:} {\overset{\mathrm{lim}} {\:}}\:\:\:\frac{\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{2}}} }\:−\:\frac{\boldsymbol{\mathrm{a}}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\boldsymbol{\mathrm{a}}^{\frac{\mathrm{1}}{\mathrm{2}}} } \\ $$

Question Number 195194    Answers: 2   Comments: 0

Question Number 195192    Answers: 1   Comments: 0

lim_(x→∞) (sinx+(π/2))^x =?

$$ \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{sinx}+\frac{\pi}{\mathrm{2}}\right)^{\mathrm{x}} =? \\ $$

Question Number 195206    Answers: 1   Comments: 0

Question Number 195185    Answers: 0   Comments: 0

1/ Montrer que ∫^( +∞) _( 0) (((1−x^2 )^(2p−1) )/(1−x^(4p) ))dx=((2^(2p−3) /p))π[1+2Σ_(k=1) ^(p−1) cos^(2p−1) (((kπ)/(2p)))] 2/ En de^ duire ∫^( 1) _( 0) (((1−x^2 )^(2p−1) )/(1−x^(4p) ))dx

$$\mathrm{1}/\:\:\mathrm{Montrer}\:\mathrm{que}\:\underset{\:\mathrm{0}} {\int}^{\:+\infty} \:\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}{p}−\mathrm{1}} }{\mathrm{1}−{x}^{\mathrm{4}{p}} }{dx}=\left(\frac{\mathrm{2}^{\mathrm{2}{p}−\mathrm{3}} }{{p}}\right)\pi\left[\mathrm{1}+\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{{p}−\mathrm{1}} {\sum}}{cos}^{\mathrm{2}{p}−\mathrm{1}} \left(\frac{{k}\pi}{\mathrm{2}{p}}\right)\right] \\ $$$$\mathrm{2}/\:\:\:\:\mathrm{En}\:\mathrm{d}\acute {\mathrm{e}duire}\:\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}{p}−\mathrm{1}} }{\mathrm{1}−{x}^{\mathrm{4}{p}} }{dx} \\ $$

Question Number 195180    Answers: 1   Comments: 0

1. f(x)= { ((sinx , (π/2)<x≤2π)),((cosx , 0≤x≤(π/2))) :} then find the f^′ ((π/2)) =? 2. f(x)= { ((sinx , (π/2)<x≤2π)),((cosx , 0≤x≤(π/2))) :} then find the f′(2π) =?

$$ \\ $$$$\mathrm{1}.\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}^{'} \left(\frac{\pi}{\mathrm{2}}\right)\:=? \\ $$$$\mathrm{2}.\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}'\left(\mathrm{2}\pi\right)\:=? \\ $$$$ \\ $$

Question Number 195178    Answers: 2   Comments: 0

Question Number 195175    Answers: 1   Comments: 0

Question Number 195171    Answers: 0   Comments: 0

Question Number 195170    Answers: 2   Comments: 0

f(x)= { ((x^7 +2x+1 ;x≥2)),((x^2 +7x+4 ;x<1)) :} f^′ (1)=?

$${f}\left({x}\right)=\begin{cases}{{x}^{\mathrm{7}} +\mathrm{2}{x}+\mathrm{1}\:\:\:\:\:\:\:;{x}\geqslant\mathrm{2}}\\{{x}^{\mathrm{2}} +\mathrm{7}{x}+\mathrm{4}\:\:\:\:\:\:\:\:;{x}<\mathrm{1}}\end{cases} \\ $$$${f}^{'} \left(\mathrm{1}\right)=? \\ $$

Question Number 195165    Answers: 0   Comments: 1

If r_1 ^(→) =(sinθ,cosθ,θ), r_2 ^(→) =(cosθ,−sinθ,−3) and r_3 ^(→) =(2,3,−1), find (d/dθ){r_1 ^(→) ×(r_2 ^(→) ×r_3 ^(→) )} at θ=0

$$\mathrm{If}\:\overset{\rightarrow} {\mathrm{r}_{\mathrm{1}} }=\left(\mathrm{sin}\theta,\mathrm{cos}\theta,\theta\right),\:\overset{\rightarrow} {\mathrm{r}_{\mathrm{2}} }=\left(\mathrm{cos}\theta,−\mathrm{sin}\theta,−\mathrm{3}\right)\:\mathrm{and} \\ $$$$\:\overset{\rightarrow} {\mathrm{r}_{\mathrm{3}} }=\left(\mathrm{2},\mathrm{3},−\mathrm{1}\right),\:\mathrm{find}\:\frac{\mathrm{d}}{\mathrm{d}\theta}\left\{\overset{\rightarrow} {\mathrm{r}_{\mathrm{1}} }×\left(\overset{\rightarrow} {\mathrm{r}_{\mathrm{2}} }×\overset{\rightarrow} {\mathrm{r}_{\mathrm{3}} }\right)\right\}\:\mathrm{at}\:\theta=\mathrm{0} \\ $$

Question Number 195157    Answers: 1   Comments: 0

Prove that (x^3 /(2sin^2 ((1/2)arctan (x/y))))+(y^3 /(2cos^2 ((1/2)arctan (y/x))))=(x+y)(x^2 +y^2 )

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\frac{{x}^{\mathrm{3}} }{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\:\frac{{x}}{{y}}\right)}+\frac{{y}^{\mathrm{3}} }{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\:\frac{{y}}{{x}}\right)}=\left({x}+{y}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$

Question Number 195154    Answers: 1   Comments: 0

lim_(x→2π) (((tan (π cos x))/(x^2 (x−5π)+4π^2 (2x−π))))=?

$$\:\:\:\:\underset{{x}\rightarrow\mathrm{2}\pi} {\mathrm{lim}}\:\left(\frac{\mathrm{tan}\:\left(\pi\:\mathrm{cos}\:{x}\right)}{{x}^{\mathrm{2}} \left({x}−\mathrm{5}\pi\right)+\mathrm{4}\pi^{\mathrm{2}} \left(\mathrm{2}{x}−\pi\right)}\right)=? \\ $$$$ \\ $$

Question Number 195148    Answers: 3   Comments: 0

determinant (((lim_(x→0) ((1+x sin x−cos x)/(sin^2 x))=?)))

$$\:\:\begin{array}{|c|}{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}+\mathrm{x}\:\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}=?}\\\hline\end{array} \\ $$

Question Number 195137    Answers: 1   Comments: 0

f(x)=arctan(((4sinx)/(3+5cosx))) then f^′ ((π/3))=?

$${f}\left({x}\right)={arctan}\left(\frac{\mathrm{4}{sinx}}{\mathrm{3}+\mathrm{5}{cosx}}\right)\:\:\:{then}\:{f}^{'} \left(\frac{\pi}{\mathrm{3}}\right)=? \\ $$

Question Number 195136    Answers: 1   Comments: 0

f(x)=arctan(sinx) and cosa=(2/3) faind f^′ (a)=?

$${f}\left({x}\right)={arctan}\left({sinx}\right) \\ $$$${and}\:\:{cosa}=\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:\:\:\:\:{faind}\:\:\:{f}^{'} \left({a}\right)=? \\ $$

Question Number 195135    Answers: 4   Comments: 0

Question Number 195129    Answers: 3   Comments: 0

Calculer la valeur de la serie suivante: S=(3/2)+(5/8)+(7/(32))+(9/(128))+.....

$$\mathrm{Calculer}\:\mathrm{la}\:\mathrm{valeur}\:\mathrm{de}\:\mathrm{la}\:\mathrm{serie}\:\mathrm{suivante}: \\ $$$$\boldsymbol{\mathrm{S}}=\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{8}}+\frac{\mathrm{7}}{\mathrm{32}}+\frac{\mathrm{9}}{\mathrm{128}}+..... \\ $$

Question Number 195126    Answers: 1   Comments: 0

Soit f_n (x)=2^(n+1) [(((1/2^n )cotan((x/2^n ))−cotanx)/(sin((x/2^n ))))] Calculer lim_(x→0) f_n (x) et lim_(n→+∞) ((f_n (x))/2^(2n+2) )

$$\mathrm{Soit}\:{f}_{{n}} \left({x}\right)=\mathrm{2}^{{n}+\mathrm{1}} \left[\frac{\frac{\mathrm{1}}{\mathrm{2}^{{n}} }{cotan}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)−{cotanx}}{{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}\right] \\ $$$${Calculer}\:\underset{{x}\rightarrow\mathrm{0}} {{lim}f}_{{n}} \left({x}\right)\:{et}\:\underset{{n}\rightarrow+\infty} {{lim}}\:\frac{{f}_{{n}} \left({x}\right)}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{2}} } \\ $$

Question Number 195124    Answers: 1   Comments: 0

Question Number 195120    Answers: 0   Comments: 0

Question Number 195118    Answers: 0   Comments: 1

a,b,c>0 & (1/a)+(1/b)+(1/c)=3 prove that (a/(b^2 +c^2 ))+(b/(a^2 +c^2 ))+(c/(a^2 +b^2 ))≥(3/2)(((a+b+c)/(ab+bc+ac)))^2

$${a},{b},{c}>\mathrm{0}\:\&\:\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=\mathrm{3} \\ $$$${prove}\:{that} \\ $$$$\frac{{a}}{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }+\frac{{b}}{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} }+\frac{{c}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\geqslant\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{{a}+{b}+{c}}{{ab}+{bc}+{ac}}\right)^{\mathrm{2}} \\ $$

Question Number 195122    Answers: 0   Comments: 0

  Pg 252      Pg 253      Pg 254      Pg 255      Pg 256      Pg 257      Pg 258      Pg 259      Pg 260      Pg 261   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com