Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 240

Question Number 197310    Answers: 1   Comments: 0

Question Number 197301    Answers: 1   Comments: 0

how do i calculate this lim_(x→-∞) ((x^4 +2x^2 +x−2)/(x^3 +2x^2 +x−1)) multiplying both numerator and denumerator by (1/x^4 ) lim_(x→-∞) ((1+(2/x^2 )+(1/x^3 )−(2/x^4 ))/((1/x)+(2/x^2 )+(1/x^3 )−(1/x^4 ))) ((1+0+0−0)/(0+0+0−0)) ∞ which is not true the answer is -∞, i tried multiplying (1/x^3 ) and got -∞ but still confused what did i do wrong using (1/x^4 )

$$ \\ $$$$\:{how}\:{do}\:{i}\:{calculate}\:{this} \\ $$$$\:\underset{{x}\rightarrow-\infty} {\mathrm{lim}}\:\frac{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{2}}{{x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{1}} \\ $$$$\:{multiplying}\:{both}\:{numerator} \\ $$$$\:{and}\:{denumerator}\:{by}\:\frac{\mathrm{1}}{{x}^{\mathrm{4}} } \\ $$$$\:\underset{{x}\rightarrow-\infty} {\mathrm{lim}}\:\frac{\mathrm{1}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{{x}^{\mathrm{3}} }−\frac{\mathrm{2}}{{x}^{\mathrm{4}} }}{\frac{\mathrm{1}}{{x}}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{{x}^{\mathrm{3}} }−\frac{\mathrm{1}}{{x}^{\mathrm{4}} }} \\ $$$$\:\frac{\mathrm{1}+\mathrm{0}+\mathrm{0}−\mathrm{0}}{\mathrm{0}+\mathrm{0}+\mathrm{0}−\mathrm{0}} \\ $$$$\:\infty \\ $$$$\:{which}\:{is}\:{not}\:{true}\:{the}\:{answer}\:{is}\:-\infty, \\ $$$$\:{i}\:{tried}\:{multiplying}\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:{and}\:{got}\:-\infty \\ $$$$\:{but}\:{still}\:{confused}\:{what}\:{did}\:{i}\:{do}\:{wrong} \\ $$$$\:{using}\:\frac{\mathrm{1}}{{x}^{\mathrm{4}} } \\ $$$$ \\ $$

Question Number 197299    Answers: 1   Comments: 0

((−64))^(1/6) −((−10))^(1/(10)) =? I need so much plz

$$\sqrt[{\mathrm{6}}]{−\mathrm{64}}−\sqrt[{\mathrm{10}}]{−\mathrm{10}}=? \\ $$$$\boldsymbol{{I}}\:\boldsymbol{\mathrm{need}}\:\boldsymbol{\mathrm{so}}\:\boldsymbol{\mathrm{much}}\:\boldsymbol{\mathrm{plz}} \\ $$

Question Number 197292    Answers: 2   Comments: 0

lim_(n→∞) ∫_(0 ) ^1 ((nx^(n−1) )/(1+x))dx = ?

$$\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\int_{\mathrm{0}\:} ^{\mathrm{1}} \frac{{nx}^{{n}−\mathrm{1}} }{\mathrm{1}+{x}}{dx}\:\:=\:\:\:? \\ $$

Question Number 197290    Answers: 0   Comments: 1

Question Number 197287    Answers: 0   Comments: 3

answer to the question number 197017 AF=FI & AG=GJ⇒FG=(1/2)IJ=(1/6)BC △FGH is squilatral ⇒ △FGH≈△ABC ⇒(S_(FGH) /S_(SBC) ) =(1/(36 )) ✓

$${answer}\:{to}\:{the}\:{question}\:{number} \\ $$$$\mathrm{197017} \\ $$$${AF}={FI}\:\&\:\:{AG}={GJ}\Rightarrow{FG}=\frac{\mathrm{1}}{\mathrm{2}}{IJ}=\frac{\mathrm{1}}{\mathrm{6}}{BC} \\ $$$$\bigtriangleup{FGH}\:\:{is}\:\:{squilatral}\:\Rightarrow\:\bigtriangleup{FGH}\approx\bigtriangleup{ABC} \\ $$$$\Rightarrow\frac{{S}_{{FGH}} }{{S}_{{SBC}} }\:=\frac{\mathrm{1}}{\mathrm{36}\:}\:\checkmark \\ $$$$ \\ $$

Question Number 197282    Answers: 1   Comments: 0

lim_(x→0) ((sin^2 x−sin x^2 )/(x^2 (cos^2 x−cos x^2 ))) =?

$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}−\mathrm{sin}\:\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} \:\left(\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}−\mathrm{cos}\:\mathrm{x}^{\mathrm{2}} \:\right)}\:=? \\ $$

Question Number 197281    Answers: 2   Comments: 0

lim_(x→0) ((sin x−x+2x^5 )/(3x^3 )) =?

$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{x}+\mathrm{2x}^{\mathrm{5}} }{\mathrm{3x}^{\mathrm{3}} }\:=? \\ $$

Question Number 197277    Answers: 1   Comments: 0

Question Number 197275    Answers: 1   Comments: 0

how do i prove this, help please. ∣((x^2 −2x−3)/(x^2 +2x+4))∣≤(5/4),∣x∣≤2

$$ \\ $$$$\:{how}\:{do}\:{i}\:{prove}\:{this},\:{help}\:{please}. \\ $$$$\:\mid\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}}\mid\leqslant\frac{\mathrm{5}}{\mathrm{4}},\mid{x}\mid\leqslant\mathrm{2} \\ $$$$ \\ $$$$ \\ $$

Question Number 197274    Answers: 0   Comments: 1

Question Number 197272    Answers: 2   Comments: 0

How to calculate this integral ∫^( (π/2)) _( 0) ((ln(1+sint))/(sint))dt

$$\mathrm{How}\:\mathrm{to}\:\mathrm{calculate}\:\mathrm{this}\:\mathrm{integral} \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{ln}\left(\mathrm{1}+{sint}\right)}{{sint}}{dt} \\ $$

Question Number 198332    Answers: 0   Comments: 1

Of men that attended a party, 30 of them wore coats, 20 wore ties and 10 wore hats. There were 4 men who wore coats and tie, or tie and hat or coat and hat. 14 men wore tie only with no coat and hat. Find the number of men who wore: a) coat, tie and hat b) hat only with no coat and hat.

$${Of}\:{men}\:{that}\:{attended}\:{a}\:{party},\:\mathrm{30}\:{of} \\ $$$${them}\:{wore}\:{coats},\:\mathrm{20}\:{wore}\:{ties}\:{and}\:\mathrm{10} \\ $$$${wore}\:{hats}.\:{There}\:{were}\:\mathrm{4}\:{men}\:{who}\:{wore} \\ $$$${coats}\:{and}\:{tie},\:{or}\:{tie}\:{and}\:{hat}\:{or}\:{coat}\:{and} \\ $$$${hat}.\:\mathrm{14}\:{men}\:{wore}\:{tie}\:{only}\:{with}\:{no} \\ $$$${coat}\:{and}\:{hat}.\:{Find}\:{the}\:{number}\:{of}\:{men} \\ $$$${who}\:{wore}: \\ $$$$\left.{a}\right)\:{coat},\:{tie}\:{and}\:{hat} \\ $$$$\left.{b}\right)\:{hat}\:{only}\:{with}\:{no}\:{coat}\:{and}\:{hat}. \\ $$

Question Number 198288    Answers: 1   Comments: 0

Question Number 197255    Answers: 0   Comments: 0

log 2=a log 3=b log 72=?

$$\mathrm{log}\:\mathrm{2}={a} \\ $$$$\mathrm{log}\:\mathrm{3}={b} \\ $$$$\mathrm{log}\:\mathrm{72}=? \\ $$

Question Number 197254    Answers: 0   Comments: 0

(((log_2 20)^2 −(log_2 5)^2 )/(log_2 10 ))=?

$$\frac{\left(\mathrm{lo}\underset{\mathrm{2}} {\mathrm{g}20}\right)^{\mathrm{2}} \:−\left(\mathrm{lo}\underset{\mathrm{2}} {\mathrm{g}5}\right)^{\mathrm{2}} \:}{\mathrm{lo}\underset{\mathrm{2}} {\mathrm{g}10}\:}=? \\ $$

Question Number 197253    Answers: 0   Comments: 0

log_3 12=a log _3 18=?

$$\mathrm{lo}\underset{\mathrm{3}} {\mathrm{g}12}={a} \\ $$$$\mathrm{log}\underset{\mathrm{3}} {\:}\mathrm{18}=?\: \\ $$

Question Number 197252    Answers: 0   Comments: 0

log_a x=30 log_b x=70 log_(ab) x=?

$$\mathrm{lo}\underset{{a}} {\mathrm{g}}{x}=\mathrm{30} \\ $$$$\mathrm{lo}\underset{{b}} {\mathrm{g}}{x}=\mathrm{70} \\ $$$$\mathrm{lo}\underset{{ab}} {\mathrm{g}}{x}=?\:\:\: \\ $$

Question Number 197251    Answers: 1   Comments: 0

log 2=0.30103 log 125=?

$$\mathrm{log}\:\mathrm{2}=\mathrm{0}.\mathrm{30103} \\ $$$$\mathrm{log}\:\mathrm{125}=? \\ $$

Question Number 197250    Answers: 0   Comments: 0

log 3=a log 4=b log_5 36=?

$$\mathrm{log}\:\mathrm{3}={a} \\ $$$$\mathrm{log}\:\mathrm{4}={b} \\ $$$$\mathrm{lo}\underset{\mathrm{5}} {\mathrm{g}36}=?\: \\ $$

Question Number 197249    Answers: 3   Comments: 0

log_6 2=a log_6 9=?

$$\mathrm{lo}\underset{\mathrm{6}} {\mathrm{g}2}={a} \\ $$$$\mathrm{lo}\underset{\mathrm{6}} {\mathrm{g}9}=?\:\: \\ $$

Question Number 197248    Answers: 0   Comments: 3

a,b,c∈R ((a + 2b − 3ac)/(3ac)) = ((a + 4b − bc)/b) Find: ((2b)/a) − ((3a)/b)

$$\mathrm{a},\mathrm{b},\mathrm{c}\in\mathbb{R} \\ $$$$\frac{\mathrm{a}\:+\:\mathrm{2b}\:−\:\mathrm{3ac}}{\mathrm{3ac}}\:\:=\:\:\frac{\mathrm{a}\:+\:\mathrm{4b}\:−\:\mathrm{bc}}{\mathrm{b}} \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{2b}}{\mathrm{a}}\:−\:\frac{\mathrm{3a}}{\mathrm{b}} \\ $$

Question Number 197247    Answers: 1   Comments: 0

calcul ∫^( +∞) _( 0) ((ln(cht))/(sh(t)))dt

$$\mathrm{calcul}\:\underset{\:\mathrm{0}} {\int}^{\:+\infty} \frac{{ln}\left({cht}\right)}{{sh}\left({t}\right)}{dt} \\ $$

Question Number 197245    Answers: 0   Comments: 1

Question Number 197242    Answers: 0   Comments: 0

Question Number 197241    Answers: 0   Comments: 0

  Pg 235      Pg 236      Pg 237      Pg 238      Pg 239      Pg 240      Pg 241      Pg 242      Pg 243      Pg 244   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com