Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 251
Question Number 196576 Answers: 1 Comments: 1
Question Number 196571 Answers: 2 Comments: 0
Question Number 196567 Answers: 0 Comments: 3
$$\mathrm{Show}\:\mathrm{that}\:\left(\frac{\mathrm{1}+\:\mathrm{itan}\theta}{\mathrm{1}−\:\mathrm{itan}\theta}\right)^{\mathrm{n}} =\frac{\mathrm{1}+\:\mathrm{itan}\left(\mathrm{n}\theta\right)}{\mathrm{1}−\:\mathrm{tan}\left(\mathrm{n}\theta\right)} \\ $$
Question Number 196565 Answers: 1 Comments: 0
$${find}\:{the}\:{power}\:{series}\:{exponition}\:{of}\: \\ $$$${f}\left({z}\right)=\frac{\mathrm{2}{z}+\mathrm{1}}{{z}^{\mathrm{2}} −\mathrm{3}{z}+\mathrm{2}}\:\:{about}\:{z}_{{o}} \:=\:{i} \\ $$
Question Number 196560 Answers: 2 Comments: 1
Question Number 196559 Answers: 0 Comments: 0
Question Number 196558 Answers: 0 Comments: 0
Question Number 196557 Answers: 1 Comments: 0
Question Number 196555 Answers: 0 Comments: 0
$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:\:\mathrm{show}\:\mathrm{that} \\ $$$$\Sigma\:\frac{\mathrm{1}\:+\:\mathrm{cos}\:\centerdot\:\left(\mathrm{A}\:−\:\mathrm{B}\right)\:\centerdot\:\mathrm{cos}\:\mathrm{C}}{\mathrm{h}_{\boldsymbol{\mathrm{C}}} \:\centerdot\:\mathrm{sec}\:\mathrm{C}}\:\:=\:\:\frac{\mathrm{3}}{\mathrm{2}\:\mathrm{R}} \\ $$
Question Number 196614 Answers: 2 Comments: 0
$${if}\:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{5}{n}}+\frac{\mathrm{1}}{\mathrm{2}+\mathrm{5}{n}}+\frac{\mathrm{1}}{\mathrm{3}+\mathrm{5}{n}}+...+\frac{\mathrm{1}}{\mathrm{6}{n}}, \\ $$$${find}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{S}_{{n}} =? \\ $$
Question Number 196612 Answers: 0 Comments: 1
Question Number 196544 Answers: 1 Comments: 0
Question Number 196540 Answers: 1 Comments: 0
$$\:\:{using}\:{definition}\:{of}\:{limit},\:{prove}\: \\ $$$$\:\:\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{x}}{{x}+\mathrm{1}}\:=\:\mathrm{1} \\ $$
Question Number 196539 Answers: 0 Comments: 0
$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}{f}\left({i}\right)=\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}{f}\left(\mathrm{6}+\mathrm{1}−{i}\right) \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{i}} {\sum}}{f}\left({i},{j}\right)=\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{i}} {\sum}}{f}\left(\mathrm{6}+\mathrm{1}−{j},\mathrm{6}+\mathrm{1}−{i}\right) \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{i}} {\sum}}\underset{{k}=\mathrm{1}} {\overset{{j}} {\sum}}{f}\left({i},{j},{k}\right)=\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{i}} {\sum}}\underset{{k}=\mathrm{1}} {\overset{{j}} {\sum}}{f}\left(?\:,?\:,?\right) \\ $$
Question Number 196534 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{x}\:\sqrt{\mathrm{1}−\mathrm{cos}\:\left(\frac{\pi}{\mathrm{x}}\right)}\:=? \\ $$
Question Number 196525 Answers: 1 Comments: 0
Question Number 196523 Answers: 2 Comments: 0
$${resoudre}\:{dans}\:{c}\:{l}\:{equation}\:{sinx}=\mathrm{2}\:\:\:\:\:\bigstar{erly}\:{rolvinst}\bigstar\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:<{erly}\:{rolvinst}> \\ $$
Question Number 196522 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\forall\mathrm{n}\in\mathbb{N} \\ $$$$\underset{\:\mathrm{n}} {\int}^{\:\mathrm{n}+\mathrm{1}} \mathrm{ln}{t}\:\mathrm{dt}\:\leqslant\:\mathrm{ln}\left(\underset{\mathrm{n}} {\int}^{\:\mathrm{n}+\mathrm{1}} {t}\:\mathrm{dt}\right) \\ $$
Question Number 196519 Answers: 1 Comments: 0
$${if}\:{xyz}=\mathrm{1},\:{prove} \\ $$$$\left(\frac{{x}}{{x}−\mathrm{1}}\right)^{\mathrm{2}} +\left(\frac{{y}}{{y}−\mathrm{1}}\right)^{\mathrm{2}} +\left(\frac{{z}}{{z}−\mathrm{1}}\right)^{\mathrm{2}} \geqslant\mathrm{1}. \\ $$
Question Number 196518 Answers: 1 Comments: 0
$${resouxre}\:{cosx}=\mathrm{2} \\ $$
Question Number 196517 Answers: 1 Comments: 0
Question Number 196516 Answers: 1 Comments: 0
Question Number 196515 Answers: 1 Comments: 0
$$\mathrm{Find}:\:\:\:\int_{\mathrm{0}} ^{\:+\infty} \:\mathrm{x}^{\boldsymbol{\pi}} \:\mathrm{e}^{−\boldsymbol{\mathrm{x}}} \:\mathrm{dx}\:=\:? \\ $$
Question Number 196504 Answers: 0 Comments: 0
Question Number 196498 Answers: 1 Comments: 0
Question Number 196496 Answers: 1 Comments: 0
Pg 246 Pg 247 Pg 248 Pg 249 Pg 250 Pg 251 Pg 252 Pg 253 Pg 254 Pg 255
Terms of Service
Privacy Policy
Contact: info@tinkutara.com