Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 25
Question Number 221233 Answers: 1 Comments: 2
$$ \\ $$$$\:\mathrm{if}\:{a},{b},{c},{d},{e},{f}\:>\:\mathrm{0}\:\mathrm{and}\:{abcdef}\:=\:\mathrm{1}\:, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{then} \\ $$$$\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}\:+\:{ad}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}\:+\:{be}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}\:+\:{cf}}}\:\leqslant\:\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}}\: \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Profosed}\:\mathrm{by}\:\mathrm{Craciun}\:\mathrm{Georghe} \\ $$
Question Number 221228 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\underset{{m}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\left({m}^{\mathrm{2}} \:+\:{n}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$ \\ $$
Question Number 221218 Answers: 0 Comments: 1
Question Number 221203 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\int\:\mathrm{tan}\left(\frac{\frac{\mathrm{1}}{{x}}}{\mathrm{sec}\left({x}\right)}\right)\:+\:\frac{\mathrm{1}\:−\:\mathrm{sec}\left({x}\right)}{\mathrm{sec}\left({x}\right)}\:\mathrm{d}{x} \\ $$$$ \\ $$
Question Number 221196 Answers: 1 Comments: 0
Question Number 221195 Answers: 1 Comments: 1
Question Number 221188 Answers: 1 Comments: 2
Question Number 221185 Answers: 5 Comments: 0
Question Number 221184 Answers: 3 Comments: 2
Question Number 221179 Answers: 0 Comments: 0
Question Number 221170 Answers: 3 Comments: 1
Question Number 221180 Answers: 0 Comments: 0
Question Number 221168 Answers: 1 Comments: 0
Question Number 221154 Answers: 0 Comments: 1
$$\:{f}\left({x}\right)=\:\frac{{x}}{\mid\:{x}\:\mid\:+\:\mathrm{1}} \\ $$$$\:\:{f}\left({f}\left({f}\left({f}\left({x}\right)\right)\right)\right)\:=? \\ $$
Question Number 221153 Answers: 1 Comments: 1
$$\:\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}^{{x}} }\:+\:\frac{\mathrm{1}}{\mathrm{3}^{{x}} }\:+\:\frac{\mathrm{1}}{\mathrm{4}^{{x}} }\:+\:...\:+\frac{\mathrm{1}}{\mathrm{4000}^{{x}} } \\ $$$$\:\:{f}\left(\mathrm{2}\right)\:+\:{f}\left(\mathrm{3}\right)\:+\:{f}\left(\mathrm{4}\right)+\:...\:=? \\ $$
Question Number 221151 Answers: 0 Comments: 1
$$\:\frac{\sqrt{{x}^{\mathrm{2}} −{x}−\sqrt{{x}^{\mathrm{2}} −{x}−\sqrt{{x}^{\mathrm{2}} −{x}−\sqrt{...}}}}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} \:\sqrt{{x}\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} \:\sqrt{{x}...}}}}}\:=\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\:\Rightarrow\:\frac{\mathrm{2}}{{x}}\:=?\: \\ $$
Question Number 221135 Answers: 1 Comments: 2
$$\mathrm{South}\:\mathrm{Korean}\:\mathrm{Grade}\:\mathrm{12}\:\mathrm{math} \\ $$$$\mathrm{Prove}\:\mathrm{log}_{{a}} {M}^{{n}} ={n}\mathrm{log}_{{a}} {M} \\ $$$$\mathrm{Using}\:\mathrm{below}: \\ $$$$\mathrm{When}\:{M}={a}^{{x}} ,\:\mathrm{log}_{{a}} {M}={x} \\ $$$$\mathrm{When}\:{N}={a}^{{y}} ,\:\mathrm{log}_{{a}} {N}={y} \\ $$$${MN}={a}^{{x}} ×{a}^{{y}} ={a}^{{x}+{y}} \\ $$$$\mathrm{So},\:\mathrm{log}_{{a}} \left({MN}\right)=\mathrm{log}_{{a}} \left({a}^{{x}+{y}} \right)={x}+{y}=\mathrm{log}_{{a}} {M}+\mathrm{log}_{{a}} {N} \\ $$
Question Number 221129 Answers: 1 Comments: 0
$$\mathrm{prove} \\ $$$$\mathrm{Contour}\:\mathrm{integral}\:\mathrm{repreasentation} \\ $$$$\begin{pmatrix}{{p}}\\{{q}}\end{pmatrix}=\frac{\mathrm{1}}{\mathrm{2}\pi\boldsymbol{{i}}}\:\oint_{\:{C}} \:\left(\mathrm{1}−{z}\right)^{{p}} {z}^{−{q}} \:\frac{\mathrm{d}{z}}{{z}} \\ $$
Question Number 221132 Answers: 2 Comments: 5
Question Number 221117 Answers: 3 Comments: 1
Question Number 221112 Answers: 0 Comments: 2
Question Number 221102 Answers: 3 Comments: 0
Question Number 221103 Answers: 0 Comments: 0
$$\mathrm{Prove}\::\:\:\:\:\:\forall\mathrm{x}\in\mathrm{IR},\:\forall\mathrm{n}\in\mathrm{IN}^{\ast} \: \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ch}\left(\mathrm{2xt}\right)\mathrm{cos}^{\mathrm{2n}} \left(\mathrm{t}\right)\:\mathrm{dt}\:\leqslant\:\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}}} \underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2n}} \left(\mathrm{t}\right)\:\mathrm{dt} \\ $$
Question Number 221100 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Prove}}; \\ $$$$\:\:\int_{\mathrm{0}} ^{\:+\infty} \:\frac{\mathrm{4}\centerdot\boldsymbol{\mathrm{cos}}\:\boldsymbol{{x}}\:\centerdot\:\sqrt[{\mathrm{6}\:\:}]{\boldsymbol{\mathrm{sinh}}\:\boldsymbol{{x}}\:}}{\boldsymbol{\mathrm{sinh}}\:\boldsymbol{{x}}\:+\:\boldsymbol{\mathrm{sinh}}\:\mathrm{3}\boldsymbol{{x}}\:+\:\mathrm{4}\:\boldsymbol{\mathrm{sinh}}^{\mathrm{2}} \:\boldsymbol{{x}}\:−\:\mathrm{2}\:\boldsymbol{\mathrm{sinh}}^{\mathrm{2}} \:\mathrm{2}\boldsymbol{{x}}\:+\:\mathrm{4}\:\boldsymbol{\mathrm{sinh}}^{\mathrm{4}} \:\boldsymbol{{x}}\:+\:\mathrm{4}\:\boldsymbol{\mathrm{cosh}}^{\mathrm{4}} \boldsymbol{{x}}}\:\boldsymbol{\mathrm{d}{x}}\:=\:\frac{\boldsymbol{\pi}}{\:\sqrt{\mathrm{6}}\:+\:\mathrm{2}}\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 221099 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Prove}: \\ $$$$\:\:\underset{\:−\pi} {\overset{\:\pi} {\int}}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{cos}^{{n}\:+\:\mathrm{1}} \:{x}}{\left({n}\:+\:\mathrm{1}\right)\left(\mathrm{1}\:+\:{e}^{{x}^{\mathrm{2}{n}\:+\mathrm{1}} } \right)}\:\:\mathrm{d}{x}\:=\:\pi\:\mathrm{ln2}\:\:\:\:\: \\ $$$$ \\ $$
Question Number 221095 Answers: 3 Comments: 0
$$\mathrm{Complex}\:\mathrm{integral} \\ $$$$\mathrm{1}.\:\int_{−\infty} ^{\:+\infty} \:\:\:\frac{\mathrm{d}{z}}{\left({z}^{\mathrm{2}} +\mathrm{1}\right)^{\nu} }=?? \\ $$$$\mathrm{2}.\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{\boldsymbol{{i}}\pi{t}} }{{t}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{t}=?? \\ $$$$\mathrm{3}.\:\oint_{\:{C}} \:\frac{\mathrm{1}}{{z}}\:\mathrm{d}{z}=??\:,\:{C};{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$
Pg 20 Pg 21 Pg 22 Pg 23 Pg 24 Pg 25 Pg 26 Pg 27 Pg 28 Pg 29
Terms of Service
Privacy Policy
Contact: info@tinkutara.com