Answer to the question “196008”
Σ_(k=1) ^n tan^2 (((kπ)/(2n+1)))=n(2n+1)
Ans)
according “de moivre”
sin(2n+1)α= (((2n+1)),(( 1)) )(cosα)^(2n) sinα− (((2n+1)),(( 3)) )(cosα)^(2n−2) (sinα)^3 +....
=(cosα)^(2n) (sinα)[ (((2n+1)),(( 1)) )− (((2n+1)),(( 3)) ) tan^2 α+...]
for “α_k =((kπ)/(2n+1)) ; 1≤k≤n ⇒sin(2n+1)α_k =0
⇒∀ 1≤k≤n→ (((2n+1)),(( 1)) )− (((2n+1)),(( 3)) ) tan^2 α_k +...=0
therefore “ x_k =tan^2 α_k ” thr roots of the equation are blowe
x^n − (((2n+1)),((2n−1)) ) x^n + (((2n+1)),((2n−3)) )x^(n−1) −...=0
the sume of the roots of the equation is “ s= (((2n+1)),((2n−1)) ) ”
⇒s=Σ_(k=1) ^n tan^2 (((kπ)/(2n+1)))=n(2n+1)✓
the proof of the seconf part is done similarly
|