Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 238

Question Number 196870    Answers: 1   Comments: 0

let b_i ∧ a_i >0 where i∈{1,2,3,...,n}& Σ_(i=1) ^n (b_i )=λ Prove that ((λ−(b_1 +b_2 ))/((b_1 +b_2 )))(a_1 +a_2 )+((λ−(b_1 +b_3 ))/((b_1 +b_3 )))(a_1 +a_3 )+....+((λ−(b_2 +b_3 ))/((b_2 +b_3 )))(a_2 +a_3 )+...((λ−(b_(n−1) +b_n ))/((b_(n−1) +b_n )))(a_(n−1) +a_n ) ≥(√(((n(n−1)(n−2)^2 )/4)×ΣΣ_(1≤i<j≤n) (a_i a_j )))

$${let}\:{b}_{{i}} \wedge\:{a}_{{i}} >\mathrm{0}\:{where}\:{i}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},...,{n}\right\}\&\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({b}_{{i}} \right)=\lambda\:{Prove}\:{that} \\ $$$$\frac{\lambda−\left({b}_{\mathrm{1}} +{b}_{\mathrm{2}} \right)}{\left({b}_{\mathrm{1}} +{b}_{\mathrm{2}} \right)}\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} \right)+\frac{\lambda−\left({b}_{\mathrm{1}} +{b}_{\mathrm{3}} \right)}{\left({b}_{\mathrm{1}} +{b}_{\mathrm{3}} \right)}\left({a}_{\mathrm{1}} +{a}_{\mathrm{3}} \right)+....+\frac{\lambda−\left({b}_{\mathrm{2}} +{b}_{\mathrm{3}} \right)}{\left({b}_{\mathrm{2}} +{b}_{\mathrm{3}} \right)}\left({a}_{\mathrm{2}} +{a}_{\mathrm{3}} \right)+...\frac{\lambda−\left({b}_{{n}−\mathrm{1}} +{b}_{{n}} \right)}{\left({b}_{{n}−\mathrm{1}} +{b}_{{n}} \right)}\left({a}_{{n}−\mathrm{1}} +{a}_{{n}} \right) \\ $$$$\geqslant\sqrt{\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}}×\underset{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} {\Sigma\Sigma}\left({a}_{{i}} {a}_{{j}} \right)} \\ $$$$ \\ $$

Question Number 196861    Answers: 0   Comments: 0

Question Number 196860    Answers: 0   Comments: 0

Question Number 196852    Answers: 1   Comments: 0

Question Number 196850    Answers: 0   Comments: 0

Question Number 196848    Answers: 0   Comments: 1

Question Number 196846    Answers: 1   Comments: 0

2xy′′ + (1−4x)y′ + (2x−1)y = y

$$\mathrm{2}{xy}''\:+\:\left(\mathrm{1}−\mathrm{4}{x}\right){y}'\:+\:\left(\mathrm{2}{x}−\mathrm{1}\right){y}\:=\:{y} \\ $$

Question Number 196845    Answers: 0   Comments: 0

Question Number 196843    Answers: 1   Comments: 0

Question Number 196832    Answers: 0   Comments: 1

∫xe^(1/(2x)) dx=?

$$\int{x}\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{2}{x}}} {dx}=? \\ $$

Question Number 196829    Answers: 1   Comments: 0

Question Number 196828    Answers: 2   Comments: 0

Question Number 196817    Answers: 1   Comments: 0

Question Number 196816    Answers: 1   Comments: 0

Question Number 196815    Answers: 1   Comments: 0

!6×(((!5+9!!!!!+7!!!−16))^(1/4) /(!10))=?

$$!\mathrm{6}×\frac{\sqrt[{\mathrm{4}}]{!\mathrm{5}+\mathrm{9}!!!!!+\mathrm{7}!!!−\mathrm{16}}}{!\mathrm{10}}=? \\ $$

Question Number 196836    Answers: 1   Comments: 1

Question Number 196806    Answers: 2   Comments: 0

lim_(x→0) ( ((((√(2x−2x^2 )))^(1/3) − x)/(2x+ ((1−((x^3 +1))^(1/3) ))^(1/3) )) ) .

$$\:\:\:\: \\ $$$$ \underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\:\frac{\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{2x}−\mathrm{2x}^{\mathrm{2}} }}\:−\:\mathrm{x}}{\mathrm{2x}+\:\sqrt[{\mathrm{3}}]{\mathrm{1}−\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}}}\:\right)\:. \\ $$

Question Number 196793    Answers: 1   Comments: 0

Question Number 196761    Answers: 0   Comments: 0

A tightly wound toroidal coil with a square cross section and an inner radius of 15cm has 500 turns of copper wire and carries an insulated filamentary ccurrent of 0.800A. what is the strength of the magnetic field inside the toroid at the inner radius?

$$\mathrm{A}\:\mathrm{tightly}\:\mathrm{wound}\:\mathrm{toroidal}\:\mathrm{coil}\:\mathrm{with}\:\mathrm{a}\:\mathrm{square} \\ $$$$\mathrm{cross}\:\mathrm{section}\:\mathrm{and}\:\mathrm{an}\:\mathrm{inner}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{15cm}\:\mathrm{has} \\ $$$$\mathrm{500}\:\mathrm{turns}\:\mathrm{of}\:\mathrm{copper}\:\mathrm{wire}\:\mathrm{and}\:\mathrm{carries}\:\mathrm{an}\:\mathrm{insulated} \\ $$$$\mathrm{filamentary}\:\mathrm{ccurrent}\:\mathrm{of}\:\mathrm{0}.\mathrm{800A}.\:\mathrm{what}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{strength}\:\mathrm{of}\:\mathrm{the}\:\mathrm{magnetic}\:\mathrm{field}\:\mathrm{inside}\:\mathrm{the} \\ $$$$\mathrm{toroid}\:\mathrm{at}\:\mathrm{the}\:\mathrm{inner}\:\mathrm{radius}? \\ $$

Question Number 196760    Answers: 0   Comments: 0

f: R→R f(f(x+y))=f(x)+f(y) Find f(x)=¿

$${f}:\:{R}\rightarrow{R} \\ $$$${f}\left({f}\left({x}+{y}\right)\right)={f}\left({x}\right)+{f}\left({y}\right) \\ $$$${Find}\:{f}\left({x}\right)=¿ \\ $$

Question Number 196758    Answers: 1   Comments: 0

Question Number 196757    Answers: 1   Comments: 0

Question Number 196756    Answers: 0   Comments: 0

Question Number 196755    Answers: 0   Comments: 0

Question Number 196738    Answers: 0   Comments: 13

Question Number 196735    Answers: 2   Comments: 0

  Pg 233      Pg 234      Pg 235      Pg 236      Pg 237      Pg 238      Pg 239      Pg 240      Pg 241      Pg 242   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com