Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 251

Question Number 195753    Answers: 1   Comments: 0

Calculer ∫^( 1) _( 0) ((ln^2 t)/( (√(1−t^2 ))))dt

$$\mathrm{Calculer}\:\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} {t}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt} \\ $$

Question Number 195751    Answers: 0   Comments: 0

Question Number 195750    Answers: 1   Comments: 2

Question Number 195747    Answers: 0   Comments: 3

Question Number 195742    Answers: 1   Comments: 0

Question Number 195740    Answers: 2   Comments: 0

Question Number 195733    Answers: 1   Comments: 0

prove that Σ_(n=2) ^∞ [(B_n^_ /((n−2)!))]=((e(3−e))/((e−1)^3 )) where B_n^_ is the n− th bernouli′s number

$${prove}\:{that} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left[\frac{{B}_{\overset{\_} {{n}}} }{\left({n}−\mathrm{2}\right)!}\right]=\frac{{e}\left(\mathrm{3}−{e}\right)}{\left({e}−\mathrm{1}\right)^{\mathrm{3}} } \\ $$$${where}\:{B}_{\overset{\_} {{n}}} \:{is}\:{the}\:{n}−\:{th}\:{bernouli}'{s}\:{number} \\ $$

Question Number 195732    Answers: 1   Comments: 0

((500!+499!)/(0.002))=? plz soon

$$\frac{\mathrm{500}!+\mathrm{499}!}{\mathrm{0}.\mathrm{002}}=? \\ $$$$\boldsymbol{\mathrm{plz}}\:\boldsymbol{\mathrm{soon}}\: \\ $$

Question Number 195725    Answers: 0   Comments: 1

Question Number 195722    Answers: 0   Comments: 3

Question Number 195721    Answers: 1   Comments: 0

Question Number 195718    Answers: 1   Comments: 0

Question Number 195704    Answers: 1   Comments: 0

Question Number 195702    Answers: 1   Comments: 0

Question Number 195697    Answers: 1   Comments: 0

Question Number 195693    Answers: 2   Comments: 1

hello [Σ_(n=1) ^(10000) (1/( (√n)))]=? [ ] : is bracket thank you

$${hello} \\ $$$$\left[\underset{{n}=\mathrm{1}} {\overset{\mathrm{10000}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{n}}}\right]=? \\ $$$$\left[\:\right]\::\:{is}\:{bracket} \\ $$$${thank}\:{you} \\ $$$$ \\ $$

Question Number 195771    Answers: 2   Comments: 0

Question Number 195772    Answers: 2   Comments: 0

lim_(x→(π/3)) ((cos (((3x)/2))−sin (3x))/(sin (6x)))

$$\:\:\: \\ $$$$ \underset{{x}\rightarrow\frac{\pi}{\mathrm{3}}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\left(\frac{\mathrm{3}{x}}{\mathrm{2}}\right)−\mathrm{sin}\:\left(\mathrm{3}{x}\right)}{\mathrm{sin}\:\left(\mathrm{6}{x}\right)} \\ $$

Question Number 195746    Answers: 1   Comments: 0

Question Number 195674    Answers: 0   Comments: 4

∫_0 ^4 ((x!)/(5!(x−5)!)) dx = ???

$$\:\:\:\int_{\mathrm{0}} ^{\mathrm{4}} \:\frac{{x}!}{\mathrm{5}!\left({x}−\mathrm{5}\right)!}\:{dx}\:=\:??? \\ $$

Question Number 195666    Answers: 1   Comments: 2

sequence of string said to be orderly if element index i different to i+1 for example aba has orderly value 2 abab has orderly value 3 abaabb has orderly value 3 if there are 7 a and 13 b example aaaaaaabbbbbbbbbbbbb has orderly value 1 what is the mean of its orderly value for all possible sequences?

$$ \\ $$$$\:{sequence}\:{of}\:{string}\:{said}\:{to}\:{be}\:{orderly} \\ $$$$\:{if}\:{element}\:{index}\:{i}\:{different}\:{to}\:{i}+\mathrm{1} \\ $$$$\:{for}\:{example} \\ $$$$\:{aba}\:{has}\:{orderly}\:{value}\:\mathrm{2} \\ $$$$\:{abab}\:{has}\:{orderly}\:{value}\:\mathrm{3} \\ $$$$\:{abaabb}\:{has}\:{orderly}\:{value}\:\mathrm{3} \\ $$$$\:{if}\:{there}\:{are}\:\mathrm{7}\:{a}\:{and}\:\mathrm{13}\:{b} \\ $$$$\:{example} \\ $$$$\:{aaaaaaabbbbbbbbbbbbb}\:{has}\:{orderly}\:{value}\:\mathrm{1} \\ $$$$\:{what}\:{is}\:{the}\:{mean}\:{of}\:{its}\:{orderly}\:{value} \\ $$$$\:{for}\:{all}\:{possible}\:{sequences}? \\ $$$$ \\ $$

Question Number 195672    Answers: 2   Comments: 0

how many different words can be formed from the letters in aaacdefgbbbb such that a “a” and a “b” are not next to each other? (see also Q#195606)

$${how}\:{many}\:{different}\:{words}\:{can}\:{be} \\ $$$${formed}\:{from}\:{the}\:{letters}\:{in} \\ $$$$\boldsymbol{{aaacdefgbbbb}} \\ $$$${such}\:{that}\:{a}\:``\boldsymbol{{a}}''\:{and}\:{a}\:``\boldsymbol{{b}}''\:{are}\:{not} \\ $$$${next}\:{to}\:{each}\:{other}? \\ $$$$ \\ $$$$\left({see}\:{also}\:{Q}#\mathrm{195606}\right) \\ $$

Question Number 195680    Answers: 0   Comments: 0

Question Number 195653    Answers: 2   Comments: 0

_( →0) ( 1)^((√3)/ ) =?

$$\underset{ \rightarrow\mathrm{0}} { }\left( \mathrm{1}\right)^{\frac{\sqrt{\mathrm{3}}}{ }} \:=? \\ $$$$ \\ $$

Question Number 195652    Answers: 2   Comments: 0

e^(x+y) −e^(x−y) =1 then find (dy/dx)=?

$$ \\ $$$$\mathrm{e}^{\mathrm{x}+\mathrm{y}} −\mathrm{e}^{\mathrm{x}−\mathrm{y}} =\mathrm{1} \\ $$$$\mathrm{then}\:\mathrm{find}\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}=? \\ $$$$ \\ $$$$ \\ $$

Question Number 195651    Answers: 1   Comments: 0

0<x<1 (1/(1+x^1 ))+((2x)/(1+x^2 ))+((4x^3 )/(1+x^4 ))+((8x^7 )/(1+x^8 ))+((16x^(15) )/(1+x^(16) ))+....+∞ evaluate the previous summation

$$\mathrm{0}<{x}<\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{1}} }+\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }+\frac{\mathrm{4}{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{4}} }+\frac{\mathrm{8}{x}^{\mathrm{7}} }{\mathrm{1}+{x}^{\mathrm{8}} }+\frac{\mathrm{16}{x}^{\mathrm{15}} }{\mathrm{1}+{x}^{\mathrm{16}} }+....+\infty \\ $$$${evaluate}\:{the}\:{previous}\:{summation} \\ $$

  Pg 246      Pg 247      Pg 248      Pg 249      Pg 250      Pg 251      Pg 252      Pg 253      Pg 254      Pg 255   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com