Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 238

Question Number 197036    Answers: 1   Comments: 0

calcule la derive de: g(x)= arctan(((x−1)/(2x−3)))

$${calcule}\:{la}\:{derive}\:{de}: \\ $$$${g}\left({x}\right)=\:{arctan}\left(\frac{{x}−\mathrm{1}}{\mathrm{2}{x}−\mathrm{3}}\right) \\ $$

Question Number 197035    Answers: 1   Comments: 0

tan18=a then find you tan72?

$$\mathrm{tan18}=\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{then}}\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{you}}\:\mathrm{tan72}? \\ $$

Question Number 197034    Answers: 1   Comments: 0

Question Number 197032    Answers: 1   Comments: 0

(logtan3)(logtan6)(logtan9)(...(logtan87)=? plz i need

$$\left(\mathrm{logtan3}\right)\left(\mathrm{logtan6}\right)\left(\mathrm{logtan9}\right)\left(...\left(\mathrm{logtan87}\right)=?\right. \\ $$$$\boldsymbol{\mathrm{plz}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{need}} \\ $$

Question Number 197029    Answers: 1   Comments: 0

lim_(x→0) ((x^8 −sin^8 x)/x^(10) ) =?

$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{x}^{\mathrm{8}} −\mathrm{sin}\:^{\mathrm{8}} \mathrm{x}}{\mathrm{x}^{\mathrm{10}} }\:=? \\ $$

Question Number 197027    Answers: 2   Comments: 0

Question Number 197024    Answers: 3   Comments: 0

calculate Ω= ∫_0 ^( (π/2)) sin(x) (√( 1+^ sin(x)cos(x))) dx=?

$$ \\ $$$$\:\:\:\:\:\:{calculate} \\ $$$$\:\Omega=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}\left({x}\right)\:\sqrt{\:\mathrm{1}\overset{} {+}\:{sin}\left({x}\right){cos}\left({x}\right)}\:{dx}=? \\ $$$$ \\ $$

Question Number 197018    Answers: 2   Comments: 0

Question Number 197017    Answers: 0   Comments: 1

Question Number 197011    Answers: 2   Comments: 0

Question Number 197010    Answers: 1   Comments: 0

Question Number 197008    Answers: 1   Comments: 0

Question Number 197005    Answers: 1   Comments: 0

Question Number 197003    Answers: 0   Comments: 0

Question Number 197002    Answers: 0   Comments: 1

Question Number 197001    Answers: 0   Comments: 0

lim_(n→∞) ∫_(−π) ^( π) ((n!2^(2ncos(φ)) )/(Π_(k=1) ^n (2ne^(iφ) −k)))dφ

$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{−\pi} {\overset{\:\:\:\pi} {\int}}\frac{{n}!\mathrm{2}^{\mathrm{2}{ncos}\left(\phi\right)} }{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{2}{ne}^{{i}\phi} −{k}\right)}{d}\phi \\ $$

Question Number 196992    Answers: 0   Comments: 0

If A(a^2 , 2a), B((1/a^2 ), ((− 2)/a)) and S(1, 0) are three points then prove that, (1/(SA)) + (1/(SB)) = 1.

$$\mathrm{If}\:\mathrm{A}\left({a}^{\mathrm{2}} ,\:\mathrm{2}{a}\right),\:\mathrm{B}\left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} },\:\frac{−\:\mathrm{2}}{{a}}\right)\:\mathrm{and}\:\mathrm{S}\left(\mathrm{1},\:\mathrm{0}\right)\: \\ $$$$\mathrm{are}\:\mathrm{three}\:\mathrm{points}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}, \\ $$$$\frac{\mathrm{1}}{\mathrm{SA}}\:+\:\frac{\mathrm{1}}{\mathrm{SB}}\:=\:\mathrm{1}. \\ $$

Question Number 196986    Answers: 1   Comments: 0

Prove that lim_(n→+∞) n∫^( 1) _( 0) e^(−nt(1−ln(1−t))) dt=(√(2π))

$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}n}\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \mathrm{e}^{−\mathrm{nt}\left(\mathrm{1}−\mathrm{ln}\left(\mathrm{1}−\mathrm{t}\right)\right)} \mathrm{dt}=\sqrt{\mathrm{2}\pi} \\ $$

Question Number 196983    Answers: 3   Comments: 1

Question Number 196976    Answers: 1   Comments: 0

Question Number 196973    Answers: 1   Comments: 0

Question Number 196972    Answers: 1   Comments: 0

Question Number 196971    Answers: 1   Comments: 0

solve { ((3x^2 −9y=1)),((3y^2 −9x=0)) :}

$$\:\:{solve}\:\begin{cases}{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{9}{y}=\mathrm{1}}\\{\mathrm{3}{y}^{\mathrm{2}} −\mathrm{9}{x}=\mathrm{0}}\end{cases} \\ $$

Question Number 196968    Answers: 2   Comments: 0

Question Number 196965    Answers: 1   Comments: 0

Question Number 196964    Answers: 2   Comments: 0

  Pg 233      Pg 234      Pg 235      Pg 236      Pg 237      Pg 238      Pg 239      Pg 240      Pg 241      Pg 242   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com