Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 257

Question Number 185733    Answers: 0   Comments: 0

Question Number 185732    Answers: 1   Comments: 0

Question Number 185731    Answers: 0   Comments: 0

Question Number 185729    Answers: 1   Comments: 8

Question Number 185728    Answers: 1   Comments: 0

(x−2013)!=6!7! x=??

$$\left(\mathrm{x}−\mathrm{2013}\right)!=\mathrm{6}!\mathrm{7}! \\ $$$$\mathrm{x}=?? \\ $$

Question Number 185727    Answers: 0   Comments: 0

Question Number 185723    Answers: 1   Comments: 0

Question Number 185708    Answers: 2   Comments: 0

Question Number 185706    Answers: 3   Comments: 0

if x^2 + x + 1 = 0 find: x^(2011) + (1/x^(2011) ) = ?

$$\mathrm{if}\:\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{find}:\:\:\:\:\:\mathrm{x}^{\mathrm{2011}} \:+\:\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2011}} }\:=\:? \\ $$

Question Number 185705    Answers: 1   Comments: 0

Question Number 185701    Answers: 0   Comments: 2

1000!

$$\mathrm{1000}! \\ $$

Question Number 185700    Answers: 0   Comments: 1

Question Number 185695    Answers: 2   Comments: 0

If u^→ and v^→ are vectors in R^3 then prove that u^→ .v^→ =(1/4)∥u^→ +v^→ ∥^2 −(1/4)∥u^→ −v^→ ∥^2

$${If}\:\overset{\rightarrow} {{u}}\:{and}\:\overset{\rightarrow} {{v}}\:{are}\:{vectors}\:{in}\:\mathbb{R}^{\mathrm{3}} \\ $$$${then}\:{prove}\:{that}\: \\ $$$$\overset{\rightarrow} {{u}}.\overset{\rightarrow} {{v}}=\frac{\mathrm{1}}{\mathrm{4}}\parallel\overset{\rightarrow} {{u}}+\overset{\rightarrow} {{v}}\parallel^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\parallel\overset{\rightarrow} {{u}}−\overset{\rightarrow} {{v}}\parallel^{\mathrm{2}} \\ $$

Question Number 185694    Answers: 0   Comments: 0

Show that the set V=R^3 with standard vector addition and multiplication defined as c(u_1 ,u_2 ,u_3 )=(0,0,cu_3 )

$${Show}\:{that}\:{the}\:{set}\:{V}=\mathbb{R}^{\mathrm{3}} \:{with} \\ $$$${standard}\:{vector}\:{addition}\:{and} \\ $$$${multiplication}\:{defined}\:{as} \\ $$$${c}\left({u}_{\mathrm{1}} ,{u}_{\mathrm{2}} ,{u}_{\mathrm{3}} \right)=\left(\mathrm{0},\mathrm{0},{cu}_{\mathrm{3}} \right) \\ $$

Question Number 185693    Answers: 1   Comments: 1

If k > 0 and f(x) = (x/(∣x∣)) Find f(- (2/7) k) + f( - 2k) = ?

$$\mathrm{If}\:\:\:\mathrm{k}\:>\:\mathrm{0}\:\:\:\mathrm{and}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{x}}{\mid\mathrm{x}\mid} \\ $$$$\mathrm{Find}\:\:\:\mathrm{f}\left(-\:\frac{\mathrm{2}}{\mathrm{7}}\:\mathrm{k}\right)\:+\:\mathrm{f}\left(\:-\:\mathrm{2k}\right)\:=\:? \\ $$

Question Number 185692    Answers: 0   Comments: 0

Given u^→ =(−2,3,1) and v^→ =(7,1,−4) verify cauchy−schwartz inequarity and triangle inequarty

$${Given}\: \\ $$$$\overset{\rightarrow} {{u}}=\left(−\mathrm{2},\mathrm{3},\mathrm{1}\right)\:\:{and}\:\overset{\rightarrow} {{v}}=\left(\mathrm{7},\mathrm{1},−\mathrm{4}\right) \\ $$$${verify}\:{cauchy}−{schwartz}\: \\ $$$${inequarity}\:{and}\:{triangle}\:{inequarty} \\ $$

Question Number 185685    Answers: 1   Comments: 0

Question Number 185684    Answers: 0   Comments: 7

17 , 78, 143, 353, ? a)366 b)0 c)398 d)435

$$\mathrm{17}\:,\:\mathrm{78},\:\mathrm{143},\:\mathrm{353},\:? \\ $$$$\left.\mathrm{a}\left.\right)\left.\mathrm{3}\left.\mathrm{66}\:\:\:\:\:\mathrm{b}\right)\mathrm{0}\:\:\:\:\:\mathrm{c}\right)\mathrm{398}\:\:\:\:\:\mathrm{d}\right)\mathrm{435} \\ $$

Question Number 185678    Answers: 1   Comments: 0

Question Number 185677    Answers: 1   Comments: 0

Question Number 185674    Answers: 1   Comments: 1

Question Number 185673    Answers: 1   Comments: 0

Question Number 185672    Answers: 0   Comments: 0

Question Number 185668    Answers: 2   Comments: 0

Find: (1/(sin 10°)) − 4 sin 70° = ?

$$\mathrm{Find}:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{10}°}\:−\:\mathrm{4}\:\mathrm{sin}\:\mathrm{70}°\:=\:? \\ $$

Question Number 185665    Answers: 1   Comments: 0

f(((2x−1)/(3x+2)))=((x−1)/(x−2)) faind f^(−1) (2)=?

$${f}\left(\frac{\mathrm{2}{x}−\mathrm{1}}{\mathrm{3}{x}+\mathrm{2}}\right)=\frac{{x}−\mathrm{1}}{{x}−\mathrm{2}}\:\:\:\:\:\:{faind}\:\:\:{f}^{−\mathrm{1}} \left(\mathrm{2}\right)=? \\ $$

Question Number 185664    Answers: 0   Comments: 0

  Pg 252      Pg 253      Pg 254      Pg 255      Pg 256      Pg 257      Pg 258      Pg 259      Pg 260      Pg 261   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com