Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 25
Question Number 222847 Answers: 1 Comments: 0
$$\boldsymbol{{let}}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\mathrm{1}.\mathrm{013}\boldsymbol{{x}}^{\mathrm{5}} −\mathrm{5}.\mathrm{262}\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{0}.\mathrm{01732}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{0}.\mathrm{8389}\boldsymbol{{x}} \\ $$$$−\mathrm{1}.\mathrm{912}.\:\boldsymbol{{Evaluate}}\:\boldsymbol{{f}}\left(\mathrm{2}.\mathrm{279}\right)\:\boldsymbol{{by}}\:\boldsymbol{{first}}\:\boldsymbol{{calculating}} \\ $$$$\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{2}} ,\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{3}} ,\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{4}} \boldsymbol{{and}}\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{5}} \:\boldsymbol{{using}} \\ $$$$\boldsymbol{{four}}−\boldsymbol{{digit}}\:\boldsymbol{{round}}\:\boldsymbol{{arithmetic}}.\:\boldsymbol{{hence}},\boldsymbol{{compute}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{absolute}}\:\boldsymbol{{and}}\:\boldsymbol{{relative}}\:\boldsymbol{{errors}}. \\ $$
Question Number 222838 Answers: 2 Comments: 0
$$\:\:\mathrm{Prove}:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{ln}\left(\mathrm{2}{x}\right)}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}=−\frac{\pi^{\mathrm{2}} }{\mathrm{20}} \\ $$
Question Number 222845 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Evaluate}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\:\left(−\mathrm{1}\right)^{{k}} \:\begin{pmatrix}{\mathrm{2}{n}\:−\:{k}}\\{\:\:\:\:\:\:\:\:{k}}\end{pmatrix} \\ $$$$ \\ $$
Question Number 222835 Answers: 0 Comments: 0
Question Number 222830 Answers: 1 Comments: 0
Question Number 222829 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{3x}\:+\:\left[\mathrm{x}\right]}{\mathrm{2x}} \\ $$$$\mathrm{Find}\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow−\mathrm{5}^{+} } {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)\:−\:\underset{\boldsymbol{\mathrm{x}}\rightarrow−\mathrm{5}^{−} } {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:? \\ $$
Question Number 222828 Answers: 1 Comments: 0
$$\mathrm{vector}\:\mathrm{field}\:\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}};\mathbb{R}^{\mathrm{3}} \rightarrow\mathbb{R}^{\mathrm{3}} \:,\:{F}_{{h}} \in\mathcal{C}^{\omega} \\ $$$$\mathrm{and}\:\mathrm{Let}'\mathrm{s}\:\mathrm{define}\:\mathrm{as}\:\overset{\rightarrow} {\boldsymbol{\mathrm{A}}}=\overset{\rightarrow} {\bigtriangledown}×\overset{\rightarrow} {\boldsymbol{\mathrm{F}}} \\ $$$$\mathrm{can}\:\mathrm{we}\:\mathrm{find}\:\mathrm{vector}\:\mathrm{field}\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}.....??? \\ $$$$\mathrm{Curl}\:\mathrm{and}\:\mathrm{Divergence}\:\:\mathrm{inverse}\:\mathrm{operator}\:\mathrm{dose}\:\mathrm{exist}?? \\ $$$$\left(\overset{\rightarrow} {\bigtriangledown}_{\:} ×\right)^{−\mathrm{1}} \overset{\rightarrow} {\boldsymbol{\mathrm{A}}}\:,\:\left(\overset{\rightarrow} {\bigtriangledown}_{\:} \ast\right)^{−\mathrm{1}} \overset{\rightarrow} {\boldsymbol{\mathrm{A}}} \\ $$$$\mathrm{ex}.\:\left(\:\frac{\mathrm{d}\:\:\:}{\mathrm{d}{x}}\right)^{−\mathrm{1}} =\int\: \\ $$
Question Number 222812 Answers: 1 Comments: 0
Question Number 222811 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{ln}\left(\mathrm{2}{x}\right)}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$
Question Number 222805 Answers: 2 Comments: 0
$$\mathrm{Prove}:\int_{−\infty} ^{\infty} {J}_{\mathrm{0}} \left(\mathrm{2}{x}\right){dx}=\mathrm{1} \\ $$
Question Number 222801 Answers: 2 Comments: 0
Question Number 222800 Answers: 1 Comments: 0
Question Number 222799 Answers: 0 Comments: 1
$${x}^{{x}^{{y}} } =\mathrm{9}^{{xy}} \\ $$$${x}+{y}=\mathrm{1} \\ $$
Question Number 222798 Answers: 1 Comments: 0
Question Number 222787 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\int_{\mathrm{1}} ^{\:\pi/\mathrm{2}} \:\:\frac{\mathrm{4}^{−{x}} \:\centerdot\:{e}^{\mathrm{tan}\left({x}+{x}^{\mathrm{2}} \right)} \centerdot\:\mathrm{ln}\left(\mathrm{1}\:+\:{x}^{\mathrm{3}} \right)}{\mathrm{1}\:+\:{x}}\:\:\mathrm{d}{x}\:\:\:\:\: \\ $$$$ \\ $$
Question Number 222783 Answers: 1 Comments: 0
$$ \\ $$$$ \frac{\mathrm{1}}{\mathrm{5}}{x}^{\mathrm{5}} −\frac{\mathrm{5}}{\mathrm{3}}{x}^{\mathrm{3}} +\mathrm{4}{x}+\mathrm{2} \\ $$$$ \\ $$
Question Number 222781 Answers: 1 Comments: 0
$$ \\ $$$$ \:{a}\: {x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +\mathrm{3}{ax}+\mathrm{2} \\ $$
Question Number 222779 Answers: 1 Comments: 0
Question Number 222778 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2log}\left(\mathrm{1}+\mathrm{x}\right)−\frac{\mathrm{x}\left(\mathrm{3x}+\mathrm{2}\right)}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }}{\mathrm{x}^{\mathrm{3}} } \\ $$
Question Number 222777 Answers: 1 Comments: 0
$$\mathrm{Simplify}: \\ $$$$\frac{\left(\mathrm{cos214}°\:+\:\boldsymbol{\mathrm{i}}\:\mathrm{sin146}°\right)\centerdot\left(\mathrm{cos10}°\:+\:\boldsymbol{\mathrm{i}}\:\mathrm{sin10}°\right)}{\left(\mathrm{cos66}°\:−\:\boldsymbol{\mathrm{i}}\:\mathrm{sin246}°\right)}\:=\:? \\ $$
Question Number 222760 Answers: 1 Comments: 0
Question Number 222758 Answers: 1 Comments: 1
Question Number 222756 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\sqrt{\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)}}{\:\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{xcos}}\left(\sqrt{\boldsymbol{\mathrm{x}}}\right)} \\ $$
Question Number 222754 Answers: 1 Comments: 1
Question Number 222753 Answers: 3 Comments: 0
Question Number 222747 Answers: 1 Comments: 1
Pg 20 Pg 21 Pg 22 Pg 23 Pg 24 Pg 25 Pg 26 Pg 27 Pg 28 Pg 29
Terms of Service
Privacy Policy
Contact: info@tinkutara.com