Given the integer k,how to
find the incomplete general
solution for the non-trivial integer
solutions of the Diophantine equation:
a^4 +b^4 +ka^2 b^2 =c^4 +d^4 +kc^2 d^2 ,a,b,c,d∈N,k∈Z,gcd(a,b,c,d)=1
solve for p,q,s in terms of c.
• (((qs)/(q−sp)))^2 −s(((qs)/(q−sp)))+p=0
• (((q+c)/(p+1)))^2 =sp−q
• (q−cp)(p+1)^2 =(q+c)^3
I have to find non zero real x=−(((q+c)/(p+1))) .