Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 243

Question Number 196755    Answers: 0   Comments: 0

Question Number 196738    Answers: 0   Comments: 13

Question Number 196735    Answers: 2   Comments: 0

Question Number 196734    Answers: 1   Comments: 0

Question Number 196728    Answers: 1   Comments: 1

Question Number 196730    Answers: 0   Comments: 0

Question Number 196725    Answers: 1   Comments: 0

Question Number 196723    Answers: 2   Comments: 0

prove that the curve (√((x−1)^2 +y^2 ))+(√((x+1)^2 +y^2 ))=4 is an ellipse and find its semi major axis and semi minor axis.

$${prove}\:{that}\:{the}\:{curve}\: \\ $$$$\sqrt{\left({x}−\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }+\sqrt{\left({x}+\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{4}\: \\ $$$${is}\:{an}\:{ellipse}\:{and}\:{find}\:{its}\:{semi} \\ $$$${major}\:{axis}\:{and}\:{semi}\:{minor}\:{axis}. \\ $$

Question Number 196714    Answers: 3   Comments: 0

Question Number 196710    Answers: 0   Comments: 1

Give the function: f(x)=(x−1)(x−2)^2 (x−3)^3 (x−4)^4 ...(x−2022)^(2022) Find extremes of f(x)¿

$${Give}\:{the}\:{function}: \\ $$$${f}\left({x}\right)=\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)^{\mathrm{2}} \left({x}−\mathrm{3}\right)^{\mathrm{3}} \left({x}−\mathrm{4}\right)^{\mathrm{4}} ...\left({x}−\mathrm{2022}\right)^{\mathrm{2022}} \\ $$$${Find}\:{extremes}\:{of}\:{f}\left({x}\right)¿ \\ $$

Question Number 196704    Answers: 0   Comments: 0

Question Number 196697    Answers: 1   Comments: 3

Question Number 196693    Answers: 0   Comments: 0

And If I want to study an abstract algebra what book would you recommend and are there any prequesties

$$ \\ $$And If I want to study an abstract algebra what book would you recommend and are there any prequesties

Question Number 196691    Answers: 0   Comments: 2

Can someone recommend Calculus book , But I prefer if the book isn't boring and have a real challenging problems not a direct consequence of what is illustrated

$$ \\ $$Can someone recommend Calculus book , But I prefer if the book isn't boring and have a real challenging problems not a direct consequence of what is illustrated

Question Number 196690    Answers: 1   Comments: 0

If (ax)^(loga) = (bx)^(logb) then prove that x = (1/(ab)) .

$$\mathrm{If}\:\left({ax}\right)^{\mathrm{log}{a}} \:=\:\left({bx}\right)^{\mathrm{log}{b}} \:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$${x}\:=\:\frac{\mathrm{1}}{{ab}}\:. \\ $$

Question Number 196708    Answers: 0   Comments: 5

Δt=20C^(° ) change to k? plz help me

$$\Delta\mathrm{t}=\mathrm{20C}^{°\:} \mathrm{change}\:\mathrm{to}\:\mathrm{k}? \\ $$$$\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$

Question Number 196705    Answers: 0   Comments: 0

lim_(n→∞) ∫_(−∞) ^( ∞) ((n!2^(2ncos(φ)) )/(Π_(k=1) ^∞ (2ne^(iφ) −k)))dφ

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{−\infty} {\overset{\:\:\:\:\infty} {\int}}\frac{{n}!\mathrm{2}^{\mathrm{2}{ncos}\left(\phi\right)} }{\underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{2}{ne}^{{i}\phi} −{k}\right)}{d}\phi \\ $$

Question Number 196688    Answers: 1   Comments: 0

Question Number 196683    Answers: 2   Comments: 0

If y = ((e^x − e^(− x) )/(e^x + e^(− x) )) then show that x = (1/2)log_e (((1 + y)/(1 − y))).

$$\mathrm{If}\:{y}\:=\:\frac{{e}^{{x}} \:−\:{e}^{−\:{x}} }{{e}^{{x}} \:+\:{e}^{−\:{x}} }\:\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$${x}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{log}_{{e}} \left(\frac{\mathrm{1}\:+\:{y}}{\mathrm{1}\:−\:{y}}\right). \\ $$

Question Number 196682    Answers: 1   Comments: 0

Question Number 196672    Answers: 1   Comments: 1

Find all Ω=abcdef ^(−) , such that abcdef=abc+def

$${Find}\:{all}\:\Omega\overline {={abcdef}\:\:},\:{such}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{abcdef}={abc}+{def} \\ $$

Question Number 196676    Answers: 1   Comments: 1

If ab^(−) ∙ cd^(−) =899 , find Ω= abcd^(−) + cdab^(−)

$${If}\:\overline {{ab}}\:\centerdot\:\overline {{cd}}=\mathrm{899}\:,\:{find}\:\Omega=\:\overline {{abcd}}\:+\:\overline {{cdab}} \\ $$

Question Number 196674    Answers: 0   Comments: 0

prove that lim_(n→+∞) (−1)^(n−1) +Σ_(p=2) ^n (−1)^p pln(((p+1)/(p−1)))=ln(π)

$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}}\:\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} +\underset{\mathrm{p}=\mathrm{2}} {\overset{\mathrm{n}} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{p}} \mathrm{pln}\left(\frac{\mathrm{p}+\mathrm{1}}{\mathrm{p}−\mathrm{1}}\right)=\mathrm{ln}\left(\pi\right) \\ $$

Question Number 196667    Answers: 3   Comments: 0

Question Number 196663    Answers: 0   Comments: 0

Question Number 196659    Answers: 4   Comments: 4

  Pg 238      Pg 239      Pg 240      Pg 241      Pg 242      Pg 243      Pg 244      Pg 245      Pg 246      Pg 247   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com