Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 257
Question Number 195385 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\mathrm{lim}_{{x}\Rightarrow\mathrm{a}^{+} } \:\:\:\:\frac{\sqrt{{x}}\:−\sqrt{\mathrm{a}}\:−\sqrt{{x}−\mathrm{a}}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}\:\:;\:\:\mathrm{a}\:>\:\mathrm{0} \\ $$
Question Number 195377 Answers: 0 Comments: 0
Question Number 195390 Answers: 1 Comments: 0
$${which}\:{prime}\:{number}\:{between} \\ $$$${the}\:\:\mathrm{20}\:\:{and}\:\:\:\:\mathrm{1000}\:\:\: \\ $$
Question Number 195391 Answers: 2 Comments: 0
$${f}^{\mathrm{2}} \left({x}\right)+\mathrm{2}{f}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{15} \\ $$$${f}\left({x}\right)=? \\ $$
Question Number 195370 Answers: 0 Comments: 0
Question Number 195369 Answers: 1 Comments: 0
Question Number 195368 Answers: 0 Comments: 0
Question Number 195365 Answers: 2 Comments: 0
$$\:\: \\ $$$$\:\underset{\mathrm{x}\rightarrow\mathrm{y}} {\overset{\mathrm{lim}} {\:}}\:\frac{\mathrm{tan}\:\mathrm{x}−\mathrm{tany}}{\mathrm{x}−\mathrm{y}} \\ $$$$ \\ $$
Question Number 195364 Answers: 1 Comments: 0
$$ \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{for}\:\mathrm{any}\:\mathrm{natural}\:\mathrm{number}\:{n},\: \\ $$$$\mathrm{the}\:\mathrm{natural}\:\mathrm{number}\:\left(\mathrm{3}−\sqrt{\mathrm{5}}\right)^{{n}} +\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)^{{n}} \:\mathrm{is}\:\mathrm{divisible} \\ $$$$\mathrm{by}\:\mathrm{2}^{{n}} . \\ $$
Question Number 195361 Answers: 0 Comments: 0
Question Number 195357 Answers: 2 Comments: 0
Question Number 195356 Answers: 2 Comments: 0
$$\mathrm{remark}\:\mathrm{to}\:\mathrm{question}\:\mathrm{195301}\:\mathrm{and}\:\mathrm{similar}\:\mathrm{ones} \\ $$$${x}^{\mathrm{2}} +{y}={a} \\ $$$${x}+{y}^{\mathrm{2}} ={b} \\ $$$${a},\:{b}\:>\mathrm{0} \\ $$$$\mathrm{how}\:\mathrm{many}\:\mathrm{solutions}\:\mathrm{depending}\:\mathrm{on}\:{a},\:{b}? \\ $$
Question Number 195352 Answers: 0 Comments: 0
Question Number 195349 Answers: 0 Comments: 0
Question Number 195344 Answers: 2 Comments: 0
Question Number 195393 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt[{\:\:\boldsymbol{{x}}\:\:}]{\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{k}}\right)^{{x}} }{{n}}}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\sqrt[{\boldsymbol{{n}}}]{\mathrm{C}_{\mathrm{2}\boldsymbol{\mathrm{n}}} ^{\boldsymbol{\mathrm{n}}} } \\ $$
Question Number 195395 Answers: 1 Comments: 0
Question Number 197578 Answers: 1 Comments: 1
Question Number 200284 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{any}\:\mathrm{set}\:{A}\:\mathrm{containing}\:{n} \\ $$$$\mathrm{elements},\:\mid\mathcal{P}\left({A}\right)\mid=\mathrm{2}^{{n}} . \\ $$
Question Number 195331 Answers: 1 Comments: 0
Question Number 195330 Answers: 0 Comments: 1
Question Number 195325 Answers: 2 Comments: 0
$${prove}\:{that} \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{{tan}\left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{1}}{{x}−\frac{\pi}{\mathrm{2}}}=\mathrm{1} \\ $$
Question Number 200302 Answers: 1 Comments: 0
Question Number 195320 Answers: 1 Comments: 0
$$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\:+\infty} {t}^{−\mathrm{2}{t}} {sin}^{\mathrm{2}{n}} {tdt} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{I}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}\pi} }\:\:\underset{\:\mathrm{0}} {\int}^{\:\pi} {e}^{−\mathrm{2}{t}} {sin}^{\mathrm{2}{n}} {t}\:{dt} \\ $$$$\mathrm{and}\:\:\mathrm{I}_{\mathrm{n}} \underset{\infty} {\:\:\backsim\:\:}\:\frac{\mathrm{1}}{\mathrm{2}{sh}\left(\pi\right)}\sqrt{\frac{\pi}{{n}}} \\ $$
Question Number 195342 Answers: 4 Comments: 0
$$\:\:\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that}\:\:\forall{n}\:\in\:\mathbb{N}^{\ast} \:,\:\mathrm{4}^{{n}} \left({n}!\right)^{\mathrm{3}} \:<\:\left({n}+\mathrm{1}\right)^{\mathrm{3}{n}} \:. \\ $$$$\mathrm{2}.\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{in}\:\mathbb{Z}^{\mathrm{2}} \:: \\ $$$$\:\:\:\:\:{a}./\:\:\mathrm{2}{x}^{\mathrm{3}} +{xy}−\mathrm{7}=\mathrm{0}\:, \\ $$$$\:\:\:\:\:{b}./\:\:{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{7}\right)\left({x}+\mathrm{8}\right)={y}^{\mathrm{2}} . \\ $$
Question Number 195341 Answers: 0 Comments: 0
Pg 252 Pg 253 Pg 254 Pg 255 Pg 256 Pg 257 Pg 258 Pg 259 Pg 260 Pg 261
Terms of Service
Privacy Policy
Contact: info@tinkutara.com