Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 240

Question Number 194767    Answers: 2   Comments: 0

tan θ = 2 ((8sin θ+5cos θ)/(sin^3 θ+cos^3 θ+cos θ)) =?

$$\:\:\:\:\:\mathrm{tan}\:\theta\:=\:\mathrm{2}\: \\ $$$$\:\:\:\frac{\mathrm{8sin}\:\theta+\mathrm{5cos}\:\theta}{\mathrm{sin}\:^{\mathrm{3}} \theta+\mathrm{cos}\:^{\mathrm{3}} \theta+\mathrm{cos}\:\theta}\:=? \\ $$

Question Number 194766    Answers: 2   Comments: 0

1+2cot 2x cot x = 3 x=?

$$\:\:\:\mathrm{1}+\mathrm{2cot}\:\mathrm{2}{x}\:\mathrm{cot}\:{x}\:=\:\mathrm{3}\: \\ $$$$\:\:\:{x}=? \\ $$

Question Number 194759    Answers: 1   Comments: 1

∫_0 ^( 1) ∫_0 ^( 1) (((1+x^2 )/(1+x^2 +y^2 ))) dxdy

$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\left(\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\right)\:\mathrm{dxdy}\: \\ $$

Question Number 194756    Answers: 3   Comments: 0

b

$$\:\:\:\:\:\:\underbrace{\boldsymbol{{b}}} \\ $$

Question Number 194736    Answers: 0   Comments: 2

{: }

Question Number 194735    Answers: 1   Comments: 0

Question Number 194732    Answers: 2   Comments: 1

Question Number 194715    Answers: 0   Comments: 0

Question Number 194713    Answers: 0   Comments: 2

Question Number 194709    Answers: 1   Comments: 0

Show that in fibonacci sequence f_(3n) =f_n ^3 +f_(n+1) ^3 −f_(n−1) ^3

$${Show}\:{that}\:\:{in}\:{fibonacci}\:{sequence} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{f}_{\mathrm{3}{n}} ={f}_{{n}} ^{\mathrm{3}} +{f}_{{n}+\mathrm{1}} ^{\mathrm{3}} −{f}_{{n}−\mathrm{1}} ^{\mathrm{3}} \\ $$$$ \\ $$

Question Number 194710    Answers: 0   Comments: 21

let p be a prime number & let a_1 ,a_2 ,a_3 ,...,a_(p ) be integers show that , there exists an integer k such that the numbers a_1 +k, a_2 +k,a_3 +k,....,a_p +k produce at least (1/2)p distinct remainders when divided by p.

$${let}\:{p}\:{be}\:{a}\:{prime}\:{number} \\ $$$$\&\:{let}\:{a}_{\mathrm{1}} \:,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} ,...,{a}_{{p}\:} {be}\:{integers} \\ $$$${show}\:{that}\:,\:{there}\:{exists}\:{an}\:{integer}\:{k}\:{such}\:{that}\:{the}\:{numbers} \\ $$$${a}_{\mathrm{1}} +{k},\:{a}_{\mathrm{2}} +{k},{a}_{\mathrm{3}} +{k},....,{a}_{{p}} +{k} \\ $$$${produce}\:{at}\:{least}\:\frac{\mathrm{1}}{\mathrm{2}}{p}\:{distinct}\:{remainders} \\ $$$${when}\:{divided}\:{by}\:{p}. \\ $$

Question Number 194700    Answers: 0   Comments: 2

Question Number 194697    Answers: 2   Comments: 0

$$\:\:\:\:\underbrace{\:} \\ $$

Question Number 194695    Answers: 1   Comments: 0

$$\:\:\:\:\:\downharpoonleft\underline{\:} \\ $$

Question Number 194693    Answers: 1   Comments: 0

if f_n =f_(n−1) +f_(n−2) ; f_1 =f_2 =1 then prove that 5∣f_(5n)

$${if}\:\:\:{f}_{{n}} ={f}_{{n}−\mathrm{1}} +{f}_{{n}−\mathrm{2}} \:\:;\:\:{f}_{\mathrm{1}} ={f}_{\mathrm{2}} =\mathrm{1} \\ $$$${then}\:\:\:{prove}\:{that}\:\:\:\mathrm{5}\mid{f}_{\mathrm{5}{n}} \:\: \\ $$

Question Number 194685    Answers: 1   Comments: 0

Question Number 194662    Answers: 0   Comments: 2

∫_0 ^(Π/2) (√(4sin^2 t+cos^2 t)) dt

$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \sqrt{\mathrm{4}{sin}^{\mathrm{2}} {t}+{cos}^{\mathrm{2}} {t}}\:\:{dt} \\ $$

Question Number 194654    Answers: 1   Comments: 0

Question Number 194652    Answers: 0   Comments: 0

Question Number 194649    Answers: 0   Comments: 3

calcul ∫_0 ^(Π/2) (√(4sin^2 t+cos^2 t ))dt

$${calcul}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \sqrt{\mathrm{4}{sin}^{\mathrm{2}} {t}+{cos}^{\mathrm{2}} {t}\:}{dt} \\ $$

Question Number 194648    Answers: 3   Comments: 3

Question Number 194642    Answers: 2   Comments: 0

If A= (((a b c)),((b c a)),((c a b)) ) and a,b,c >0 such that abc=1 and A^T .A=I find a^3 +b^3 +c^3 −3abc .

$$\:\mathrm{If}\:\mathrm{A}=\begin{pmatrix}{\mathrm{a}\:\:\:\:\mathrm{b}\:\:\:\:\:\:\mathrm{c}}\\{\mathrm{b}\:\:\:\:\mathrm{c}\:\:\:\:\:\:\mathrm{a}}\\{\mathrm{c}\:\:\:\:\:\mathrm{a}\:\:\:\:\:\:\mathrm{b}}\end{pmatrix}\:\mathrm{and}\:\mathrm{a},\mathrm{b},\mathrm{c}\:>\mathrm{0} \\ $$$$\:\:\mathrm{such}\:\mathrm{that}\:\mathrm{abc}=\mathrm{1}\:\mathrm{and}\:\mathrm{A}^{\mathrm{T}} .\mathrm{A}=\mathrm{I} \\ $$$$\:\mathrm{find}\:\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} −\mathrm{3abc}\:. \\ $$

Question Number 194640    Answers: 1   Comments: 0

$$\:\:\:\:\underbrace{ } \\ $$

Question Number 194638    Answers: 1   Comments: 1

Prove that ∀n∈IN^∗ Σ_(k=1) ^(2^n −1) (1/(sin^2 (((kπ)/2^(n+1) ))))= ((2^(2n+1) −2)/3) Give in terms of n Σ_(k=1) ^(2^n −1) (1/(sin^4 (((kπ)/2^(n+1) ))))

$$\mathrm{Prove}\:\mathrm{that}\:\forall{n}\in\mathrm{IN}^{\ast} \:\:\:\:\: \\ $$$$\:\:\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}^{{n}} −\mathrm{1}} {\sum}}\:\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)}=\:\frac{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} −\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{Give}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{n}\:\:\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}^{{n}} −\mathrm{1}} {\sum}}\:\frac{\mathrm{1}}{{sin}^{\mathrm{4}} \left(\frac{{k}\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)} \\ $$

Question Number 194637    Answers: 4   Comments: 1

x+y=1 x^2 +y^2 =2 x^(11) +y^(11) =?

$$ \\ $$$${x}+{y}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{2} \\ $$$${x}^{\mathrm{11}} +{y}^{\mathrm{11}} =? \\ $$$$ \\ $$$$ \\ $$

Question Number 194636    Answers: 0   Comments: 3

Question Number 194634    Answers: 1   Comments: 0

a_1 ,a_2 ,a_3 ,....,a_n >0 such that a_i ∈[0,i] ∀ i∈{1,2,3,4,...,n} prove that 2^n .a_1 (a_1 +a_2 )...(a_1 +a_2 +...+a_n )≥(n+1)(a_1 ^2 .a_2 ^2 ...a_n ^2 )

$${a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} ,....,{a}_{{n}} >\mathrm{0}\:{such}\:{that}\:{a}_{{i}} \in\left[\mathrm{0},{i}\right]\: \\ $$$$\forall\:{i}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},...,{n}\right\}\:{prove}\:{that} \\ $$$$\mathrm{2}^{{n}} .{a}_{\mathrm{1}} \left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} \right)...\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} +...+{a}_{{n}} \right)\geqslant\left({n}+\mathrm{1}\right)\left({a}_{\mathrm{1}} ^{\mathrm{2}} .{a}_{\mathrm{2}} ^{\mathrm{2}} ...{a}_{{n}} ^{\mathrm{2}} \right) \\ $$

  Pg 235      Pg 236      Pg 237      Pg 238      Pg 239      Pg 240      Pg 241      Pg 242      Pg 243      Pg 244   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com