Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 251
Question Number 195815 Answers: 0 Comments: 0
Question Number 195814 Answers: 1 Comments: 0
Question Number 195813 Answers: 0 Comments: 0
$$\begin{cases}{\mathrm{3}\sqrt{\sqrt[{\mathrm{3}}]{\mathrm{12}}−\sqrt[{\mathrm{3}}]{\mathrm{3}}}\:\:=\:\sqrt[{\mathrm{3}}]{{x}}\:+\:\sqrt[{\mathrm{3}}]{{y}}\:−\sqrt[{\mathrm{3}}]{{z}}}\\{{x},{y},{z}\:\in\:{N}}\end{cases}\:\Rightarrow\:{x},{y},{z}\:=? \\ $$$${mr}.{W}\:{please}\:{help}\:{me} \\ $$$${and}\:{other}\:{my}\:{friends}\:{please}\:{help}\:{me} \\ $$
Question Number 195809 Answers: 2 Comments: 3
$${if}\:{x}^{\mathrm{5}} +{x}+\mathrm{1}=\mathrm{0},\:{find}\:{x}^{\mathrm{3}} −{x}^{\mathrm{2}} =? \\ $$
Question Number 195806 Answers: 1 Comments: 0
Question Number 195802 Answers: 0 Comments: 0
Question Number 195803 Answers: 0 Comments: 0
$$\int\frac{\sqrt{{x}}{dx}}{\:\sqrt{−\mathrm{1}+\sqrt{\mathrm{2}−\left({x}+\mathrm{1}\right)^{\mathrm{2}} }}} \\ $$
Question Number 195799 Answers: 2 Comments: 0
Question Number 195797 Answers: 0 Comments: 0
Question Number 195790 Answers: 1 Comments: 2
$${a},{b},{c}\:{are}\:{positive}\:{real}\:{numbers}\:{and}\:{abc}\:=\mathrm{1} \\ $$$${prove}\:{that} \\ $$$$\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)\leqslant\mathrm{1} \\ $$
Question Number 195765 Answers: 2 Comments: 0
$${hello} \\ $$$$ \\ $$$$\:\begin{cases}{{x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:=\:\mathrm{18}}\\{{x}>\mathrm{1}}\end{cases}\:\:\Rightarrow\:\:\:{x}^{\mathrm{5}} −\frac{\mathrm{1}}{{x}^{\mathrm{5}} }\:=\:? \\ $$
Question Number 195755 Answers: 1 Comments: 0
Question Number 195753 Answers: 1 Comments: 0
$$\mathrm{Calculer}\:\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} {t}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt} \\ $$
Question Number 195751 Answers: 0 Comments: 0
Question Number 195750 Answers: 1 Comments: 2
Question Number 195747 Answers: 0 Comments: 3
Question Number 195742 Answers: 1 Comments: 0
Question Number 195740 Answers: 2 Comments: 0
Question Number 195733 Answers: 1 Comments: 0
$${prove}\:{that} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left[\frac{{B}_{\overset{\_} {{n}}} }{\left({n}−\mathrm{2}\right)!}\right]=\frac{{e}\left(\mathrm{3}−{e}\right)}{\left({e}−\mathrm{1}\right)^{\mathrm{3}} } \\ $$$${where}\:{B}_{\overset{\_} {{n}}} \:{is}\:{the}\:{n}−\:{th}\:{bernouli}'{s}\:{number} \\ $$
Question Number 195732 Answers: 1 Comments: 0
$$\frac{\mathrm{500}!+\mathrm{499}!}{\mathrm{0}.\mathrm{002}}=? \\ $$$$\boldsymbol{\mathrm{plz}}\:\boldsymbol{\mathrm{soon}}\: \\ $$
Question Number 195725 Answers: 0 Comments: 1
Question Number 195722 Answers: 0 Comments: 3
Question Number 195721 Answers: 1 Comments: 0
Question Number 195718 Answers: 1 Comments: 0
Question Number 195704 Answers: 1 Comments: 0
Question Number 195702 Answers: 1 Comments: 0
Pg 246 Pg 247 Pg 248 Pg 249 Pg 250 Pg 251 Pg 252 Pg 253 Pg 254 Pg 255
Terms of Service
Privacy Policy
Contact: info@tinkutara.com