Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 245
Question Number 196327 Answers: 2 Comments: 0
$$\boldsymbol{{calcul}}\:\boldsymbol{{la}}\:\boldsymbol{{somme}}\:\boldsymbol{{suivante}}: \\ $$$$\:\:\boldsymbol{{li}}\underset{\boldsymbol{{n}}\rightarrow+\infty} {\boldsymbol{{m}}}\:\underset{\boldsymbol{{k}}=\boldsymbol{{n}}} {\overset{\mathrm{2}\boldsymbol{{n}}} {\sum}}\boldsymbol{{sin}}\left(\frac{\boldsymbol{\pi}}{\boldsymbol{{k}}}\right) \\ $$$$\:\:\boldsymbol{{elrochi}} \\ $$
Question Number 196325 Answers: 1 Comments: 0
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{arg}\left({n}^{\mathrm{2}} +{n}+\mathrm{1}+{i}\right)=\:\pi/\mathrm{2}\: \\ $$
Question Number 196324 Answers: 2 Comments: 0
Question Number 196322 Answers: 1 Comments: 0
$$\:\:\:\:{f}^{\left(\mathrm{1}/\mathrm{2}\right)} \left({x}\right)=\:\frac{{d}}{{dx}}\left(\int_{\mathrm{0}} ^{{x}} \:\frac{{f}\left({x}β{t}\right)}{\:\sqrt{\pi{t}}}{dt}\right) \\ $$$${Prove}\:\:{that}\:\:\:\:\left({f}^{\left(\mathrm{1}/\mathrm{2}\right)} \right)^{\left(\mathrm{1}/\mathrm{2}\right)} =\:{f}\:'\:\:\:\: \\ $$$${At}\:\:{least}\:\:{for}\:\:{f}\:=\:\:\mathrm{1}\:\:{then}\:\:{f}\:=\:{x} \\ $$
Question Number 196321 Answers: 1 Comments: 0
$$\:\:\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:{sin}\left(\mathrm{2}\pi\sqrt{{n}^{\mathrm{2}} +\mathrm{1}\:}\:\right)\:=\:\mathrm{0} \\ $$$$\:\:\:\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\:{arg}\left({n}^{\mathrm{2}} +{n}+\mathrm{1}+{i}\right)\:=\:\mathrm{0} \\ $$
Question Number 196320 Answers: 1 Comments: 0
$$\:\:{If}\:\:{a}\:\:{regular}\:{n}β{polygon}\:{can} \\ $$$$\:{be}\:{divided}\:{into}\:\:{n}\:\:{identical}\:\: \\ $$$${equilateral}\:{triangles}\:{then}\:\:{n}=\mathrm{6} \\ $$
Question Number 196311 Answers: 0 Comments: 0
Question Number 196309 Answers: 2 Comments: 1
Question Number 196304 Answers: 3 Comments: 0
Question Number 196303 Answers: 2 Comments: 0
Question Number 196302 Answers: 1 Comments: 0
Question Number 196300 Answers: 2 Comments: 0
$$\mathrm{If}\:\rightarrow\:\mathrm{n}\:\in\:\mathbb{N}\:\:\:\:\:\mathrm{and}\:\:\:\:\:\mathrm{n}\:\geqslant\:\mathrm{2} \\ $$$$\mathrm{Then}\:\rightarrow\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{n}\:β\:\mathrm{1}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{2}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\mathrm{arctan}\:\frac{\mathrm{1}}{\mathrm{k}}\right)\:<\:\frac{\mathrm{2}}{\mathrm{5}}\:+\:\frac{\boldsymbol{\gamma}}{\mathrm{n}\:β\:\mathrm{1}} \\ $$
Question Number 196299 Answers: 1 Comments: 0
$$\mathrm{If}\:\rightarrow\:\mathrm{y}\:=\:\mathrm{x}\:!\:\:\:\:\:\mathrm{find}\:\rightarrow\:\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$
Question Number 196298 Answers: 0 Comments: 0
$${Q}#\mathrm{196258}\:\left({please}\right) \\ $$
Question Number 196288 Answers: 3 Comments: 1
$$\mathrm{4}^{{x}} =\sqrt{\mathrm{5}^{{y}} }=\mathrm{400} \\ $$$$\frac{{xy}}{\mathrm{2}{x}+{y}}=? \\ $$
Question Number 196286 Answers: 0 Comments: 0
Question Number 196285 Answers: 0 Comments: 1
$${problem}\:\mathrm{196258}\:\left({please}\right) \\ $$
Question Number 196277 Answers: 3 Comments: 0
$$\:\:\:\: \\ $$$$ \:\frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{dy}^{\mathrm{2}} }\:\left(\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}\right)\:=?\: \\ $$
Question Number 196276 Answers: 1 Comments: 0
Question Number 196275 Answers: 1 Comments: 0
Question Number 196267 Answers: 1 Comments: 2
$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:{if}\:\:\:{lim}_{{n}\rightarrow+\infty} \:\left(\mathrm{1}+\:\frac{{x}}{\mathrm{7}{n}}\right)^{\mathrm{29}{n}} =\mathrm{2023} \\ $$$$\:\:\:\boldsymbol{\mathrm{find}}\:\boldsymbol{{x}}\:?? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 196265 Answers: 2 Comments: 0
Question Number 196261 Answers: 1 Comments: 0
Question Number 196258 Answers: 0 Comments: 4
$${If}\left({x}_{{m}} +{iy}_{{m}} \right)^{\mathrm{2}{n}+\mathrm{1}} =\mathrm{1}\:,\:{such}\:{that} \\ $$$${m}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},....,\mathrm{2}{n}\right\}\:\wedge\:{x}_{{m}} ,{y}_{{m}} \in\mathbb{R} \\ $$$${p}=\underset{{k}=\mathrm{1}} {\overset{\mathrm{2020}} {\sum}}\left[\frac{\mathrm{1}β{x}_{{k}} +{iy}_{{k}} }{\mathrm{1}+{x}_{{k}} +{iy}_{{k}} }\right]\:,\:{Find}\:\left(\frac{{p}}{\mathrm{43}}\right) \\ $$
Question Number 196257 Answers: 1 Comments: 0
Question Number 197581 Answers: 1 Comments: 0
$${find}\:\underset{{n}=\mathrm{1}} {\overset{{k}} {\sum}}\sqrt{{n}}\:? \\ $$
Pg 240 Pg 241 Pg 242 Pg 243 Pg 244 Pg 245 Pg 246 Pg 247 Pg 248 Pg 249
Terms of Service
Privacy Policy
Contact: info@tinkutara.com