Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 251

Question Number 195815    Answers: 0   Comments: 0

Question Number 195814    Answers: 1   Comments: 0

Question Number 195813    Answers: 0   Comments: 0

{ ((3(√(((12))^(1/3) −(3)^(1/3) )) = (x)^(1/3) + (y)^(1/3) −(z)^(1/3) )),((x,y,z ∈ N)) :} ⇒ x,y,z =? mr.W please help me and other my friends please help me

$$\begin{cases}{\mathrm{3}\sqrt{\sqrt[{\mathrm{3}}]{\mathrm{12}}−\sqrt[{\mathrm{3}}]{\mathrm{3}}}\:\:=\:\sqrt[{\mathrm{3}}]{{x}}\:+\:\sqrt[{\mathrm{3}}]{{y}}\:−\sqrt[{\mathrm{3}}]{{z}}}\\{{x},{y},{z}\:\in\:{N}}\end{cases}\:\Rightarrow\:{x},{y},{z}\:=? \\ $$$${mr}.{W}\:{please}\:{help}\:{me} \\ $$$${and}\:{other}\:{my}\:{friends}\:{please}\:{help}\:{me} \\ $$

Question Number 195809    Answers: 2   Comments: 3

if x^5 +x+1=0, find x^3 −x^2 =?

$${if}\:{x}^{\mathrm{5}} +{x}+\mathrm{1}=\mathrm{0},\:{find}\:{x}^{\mathrm{3}} −{x}^{\mathrm{2}} =? \\ $$

Question Number 195806    Answers: 1   Comments: 0

Question Number 195802    Answers: 0   Comments: 0

Question Number 195803    Answers: 0   Comments: 0

∫(((√x)dx)/( (√(−1+(√(2−(x+1)^2 ))))))

$$\int\frac{\sqrt{{x}}{dx}}{\:\sqrt{−\mathrm{1}+\sqrt{\mathrm{2}−\left({x}+\mathrm{1}\right)^{\mathrm{2}} }}} \\ $$

Question Number 195799    Answers: 2   Comments: 0

Question Number 195797    Answers: 0   Comments: 0

Question Number 195790    Answers: 1   Comments: 2

a,b,c are positive real numbers and abc =1 prove that (a−1+(1/b))(b−1+(1/c))(c−1+(1/a))≤1

$${a},{b},{c}\:{are}\:{positive}\:{real}\:{numbers}\:{and}\:{abc}\:=\mathrm{1} \\ $$$${prove}\:{that} \\ $$$$\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)\leqslant\mathrm{1} \\ $$

Question Number 195765    Answers: 2   Comments: 0

hello { ((x^3 +(1/x^3 ) = 18)),((x>1)) :} ⇒ x^5 −(1/x^5 ) = ?

$${hello} \\ $$$$ \\ $$$$\:\begin{cases}{{x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:=\:\mathrm{18}}\\{{x}>\mathrm{1}}\end{cases}\:\:\Rightarrow\:\:\:{x}^{\mathrm{5}} −\frac{\mathrm{1}}{{x}^{\mathrm{5}} }\:=\:? \\ $$

Question Number 195755    Answers: 1   Comments: 0

Question Number 195753    Answers: 1   Comments: 0

Calculer ∫^( 1) _( 0) ((ln^2 t)/( (√(1−t^2 ))))dt

$$\mathrm{Calculer}\:\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} {t}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt} \\ $$

Question Number 195751    Answers: 0   Comments: 0

Question Number 195750    Answers: 1   Comments: 2

Question Number 195747    Answers: 0   Comments: 3

Question Number 195742    Answers: 1   Comments: 0

Question Number 195740    Answers: 2   Comments: 0

Question Number 195733    Answers: 1   Comments: 0

prove that Σ_(n=2) ^∞ [(B_n^_ /((n−2)!))]=((e(3−e))/((e−1)^3 )) where B_n^_ is the n− th bernouli′s number

$${prove}\:{that} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left[\frac{{B}_{\overset{\_} {{n}}} }{\left({n}−\mathrm{2}\right)!}\right]=\frac{{e}\left(\mathrm{3}−{e}\right)}{\left({e}−\mathrm{1}\right)^{\mathrm{3}} } \\ $$$${where}\:{B}_{\overset{\_} {{n}}} \:{is}\:{the}\:{n}−\:{th}\:{bernouli}'{s}\:{number} \\ $$

Question Number 195732    Answers: 1   Comments: 0

((500!+499!)/(0.002))=? plz soon

$$\frac{\mathrm{500}!+\mathrm{499}!}{\mathrm{0}.\mathrm{002}}=? \\ $$$$\boldsymbol{\mathrm{plz}}\:\boldsymbol{\mathrm{soon}}\: \\ $$

Question Number 195725    Answers: 0   Comments: 1

Question Number 195722    Answers: 0   Comments: 3

Question Number 195721    Answers: 1   Comments: 0

Question Number 195718    Answers: 1   Comments: 0

Question Number 195704    Answers: 1   Comments: 0

Question Number 195702    Answers: 1   Comments: 0

  Pg 246      Pg 247      Pg 248      Pg 249      Pg 250      Pg 251      Pg 252      Pg 253      Pg 254      Pg 255   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com