Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 238

Question Number 191138    Answers: 0   Comments: 0

Question Number 191131    Answers: 2   Comments: 0

Question Number 191129    Answers: 2   Comments: 0

Solve for x : x + ln(1−x) = 0.1614 Help!

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:: \\ $$$$\mathrm{x}\:+\:\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\:=\:\mathrm{0}.\mathrm{1614} \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$

Question Number 191128    Answers: 1   Comments: 0

Question Number 191127    Answers: 0   Comments: 0

Question Number 191126    Answers: 0   Comments: 1

Question Number 191121    Answers: 0   Comments: 0

Question Number 191111    Answers: 0   Comments: 2

bb55bb

$${bb}\mathrm{55}{bb} \\ $$

Question Number 191104    Answers: 1   Comments: 0

Question Number 191103    Answers: 1   Comments: 0

Question Number 191102    Answers: 2   Comments: 0

Question Number 191091    Answers: 1   Comments: 0

The front of a train 80m long passes a signal at a speed of 72km/h. If the rear of the train passes the signal 5seconds later, find (a) the acceleration of the train (b) the speed at which the rear of the train passes the signal.

$${The}\:{front}\:{of}\:{a}\:{train}\:\mathrm{80}{m}\:{long}\:{passes} \\ $$$${a}\:{signal}\:{at}\:{a}\:{speed}\:{of}\:\mathrm{72}{km}/{h}.\:{If}\:{the} \\ $$$${rear}\:{of}\:{the}\:{train}\:{passes}\:{the}\:{signal}\: \\ $$$$\mathrm{5}{seconds}\:{later},\:{find}\: \\ $$$$\left({a}\right)\:{the}\:{acceleration}\:{of}\:{the}\:{train} \\ $$$$\left({b}\right)\:{the}\:{speed}\:{at}\:{which}\:{the}\:{rear}\:{of}\:{the} \\ $$$${train}\:{passes}\:{the}\:{signal}. \\ $$

Question Number 191078    Answers: 2   Comments: 0

lim_(x→0) ((x−sinx)/x^3 )=? solve without hopital and any series.

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}−{sinx}}{{x}^{\mathrm{3}} }=? \\ $$$${solve}\:{without}\:{hopital}\:{and}\:{any}\:{series}. \\ $$

Question Number 191077    Answers: 3   Comments: 2

a^→ ∙ b^(→) = 4 b^→ ∙ c^(→) = 5 7a^(→) = 4b^(→) + 2c^(→) Find: ∣c^(→) ∣ = ?

$$\overset{\rightarrow} {\mathrm{a}}\:\centerdot\:\overset{\rightarrow} {\mathrm{b}}\:=\:\mathrm{4} \\ $$$$\overset{\rightarrow} {\mathrm{b}}\:\centerdot\:\overset{\rightarrow} {\mathrm{c}}\:=\:\mathrm{5} \\ $$$$\overset{\rightarrow} {\mathrm{7a}}\:=\:\overset{\rightarrow} {\mathrm{4b}}\:+\:\overset{\rightarrow} {\mathrm{2c}}\:\: \\ $$$$\mathrm{Find}:\:\:\:\mid\overset{\rightarrow} {\mathrm{c}}\:\mid\:=\:? \\ $$

Question Number 191076    Answers: 1   Comments: 0

Question Number 191071    Answers: 0   Comments: 2

R

$$\:\:\underbrace{\boldsymbol{{R}}} \\ $$

Question Number 191069    Answers: 0   Comments: 1

both has same number of degrees, edges and vertices, i think the graph below are not isomorhic hos do i prove it?

$$ \\ $$$$\:{both}\:{has}\:{same}\:{number}\:{of}\:{degrees},\:{edges} \\ $$$$\:{and}\:{vertices},\:{i}\:{think}\:{the}\:{graph}\:{below}\:{are}\:{not} \\ $$$$\:{isomorhic}\:{hos}\:{do}\:{i}\:{prove}\:{it}? \\ $$$$ \\ $$

Question Number 191063    Answers: 0   Comments: 0

Question Number 191062    Answers: 1   Comments: 0

Question Number 191061    Answers: 0   Comments: 0

Question Number 191060    Answers: 1   Comments: 0

Question Number 191057    Answers: 0   Comments: 1

Question Number 191052    Answers: 1   Comments: 0

A particle Q is moving with constant velocity (−5i+3j)m/s. At time t=5sec , Q is at the same point with position vector (−i−5j)m. Find the distance of Q from the origin at time t=2sec

$${A}\:{particle}\:{Q}\:{is}\:{moving}\:{with}\:{constant} \\ $$$${velocity}\:\left(−\mathrm{5}{i}+\mathrm{3}{j}\right){m}/{s}.\:{At}\:{time}\: \\ $$$${t}=\mathrm{5}{sec}\:,\:{Q}\:{is}\:{at}\:{the}\:{same}\:{point}\:{with} \\ $$$${position}\:{vector}\:\left(−{i}−\mathrm{5}{j}\right){m}.\:{Find}\:{the} \\ $$$${distance}\:{of}\:{Q}\:{from}\:{the}\:{origin}\:{at}\: \\ $$$${time}\:{t}=\mathrm{2}{sec} \\ $$

Question Number 191049    Answers: 1   Comments: 1

Question Number 191041    Answers: 1   Comments: 2

Question Number 191030    Answers: 1   Comments: 0

  Pg 233      Pg 234      Pg 235      Pg 236      Pg 237      Pg 238      Pg 239      Pg 240      Pg 241      Pg 242   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com