Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 25

Question Number 222847    Answers: 1   Comments: 0

let f(x)=1.013x^5 −5.262x^3 −0.01732x^2 +0.8389x −1.912. Evaluate f(2.279) by first calculating (2.279)^2 ,(2.279)^3 ,(2.279)^4 and(2.279)^5 using four−digit round arithmetic. hence,compute the absolute and relative errors.

$$\boldsymbol{{let}}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\mathrm{1}.\mathrm{013}\boldsymbol{{x}}^{\mathrm{5}} −\mathrm{5}.\mathrm{262}\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{0}.\mathrm{01732}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{0}.\mathrm{8389}\boldsymbol{{x}} \\ $$$$−\mathrm{1}.\mathrm{912}.\:\boldsymbol{{Evaluate}}\:\boldsymbol{{f}}\left(\mathrm{2}.\mathrm{279}\right)\:\boldsymbol{{by}}\:\boldsymbol{{first}}\:\boldsymbol{{calculating}} \\ $$$$\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{2}} ,\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{3}} ,\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{4}} \boldsymbol{{and}}\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{5}} \:\boldsymbol{{using}} \\ $$$$\boldsymbol{{four}}−\boldsymbol{{digit}}\:\boldsymbol{{round}}\:\boldsymbol{{arithmetic}}.\:\boldsymbol{{hence}},\boldsymbol{{compute}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{absolute}}\:\boldsymbol{{and}}\:\boldsymbol{{relative}}\:\boldsymbol{{errors}}. \\ $$

Question Number 222838    Answers: 2   Comments: 0

Prove:∫_0 ^(1/2) ((ln(2x))/( (√(1+x^2 ))))dx=−(π^2 /(20))

$$\:\:\mathrm{Prove}:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{ln}\left(\mathrm{2}{x}\right)}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}=−\frac{\pi^{\mathrm{2}} }{\mathrm{20}} \\ $$

Question Number 222845    Answers: 0   Comments: 0

Evaluate; Σ_(k=0) ^n (−1)^k (((2n − k)),(( k)) )

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Evaluate}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\:\left(−\mathrm{1}\right)^{{k}} \:\begin{pmatrix}{\mathrm{2}{n}\:−\:{k}}\\{\:\:\:\:\:\:\:\:{k}}\end{pmatrix} \\ $$$$ \\ $$

Question Number 222835    Answers: 0   Comments: 0

Question Number 222830    Answers: 1   Comments: 0

Question Number 222829    Answers: 1   Comments: 0

If f(x) = ((3x + [x])/(2x)) Find lim_(x→−5^+ ) f(x) − lim_(x→−5^− ) f(x) = ?

$$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{3x}\:+\:\left[\mathrm{x}\right]}{\mathrm{2x}} \\ $$$$\mathrm{Find}\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow−\mathrm{5}^{+} } {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)\:−\:\underset{\boldsymbol{\mathrm{x}}\rightarrow−\mathrm{5}^{−} } {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:? \\ $$

Question Number 222828    Answers: 1   Comments: 0

vector field F^→ ;R^3 →R^3 , F_h ∈C^ω and Let′s define as A^→ =▽^→ ×F^→ can we find vector field F^→ .....??? Curl and Divergence inverse operator dose exist?? (▽_ ^→ ×)^(−1) A^→ , (▽_ ^→ ∗)^(−1) A^→ ex. ( ((d )/dx))^(−1) =∫

$$\mathrm{vector}\:\mathrm{field}\:\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}};\mathbb{R}^{\mathrm{3}} \rightarrow\mathbb{R}^{\mathrm{3}} \:,\:{F}_{{h}} \in\mathcal{C}^{\omega} \\ $$$$\mathrm{and}\:\mathrm{Let}'\mathrm{s}\:\mathrm{define}\:\mathrm{as}\:\overset{\rightarrow} {\boldsymbol{\mathrm{A}}}=\overset{\rightarrow} {\bigtriangledown}×\overset{\rightarrow} {\boldsymbol{\mathrm{F}}} \\ $$$$\mathrm{can}\:\mathrm{we}\:\mathrm{find}\:\mathrm{vector}\:\mathrm{field}\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}.....??? \\ $$$$\mathrm{Curl}\:\mathrm{and}\:\mathrm{Divergence}\:\:\mathrm{inverse}\:\mathrm{operator}\:\mathrm{dose}\:\mathrm{exist}?? \\ $$$$\left(\overset{\rightarrow} {\bigtriangledown}_{\:} ×\right)^{−\mathrm{1}} \overset{\rightarrow} {\boldsymbol{\mathrm{A}}}\:,\:\left(\overset{\rightarrow} {\bigtriangledown}_{\:} \ast\right)^{−\mathrm{1}} \overset{\rightarrow} {\boldsymbol{\mathrm{A}}} \\ $$$$\mathrm{ex}.\:\left(\:\frac{\mathrm{d}\:\:\:}{\mathrm{d}{x}}\right)^{−\mathrm{1}} =\int\: \\ $$

Question Number 222812    Answers: 1   Comments: 0

Question Number 222811    Answers: 1   Comments: 0

∫_0 ^(1/2) ((ln(2x))/( (√(1−x^2 ))))dx

$$\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{ln}\left(\mathrm{2}{x}\right)}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 222805    Answers: 2   Comments: 0

Prove:∫_(−∞) ^∞ J_0 (2x)dx=1

$$\mathrm{Prove}:\int_{−\infty} ^{\infty} {J}_{\mathrm{0}} \left(\mathrm{2}{x}\right){dx}=\mathrm{1} \\ $$

Question Number 222801    Answers: 2   Comments: 0

Question Number 222800    Answers: 1   Comments: 0

Question Number 222799    Answers: 0   Comments: 1

x^x^y =9^(xy) x+y=1

$${x}^{{x}^{{y}} } =\mathrm{9}^{{xy}} \\ $$$${x}+{y}=\mathrm{1} \\ $$

Question Number 222798    Answers: 1   Comments: 0

Question Number 222787    Answers: 1   Comments: 0

∫_1 ^( π/2) ((4^(−x) ∙ e^(tan(x+x^2 )) ∙ ln(1 + x^3 ))/(1 + x)) dx

$$ \\ $$$$\:\:\:\:\:\int_{\mathrm{1}} ^{\:\pi/\mathrm{2}} \:\:\frac{\mathrm{4}^{−{x}} \:\centerdot\:{e}^{\mathrm{tan}\left({x}+{x}^{\mathrm{2}} \right)} \centerdot\:\mathrm{ln}\left(\mathrm{1}\:+\:{x}^{\mathrm{3}} \right)}{\mathrm{1}\:+\:{x}}\:\:\mathrm{d}{x}\:\:\:\:\: \\ $$$$ \\ $$

Question Number 222783    Answers: 1   Comments: 0

(1/5)x^5 −(5/3)x^3 +4x+2

$$ \\ $$$$ \frac{\mathrm{1}}{\mathrm{5}}{x}^{\mathrm{5}} −\frac{\mathrm{5}}{\mathrm{3}}{x}^{\mathrm{3}} +\mathrm{4}{x}+\mathrm{2} \\ $$$$ \\ $$

Question Number 222781    Answers: 1   Comments: 0

a x^3 +ax^2 +3ax+2

$$ \\ $$$$ \:{a}\: {x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +\mathrm{3}{ax}+\mathrm{2} \\ $$

Question Number 222779    Answers: 1   Comments: 0

Question Number 222778    Answers: 1   Comments: 0

lim_(x→0) ((2log(1+x)−((x(3x+2))/((x+1)^2 )))/x^3 )

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2log}\left(\mathrm{1}+\mathrm{x}\right)−\frac{\mathrm{x}\left(\mathrm{3x}+\mathrm{2}\right)}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }}{\mathrm{x}^{\mathrm{3}} } \\ $$

Question Number 222777    Answers: 1   Comments: 0

Simplify: (((cos214° + i sin146°)∙(cos10° + i sin10°))/((cos66° − i sin246°))) = ?

$$\mathrm{Simplify}: \\ $$$$\frac{\left(\mathrm{cos214}°\:+\:\boldsymbol{\mathrm{i}}\:\mathrm{sin146}°\right)\centerdot\left(\mathrm{cos10}°\:+\:\boldsymbol{\mathrm{i}}\:\mathrm{sin10}°\right)}{\left(\mathrm{cos66}°\:−\:\boldsymbol{\mathrm{i}}\:\mathrm{sin246}°\right)}\:=\:? \\ $$

Question Number 222760    Answers: 1   Comments: 0

Question Number 222758    Answers: 1   Comments: 1

Question Number 222756    Answers: 1   Comments: 0

lim_(x→0) ((1−(√(cos(x))))/( x−xcos((√x))))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\sqrt{\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)}}{\:\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{xcos}}\left(\sqrt{\boldsymbol{\mathrm{x}}}\right)} \\ $$

Question Number 222754    Answers: 1   Comments: 1

Question Number 222753    Answers: 3   Comments: 0

Question Number 222747    Answers: 1   Comments: 1

  Pg 20      Pg 21      Pg 22      Pg 23      Pg 24      Pg 25      Pg 26      Pg 27      Pg 28      Pg 29   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com