Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 25
Question Number 222141 Answers: 2 Comments: 0
$${x}^{\mathrm{2}} +\left(\frac{{x}}{\mathrm{2}{x}−\mathrm{1}}\right)^{\mathrm{2}} =\mathrm{12} \\ $$
Question Number 222142 Answers: 2 Comments: 0
$${a}=\mathrm{3}\sqrt{\mathrm{2}}\:,{b}=\frac{\mathrm{1}}{\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{6}}} \sqrt{\mathrm{6}}}\:{and}\:{x},{y}\epsilon\mathbb{R}\:{such}\:{that} \\ $$$$\mathrm{3}{x}\:+\mathrm{2}{y}=\mathrm{log}\:_{{a}} \left(\mathrm{18}\right)^{\frac{\mathrm{5}}{\mathrm{4}}} \\ $$$$\mathrm{2}{x}−{y}=\mathrm{log}\:_{{b}} \left(\sqrt{\mathrm{1080}}\right) \\ $$$${then}\:{find}\:{the}\:{value}\:{of}\:\: \\ $$$$\mathrm{4}{x}+\mathrm{5}{y} \\ $$
Question Number 222127 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{ln}\left(\mathrm{tan}\left(\mathrm{tan}^{−\mathrm{1}} \left({e}^{\frac{\mathrm{1}}{\pi}\:\mathrm{tan}^{−\mathrm{1}} \:{u}} \right)\right)\right)\:}{{u}^{\mathrm{2}} \:+\:\mathrm{2}\pi{u}\:+\:\mathrm{2}\pi^{\mathrm{2}} }\:{du} \\ $$$$ \\ $$
Question Number 222125 Answers: 4 Comments: 2
$$\mathrm{If}:\:\:\:\mathrm{log}_{\mathrm{3}} \left(\mathrm{5}^{\boldsymbol{\mathrm{x}}} \:+\:\frac{\mathrm{1}}{\mathrm{5}^{\boldsymbol{\mathrm{x}}} }\:+\:\mathrm{7}\right)\:\:\:\Rightarrow\:\:\:\mathrm{min}\:=\:? \\ $$
Question Number 222123 Answers: 1 Comments: 1
Question Number 222121 Answers: 2 Comments: 0
$$\int\:\mathrm{acos}\left(\frac{\mathrm{cos}\left(\varrho\right)}{\mathrm{1}+\mathrm{2cos}\left(\varrho\right)}\right)\:\mathrm{d}\varrho \\ $$
Question Number 222117 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{problem}}\:\mathrm{1}.\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{integer}} \\ $$$$\boldsymbol{\mathrm{m}},\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{all}}\:\boldsymbol{\mathrm{triples}}\left(\boldsymbol{\mathrm{n}},\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}}\right)\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{integers}},\boldsymbol{\mathrm{with}} \\ $$$$\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{relatively}}\:\boldsymbol{\mathrm{prime}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{m}},\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{satisfy}} \\ $$$$\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} \right)^{\boldsymbol{\mathrm{m}}} =\left(\boldsymbol{\mathrm{xy}}\right)^{\boldsymbol{\mathrm{n}}} \\ $$$$\boldsymbol{\mathrm{hint}}:\boldsymbol{\mathrm{utilize}}\:\boldsymbol{\mathrm{AM\&GM}},\boldsymbol{\mathrm{diophantine}}\:\boldsymbol{\mathrm{eqn}} \\ $$$$\boldsymbol{\mathrm{KLIPTO}}−\boldsymbol{\mathrm{QUANTA}}−\boldsymbol{\mathrm{OOZY}} \\ $$
Question Number 222113 Answers: 0 Comments: 2
$$\mathrm{name}\:\mathrm{the}\:\mathrm{following}\:\mathrm{compound} \\ $$
Question Number 222105 Answers: 1 Comments: 1
Question Number 222104 Answers: 2 Comments: 0
$$\:\:\:\:\mathrm{log}\:_{\mathrm{4}} \:\mathrm{x}\:−\:\mathrm{log}\:_{\mathrm{x}^{\mathrm{2}} } \:\mathrm{8}\:=\:\mathrm{1} \\ $$$$\:\:\:\:\mathrm{x}\:=?\: \\ $$
Question Number 222100 Answers: 0 Comments: 0
Question Number 222097 Answers: 0 Comments: 2
Question Number 222095 Answers: 0 Comments: 0
$$\mathrm{could}\:\:\mathrm{I}\:\mathrm{consider}\:\:{Y}_{\nu} \left({z}\right)=\mathrm{cot}\left(\nu\pi\right){J}_{\nu} \left({z}\right)−\mathrm{csc}\left(\nu\pi\right){J}_{−\nu} \left({z}\right) \\ $$$$\mathrm{as}\:\infty−\infty\:\mathrm{form}\:\mathrm{limit}\:\mathrm{when}\:\nu\in\mathbb{Z} \\ $$$$\mathrm{and}\:\mathrm{How}\:\mathrm{can}\:\mathrm{i}\:\mathrm{calculate} \\ $$$${Y}_{\nu} \left({z}\right)=\mathrm{cot}\left(\nu\pi\right){J}_{\nu} \left({z}\right)−\mathrm{csc}\left(\nu\pi\right){J}_{−\nu} \left({z}\right)...?? \\ $$$$\underset{\alpha\rightarrow\nu} {\mathrm{lim}}\:\frac{\mathrm{cot}^{\mathrm{2}} \left(\alpha\pi\right){J}_{\alpha} ^{\mathrm{2}} \left({z}\right)−\mathrm{csc}^{\mathrm{2}} \left(\alpha\pi\right){J}_{−\alpha} ^{\:\mathrm{2}} \left({z}\right)}{\mathrm{cot}\left(\alpha\pi\right){J}_{\alpha} \left({z}\right)+\mathrm{csc}\left(\alpha\pi\right){J}_{−\alpha} \left({z}\right)}..... \\ $$$$\underset{\alpha\rightarrow\nu} {\mathrm{lim}}\frac{\frac{\partial\:\:}{\partial\alpha}\left(\mathrm{cot}^{\mathrm{2}} \left(\alpha\pi\right){J}_{\alpha} ^{\mathrm{2}} \left({z}\right)−\mathrm{csc}^{\mathrm{2}} \left(\alpha\pi\right){J}_{−\alpha} ^{\mathrm{2}} \left({z}\right)\right)}{\frac{\partial\:\:}{\partial\alpha}\left(\mathrm{cot}\left(\alpha\pi\right){J}_{\alpha} ^{\:} \left({z}\right)+\mathrm{csc}\left(\alpha\pi\right){J}_{−\alpha} \left({z}\right)\right)}....??.... \\ $$$$:\left(\right. \\ $$
Question Number 222076 Answers: 2 Comments: 0
Question Number 222072 Answers: 1 Comments: 2
Question Number 222064 Answers: 0 Comments: 3
Question Number 222066 Answers: 0 Comments: 4
Question Number 222057 Answers: 0 Comments: 2
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}^{\mathrm{1}} ×\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{3}} ......×{n}^{{n}} }{{n}^{\frac{\mathrm{1}}{\mathrm{2}}{n}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{n}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{12}}} ×{e}^{−\frac{\mathrm{1}}{\mathrm{4}}{n}^{\mathrm{2}} } }=??? \\ $$$$\mathrm{Help}.... \\ $$$$\mathrm{i}\:\mathrm{can}'\mathrm{t}\:\mathrm{Solve}\:\mathrm{that}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}} ... \\ $$
Question Number 222062 Answers: 2 Comments: 0
Question Number 222044 Answers: 1 Comments: 0
$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{evaluate} \\ $$$$\int_{−\infty} ^{\:\:\infty} \:\:\frac{\mathrm{sin}\left({z}+\mathrm{1}\right)}{\left({z}+\mathrm{1}\right)\left({z}^{\mathrm{2}} +\mathrm{1}\right)}\:\mathrm{d}{z} \\ $$
Question Number 222031 Answers: 3 Comments: 0
$${x}^{{x}} =−\mathrm{1} \\ $$$${Number}\:{of}\:{solutions}?? \\ $$
Question Number 222026 Answers: 2 Comments: 0
$${If}\:\left(\mathrm{1}.\mathrm{234}\right)^{{a}} =\left(\mathrm{0}.\mathrm{1234}\right)^{{b}} =\mathrm{10}^{{c}} \\ $$$${prove}\:{that}\:\frac{\mathrm{1}}{{a}}−\frac{\mathrm{1}}{{c}}=\frac{\mathrm{1}}{{b}} \\ $$
Question Number 222025 Answers: 1 Comments: 0
$$\left(\frac{\mathrm{5cos}\:^{\mathrm{2}} \frac{\pi}{\mathrm{3}}+\mathrm{4sec}\:^{\mathrm{2}} \frac{\pi}{\mathrm{6}}−\mathrm{tan}\:^{\mathrm{2}} \frac{\pi}{\mathrm{4}}}{\mathrm{sin}\:^{\mathrm{2}} \frac{\pi}{\mathrm{6}}+\mathrm{cos}\:^{\mathrm{2}} \frac{\pi}{\mathrm{6}}}\right)=?? \\ $$$$\left[{easy}\:{mode}\right] \\ $$
Question Number 222022 Answers: 1 Comments: 2
$${If}\:\angle{P}+\angle{Q}\:=\mathrm{90}^{\mathrm{0}} \:{then}\:{prove}\:{that} \\ $$$$\sqrt{\frac{\mathrm{sin}\:{P}}{\mathrm{cos}\:{Q}}−\mathrm{sin}\:{P}\mathrm{cos}\:{Q}}=\mathrm{cos}\:{P} \\ $$
Question Number 222019 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\pi} \:\mathrm{tan}^{−\mathrm{1}} \:\left(\frac{\mathrm{ln}\left(\mathrm{sin}\left({x}\right)\right.}{{x}}\right)\:{dx} \\ $$$$ \\ $$
Question Number 222007 Answers: 0 Comments: 5
$$\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }+\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}+\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\right)=\mathrm{12}.\mathrm{5} \\ $$$$\mathrm{find}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:\left(\mathrm{answer}\:\mathrm{should}\:\mathrm{not}\:\mathrm{be}\:\mathrm{in}\:\mathrm{decimal}\right) \\ $$
Pg 20 Pg 21 Pg 22 Pg 23 Pg 24 Pg 25 Pg 26 Pg 27 Pg 28 Pg 29
Terms of Service
Privacy Policy
Contact: info@tinkutara.com