Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 257
Question Number 195017 Answers: 3 Comments: 0
$$\left({x}+\mathrm{1}\right)^{\mathrm{3}} =\mathrm{1}\:\:\:\:\:\:\:\:\:\:{x}=? \\ $$
Question Number 195015 Answers: 1 Comments: 0
Question Number 195013 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\underset{\mathrm{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\left(\frac{\mathrm{2}\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2x}}\:+\sqrt{\mathrm{6}−\mathrm{2x}}\right)}{\:\sqrt{\mathrm{36}−\mathrm{4x}^{\mathrm{2}} }}\:\right) \\ $$
Question Number 195012 Answers: 2 Comments: 0
Question Number 195003 Answers: 1 Comments: 0
$${y}={lnx}^{{x}^{{x}} } \:\:\:\:\:\:\:\:\:{y}^{'} =? \\ $$
Question Number 195002 Answers: 1 Comments: 0
$${x}^{\sqrt{{x}}} =\left(\sqrt{{x}}\right)^{{x}} \:\:\:\:\:{x}=? \\ $$
Question Number 194998 Answers: 0 Comments: 2
$$\mathrm{Resolution}\:\mathrm{du}\:\mathrm{probldme}\:\mathrm{pose}\:\mathrm{par}\: \\ $$$$\mathrm{sonukgindia}\:\left(\mathrm{16}.\mathrm{7}.\mathrm{2023}\right) \\ $$$$\mathrm{voir}\:\:\mathrm{Q194819} \\ $$$$\bigtriangleup\boldsymbol{\mathrm{ABC}}\:\:\boldsymbol{\mathrm{AM}}=\boldsymbol{\mathrm{AN}}=\boldsymbol{\mathrm{AD}}\mathrm{cos}\:\frac{\boldsymbol{\alpha}}{\mathrm{2}} \\ $$$$\begin{cases}{\boldsymbol{\mathrm{AC}}=\boldsymbol{\mathrm{AM}}+\boldsymbol{\mathrm{MC}}=\mathrm{17}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}\right)}\\{\boldsymbol{\mathrm{AB}}=\boldsymbol{\mathrm{AN}}+\boldsymbol{\mathrm{NB}}\:\:=\mathrm{18}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)}\end{cases} \\ $$$$\:\:\boldsymbol{\mathrm{AB}}−\boldsymbol{\mathrm{AC}}=\mathrm{1}=\boldsymbol{\mathrm{NB}}−\boldsymbol{\mathrm{MC}}\:\:\:\left(\mathrm{3}\right) \\ $$$$\bigtriangleup\boldsymbol{\mathrm{CDE}}\:\:\:\mathrm{cos}\:\frac{\boldsymbol{\mathrm{C}}}{\mathrm{2}}=\frac{\boldsymbol{\mathrm{CM}}}{\boldsymbol{\mathrm{CD}}}=\frac{\boldsymbol{\mathrm{CE}}}{\boldsymbol{\mathrm{CD}}}\:\Rightarrow\boldsymbol{\mathrm{CM}}=\boldsymbol{\mathrm{CE}} \\ $$$$\bigtriangleup\boldsymbol{\mathrm{BDE}}\:\:\:\mathrm{cos}\:\frac{\boldsymbol{\mathrm{B}}}{\mathrm{2}}=\frac{\boldsymbol{\mathrm{BE}}}{\boldsymbol{\mathrm{BD}}}=\frac{\boldsymbol{\mathrm{BN}}}{\boldsymbol{\mathrm{BD}}}\Rightarrow\boldsymbol{\mathrm{BN}}=\boldsymbol{\mathrm{BE}} \\ $$$$\Rightarrow\boldsymbol{\mathrm{BE}}−\boldsymbol{\mathrm{CE}}=\mathrm{1} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{BC}}=\boldsymbol{\mathrm{BE}}+\boldsymbol{\mathrm{CE}}=\mathrm{2}\boldsymbol{\mathrm{BE}}−\mathrm{1} \\ $$$$\:\bigtriangleup\boldsymbol{\mathrm{BEF}}\:\:\:\boldsymbol{\mathrm{BF}}=\mathrm{9}\:\:\:\:\mathrm{cos}\:\boldsymbol{\mathrm{B}}=\frac{\boldsymbol{\mathrm{BE}}}{\mathrm{9}}\:\: \\ $$$$\:\:\boldsymbol{\mathrm{BE}}=\mathrm{9cos}\:\boldsymbol{\mathrm{B}}\:\:\:\:\Rightarrow\boldsymbol{\mathrm{BC}}=\mathrm{18cos}\:\boldsymbol{\mathrm{B}}−\mathrm{1} \\ $$$$\:\:\boldsymbol{\mathrm{Posons}}\:\:\boldsymbol{\mathrm{BC}}=\boldsymbol{\mathrm{x}}\:\:\:\:\boldsymbol{\mathrm{x}}=\mathrm{18cos}\:\boldsymbol{\mathrm{B}}−\mathrm{1} \\ $$$$ \\ $$$$\:\:\boldsymbol{\mathrm{d}}\:\boldsymbol{\mathrm{apres}}\:\boldsymbol{\mathrm{triangle}}\:\:\boldsymbol{\mathrm{ABC}} \\ $$$$\:\boldsymbol{\mathrm{AC}}^{\mathrm{2}} =\boldsymbol{\mathrm{AB}}^{\mathrm{2}} +\boldsymbol{\mathrm{BC}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{\mathrm{AB}}.\boldsymbol{\mathrm{BC}}\mathrm{cos}\:\boldsymbol{\mathrm{B}} \\ $$$$\:\:\:\: \\ $$$$\Rightarrow\mathrm{17}^{\mathrm{2}} =\mathrm{18}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{36}\left(\frac{\boldsymbol{\mathrm{x}}+\mathrm{1}}{\mathrm{18}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mathrm{x}}−\mathrm{35}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{alors}}\:\:\:\:\:\:\boldsymbol{\mathrm{x}}=\mathrm{5} \\ $$
Question Number 194985 Answers: 0 Comments: 0
$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}}\left[\left(\frac{\mathrm{1}}{\mathrm{n}}\right)^{\mathrm{n}} +\left(\frac{\mathrm{2}}{\mathrm{n}}\right)^{\mathrm{n}} +...\left(\frac{\mathrm{n}−\mathrm{1}}{\mathrm{n}}\right)^{\mathrm{n}} \right]=? \\ $$
Question Number 194991 Answers: 0 Comments: 4
$$ \\ $$$${a}_{\mathrm{3}} {x}^{\mathrm{3}} −{x}^{\mathrm{2}} +{a}_{\mathrm{1}} {x}−\mathrm{7}=\mathrm{0}\:{is}\:{a}\:{cubic}\:{polynomial}\:{in}\:{x} \\ $$$${whose}\:{Roots}\:{are}\:\alpha\:,\:\beta\:,\:\gamma\:{positive}\:{real}\:{numbers} \\ $$$${satisfying} \\ $$$$\frac{\mathrm{225}\alpha^{\mathrm{2}} }{\alpha^{\mathrm{2}} +\mathrm{7}}=\frac{\mathrm{144}\beta^{\mathrm{2}} }{\beta^{\mathrm{2}} +\mathrm{7}}=\frac{\mathrm{100}\gamma^{\mathrm{2}} }{\gamma^{\mathrm{2}} +\mathrm{7}} \\ $$$${Find}\:\left({a}_{\mathrm{1}} \right) \\ $$
Question Number 194990 Answers: 0 Comments: 0
$$\mathrm{I}{f}\:\left({f}\left({x}\right)\right)={x}^{\mathrm{2}} −{x}+\mathrm{1}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$${f}\left(\mathrm{1971}\right)+{f}\left(\mathrm{2021}\right)+{f}\left(\mathrm{50}\right) \\ $$
Question Number 194988 Answers: 1 Comments: 0
$${ABC}={CBF} \\ $$$${AB} \\ $$
Question Number 194971 Answers: 1 Comments: 2
Question Number 194968 Answers: 2 Comments: 0
Question Number 194967 Answers: 1 Comments: 0
Question Number 194963 Answers: 2 Comments: 0
Question Number 194961 Answers: 1 Comments: 0
Question Number 194960 Answers: 1 Comments: 0
$$\mathrm{Soit}\:{x}>\mathrm{1}.\:\mathrm{On}\:\mathrm{d}\acute {\mathrm{e}finie}\:\mathrm{la}\:\mathrm{suite}\:\left(\mathrm{p}_{\mathrm{n}} \right)\:\mathrm{par}\: \\ $$$$\mathrm{p}_{\mathrm{1}} ={x}\:\:\mathrm{et}\:\forall\mathrm{n}\in\mathrm{IN}^{\ast} \:\:\:\:\:\mathrm{p}_{\mathrm{n}+\mathrm{1}} =\mathrm{2p}_{\mathrm{n}} ^{\mathrm{2}} −\mathrm{1} \\ $$$$\mathrm{Montrer}\:\mathrm{que}\:\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}}\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{p}_{\mathrm{k}} }\right)=\sqrt{\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}} \\ $$
Question Number 194975 Answers: 0 Comments: 6
$$\int\frac{\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{5}} +\mathrm{1}}\boldsymbol{{dx}} \\ $$
Question Number 194953 Answers: 1 Comments: 0
$$\:{Let}\:{P}\left({x}\right)=\:{x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}}+{b}\:{and} \\ $$$$\:\:{Q}\left({x}\right)={x}^{\mathrm{2}} +{cx}+{d}\:{be}\:{two}\: \\ $$$$\:\:{polynomial}\:{with}\:{real}\:{coefficients} \\ $$$$\:\:{such}\:{that}\:{P}\left({x}\right){Q}\left({x}\right)=\:{Q}\left({P}\left({x}\right)\right) \\ $$$$\:{for}\:{all}\:{real}\:{x}\:. \\ $$$$\:\:{Find}\:{all}\:{the}\:{real}\:{roots}\:{of}\: \\ $$$$\:\:{P}\left({Q}\left({x}\right)\right)=\mathrm{0}\: \\ $$
Question Number 194952 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{x}}\:+\:\sqrt{\mathrm{17}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\:\:+\:\boldsymbol{\mathrm{x}}\sqrt{\mathrm{17}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:}\:=\mathrm{9} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{possible}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{X}} \\ $$
Question Number 194942 Answers: 2 Comments: 2
$$\:\:\: =\: \left(\sqrt{\mathrm{5}}+\mathrm{1}\right)\mathrm{y} \\ $$$$\:\:\:\:\:\:\:\: +\:\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)\mathrm{x} \\ $$$$\:\:\:\:\:\:\:\mathrm{x}\:\neq\:\mathrm{y}\:\mathrm{and}\:\mathrm{x}+\mathrm{y}\:\neq\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\: \left(\frac{\mathrm{x}}{\mathrm{y}}\right)^{\mathrm{2025}} +\left(\frac{\mathrm{y}}{\mathrm{x}}\right)^{\mathrm{2025}} \\ $$
Question Number 194939 Answers: 0 Comments: 0
Question Number 194938 Answers: 0 Comments: 0
Question Number 194937 Answers: 1 Comments: 0
$$\:\:{If}\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{24}}\right)=\:\left(\sqrt{{a}}−\sqrt{{b}}\right)\left(\sqrt{{c}}−\sqrt{{d}}\right) \\ $$$$\:\:{where}\:{a},{b},{c},{d}\:{are}\:{postive}\:{numbers}. \\ $$$$\:\:{Find}\:{the}\:{value}\:{of}\:\left({a}+{b}+{c}+{d}+\mathrm{2}\right) \\ $$
Question Number 194931 Answers: 2 Comments: 0
Question Number 194930 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{−{x}} {dx}=? \\ $$
Pg 252 Pg 253 Pg 254 Pg 255 Pg 256 Pg 257 Pg 258 Pg 259 Pg 260 Pg 261
Terms of Service
Privacy Policy
Contact: info@tinkutara.com