Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 257

Question Number 195998    Answers: 0   Comments: 0

We can transform to get rid of the ((...))^(1/3) a^(1/3) +b^(1/3) =c^(1/3) (a^(1/3) +b^(1/3) )^3 =c a+b+3a^(1/3) b^(1/3) (a^(1/3) +b^(1/3) )=c 3a^(1/3) b^(1/3) c^(1/3) =c−a−b 27abc=(c−a−b)^3 Is it possible to do the same for a^(1/3) +b^(1/3) =c^(1/3) +d^(1/3) I found no path yet...

$$\mathrm{We}\:\mathrm{can}\:\mathrm{transform}\:\mathrm{to}\:\mathrm{get}\:\mathrm{rid}\:\mathrm{of}\:\mathrm{the}\:\sqrt[{\mathrm{3}}]{...} \\ $$$${a}^{\frac{\mathrm{1}}{\mathrm{3}}} +{b}^{\frac{\mathrm{1}}{\mathrm{3}}} ={c}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\left({a}^{\frac{\mathrm{1}}{\mathrm{3}}} +{b}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)^{\mathrm{3}} ={c} \\ $$$${a}+{b}+\mathrm{3}{a}^{\frac{\mathrm{1}}{\mathrm{3}}} {b}^{\frac{\mathrm{1}}{\mathrm{3}}} \left({a}^{\frac{\mathrm{1}}{\mathrm{3}}} +{b}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)={c} \\ $$$$\mathrm{3}{a}^{\frac{\mathrm{1}}{\mathrm{3}}} {b}^{\frac{\mathrm{1}}{\mathrm{3}}} {c}^{\frac{\mathrm{1}}{\mathrm{3}}} ={c}−{a}−{b} \\ $$$$\mathrm{27}{abc}=\left({c}−{a}−{b}\right)^{\mathrm{3}} \\ $$$$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{do}\:\mathrm{the}\:\mathrm{same}\:\mathrm{for} \\ $$$${a}^{\frac{\mathrm{1}}{\mathrm{3}}} +{b}^{\frac{\mathrm{1}}{\mathrm{3}}} ={c}^{\frac{\mathrm{1}}{\mathrm{3}}} +{d}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\mathrm{I}\:\mathrm{found}\:\mathrm{no}\:\mathrm{path}\:\mathrm{yet}... \\ $$

Question Number 195997    Answers: 0   Comments: 0

Question Number 195995    Answers: 1   Comments: 0

Δ={(x^ y z), x^2 +y^2 ≤1, x≥0,0<z<y+1} calculer I=∫∫∫_Δ xyzdxdydz please i need help

$$\Delta=\left\{\left(\bar {{x}}\:{y}\:{z}\right),\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\mathrm{1},\:{x}\geqslant\mathrm{0},\mathrm{0}<{z}<{y}+\mathrm{1}\right\} \\ $$$${calculer}\:\boldsymbol{{I}}=\int\int\int_{\Delta} {xyzdxdydz} \\ $$$${please}\:{i}\:{need}\:{help} \\ $$

Question Number 195996    Answers: 2   Comments: 0

Question Number 195982    Answers: 2   Comments: 0

lim_(x→1) [(1/(2(1−(√x))))−(1/(3(1−(x)^(1/3) )))]=? with out l′pital rule

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left[\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}−\sqrt{{x}}\right)}−\frac{\mathrm{1}}{\mathrm{3}\left(\mathrm{1}−\sqrt[{\mathrm{3}}]{{x}}\right)}\right]=? \\ $$$${with}\:{out}\:{l}'{pital}\:{rule} \\ $$

Question Number 196026    Answers: 1   Comments: 0

∫^( +∞) _( 0) (((lnt)^2 )/(1+t^2 ))dt

$$\underset{\:\mathrm{0}} {\int}^{\:+\infty} \frac{\left({lnt}\right)^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$

Question Number 195964    Answers: 1   Comments: 0

the family A has 5 members and the family B has 4 members. there are 6 personsfrom other families. in how many ways can you arrange these 15 persons around a round table such that no member from family A and no member from family B are next to each other?

$${the}\:{family}\:{A}\:{has}\:\mathrm{5}\:{members}\:{and}\:{the} \\ $$$${family}\:{B}\:{has}\:\mathrm{4}\:{members}.\:{there}\:{are}\: \\ $$$$\mathrm{6}\:{personsfrom}\:{other}\:{families}. \\ $$$${in}\:{how}\:{many}\:{ways}\:{can}\:{you}\:{arrange} \\ $$$${these}\:\mathrm{15}\:{persons}\:{around}\:{a}\:{round}\:{table} \\ $$$${such}\:{that}\:{no}\:{member}\:{from}\:{family}\:{A} \\ $$$${and}\:{no}\:{member}\:{from}\:{family}\:{B}\:{are} \\ $$$${next}\:{to}\:{each}\:{other}? \\ $$

Question Number 195972    Answers: 0   Comments: 0

Question Number 195971    Answers: 3   Comments: 0

if f′(x)=((f(x+a)−f(x))/a), find f(x).

$${if}\:{f}'\left({x}\right)=\frac{{f}\left({x}+{a}\right)−{f}\left({x}\right)}{{a}},\:{find}\:{f}\left({x}\right). \\ $$

Question Number 195973    Answers: 0   Comments: 0

Question Number 195954    Answers: 3   Comments: 0

Question Number 195953    Answers: 0   Comments: 0

Question Number 195952    Answers: 2   Comments: 0

Ω = Σ_(m=1) ^∞ Σ_(n=1) ^∞ (((−1)^( n+1) )/(m^2 n + mn^( 2) )) = ? −−−−−

$$ \\ $$$$\:\:\:\:\Omega\:=\:\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}+\mathrm{1}} }{{m}^{\mathrm{2}} {n}\:+\:{mn}^{\:\mathrm{2}} }\:\:=\:?\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:−−−−− \\ $$

Question Number 195948    Answers: 0   Comments: 0

An object is said to cross a thousand kilimeters in planks constant. How many times faster is the object to the speed of light. plank′s time = 10^(−44) sec.

$$\mathrm{An}\:\mathrm{object}\:\mathrm{is}\:\mathrm{said}\:\mathrm{to}\:\mathrm{cross}\:\mathrm{a}\:\mathrm{thousand}\: \\ $$$$\mathrm{kilimeters}\:\mathrm{in}\:\mathrm{planks}\:\mathrm{constant}.\:\mathrm{How}\:\mathrm{many} \\ $$$$\mathrm{times}\:\mathrm{faster}\:\mathrm{is}\:\mathrm{the}\:\mathrm{object}\:\mathrm{to}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of} \\ $$$$\mathrm{light}.\:\mathrm{plank}'\mathrm{s}\:\mathrm{time}\:=\:\mathrm{10}^{−\mathrm{44}} \mathrm{sec}. \\ $$

Question Number 195947    Answers: 2   Comments: 0

Question Number 195944    Answers: 1   Comments: 0

Question Number 195911    Answers: 0   Comments: 0

Question Number 195910    Answers: 1   Comments: 0

Question Number 195905    Answers: 1   Comments: 0

lim_(x→0) (((√(3+x^4 )) −(√(3+tan^4 x)))/x^6 ) =?

$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{3}+\mathrm{x}^{\mathrm{4}} }\:−\sqrt{\mathrm{3}+\mathrm{tan}\:^{\mathrm{4}} \mathrm{x}}}{\mathrm{x}^{\mathrm{6}} }\:=? \\ $$

Question Number 195904    Answers: 1   Comments: 0

Σ_(n=0) ^∞ [((2^n (2n)!)/(3^(2n+1) (n+1)!n!))]=λ Evaluate (λ)

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{\mathrm{2}^{{n}} \left(\mathrm{2}{n}\right)!}{\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} \left({n}+\mathrm{1}\right)!{n}!}\right]=\lambda \\ $$$${Evaluate}\:\left(\lambda\right) \\ $$

Question Number 195931    Answers: 1   Comments: 2

Question Number 195900    Answers: 1   Comments: 0

Question Number 195898    Answers: 1   Comments: 0

Question Number 195896    Answers: 2   Comments: 0

Question Number 195895    Answers: 1   Comments: 0

Calcul ∫^( (π/2)) _( 0) t(√(tan(t))) dt

$$\mathrm{Calcul}\:\:\:\:\:\:\:\:\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{t}\sqrt{\mathrm{tan}\left(\mathrm{t}\right)}\:\mathrm{dt} \\ $$

Question Number 195892    Answers: 1   Comments: 0

  Pg 252      Pg 253      Pg 254      Pg 255      Pg 256      Pg 257      Pg 258      Pg 259      Pg 260      Pg 261   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com