Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 238

Question Number 196793    Answers: 1   Comments: 0

Question Number 196761    Answers: 0   Comments: 0

A tightly wound toroidal coil with a square cross section and an inner radius of 15cm has 500 turns of copper wire and carries an insulated filamentary ccurrent of 0.800A. what is the strength of the magnetic field inside the toroid at the inner radius?

$$\mathrm{A}\:\mathrm{tightly}\:\mathrm{wound}\:\mathrm{toroidal}\:\mathrm{coil}\:\mathrm{with}\:\mathrm{a}\:\mathrm{square} \\ $$$$\mathrm{cross}\:\mathrm{section}\:\mathrm{and}\:\mathrm{an}\:\mathrm{inner}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{15cm}\:\mathrm{has} \\ $$$$\mathrm{500}\:\mathrm{turns}\:\mathrm{of}\:\mathrm{copper}\:\mathrm{wire}\:\mathrm{and}\:\mathrm{carries}\:\mathrm{an}\:\mathrm{insulated} \\ $$$$\mathrm{filamentary}\:\mathrm{ccurrent}\:\mathrm{of}\:\mathrm{0}.\mathrm{800A}.\:\mathrm{what}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{strength}\:\mathrm{of}\:\mathrm{the}\:\mathrm{magnetic}\:\mathrm{field}\:\mathrm{inside}\:\mathrm{the} \\ $$$$\mathrm{toroid}\:\mathrm{at}\:\mathrm{the}\:\mathrm{inner}\:\mathrm{radius}? \\ $$

Question Number 196760    Answers: 0   Comments: 0

f: R→R f(f(x+y))=f(x)+f(y) Find f(x)=¿

$${f}:\:{R}\rightarrow{R} \\ $$$${f}\left({f}\left({x}+{y}\right)\right)={f}\left({x}\right)+{f}\left({y}\right) \\ $$$${Find}\:{f}\left({x}\right)=¿ \\ $$

Question Number 196758    Answers: 1   Comments: 0

Question Number 196757    Answers: 1   Comments: 0

Question Number 196756    Answers: 0   Comments: 0

Question Number 196755    Answers: 0   Comments: 0

Question Number 196738    Answers: 0   Comments: 13

Question Number 196735    Answers: 2   Comments: 0

Question Number 196734    Answers: 1   Comments: 0

Question Number 196728    Answers: 1   Comments: 1

Question Number 196730    Answers: 0   Comments: 0

Question Number 196725    Answers: 1   Comments: 0

Question Number 196723    Answers: 2   Comments: 0

prove that the curve (√((x−1)^2 +y^2 ))+(√((x+1)^2 +y^2 ))=4 is an ellipse and find its semi major axis and semi minor axis.

$${prove}\:{that}\:{the}\:{curve}\: \\ $$$$\sqrt{\left({x}−\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }+\sqrt{\left({x}+\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{4}\: \\ $$$${is}\:{an}\:{ellipse}\:{and}\:{find}\:{its}\:{semi} \\ $$$${major}\:{axis}\:{and}\:{semi}\:{minor}\:{axis}. \\ $$

Question Number 196714    Answers: 3   Comments: 0

Question Number 196710    Answers: 0   Comments: 1

Give the function: f(x)=(x−1)(x−2)^2 (x−3)^3 (x−4)^4 ...(x−2022)^(2022) Find extremes of f(x)¿

$${Give}\:{the}\:{function}: \\ $$$${f}\left({x}\right)=\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)^{\mathrm{2}} \left({x}−\mathrm{3}\right)^{\mathrm{3}} \left({x}−\mathrm{4}\right)^{\mathrm{4}} ...\left({x}−\mathrm{2022}\right)^{\mathrm{2022}} \\ $$$${Find}\:{extremes}\:{of}\:{f}\left({x}\right)¿ \\ $$

Question Number 196704    Answers: 0   Comments: 0

Question Number 196697    Answers: 1   Comments: 3

Question Number 196693    Answers: 0   Comments: 0

And If I want to study an abstract algebra what book would you recommend and are there any prequesties

$$ \\ $$And If I want to study an abstract algebra what book would you recommend and are there any prequesties

Question Number 196691    Answers: 0   Comments: 2

Can someone recommend Calculus book , But I prefer if the book isn't boring and have a real challenging problems not a direct consequence of what is illustrated

$$ \\ $$Can someone recommend Calculus book , But I prefer if the book isn't boring and have a real challenging problems not a direct consequence of what is illustrated

Question Number 196690    Answers: 1   Comments: 0

If (ax)^(loga) = (bx)^(logb) then prove that x = (1/(ab)) .

$$\mathrm{If}\:\left({ax}\right)^{\mathrm{log}{a}} \:=\:\left({bx}\right)^{\mathrm{log}{b}} \:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$${x}\:=\:\frac{\mathrm{1}}{{ab}}\:. \\ $$

Question Number 196708    Answers: 0   Comments: 5

Δt=20C^(° ) change to k? plz help me

$$\Delta\mathrm{t}=\mathrm{20C}^{°\:} \mathrm{change}\:\mathrm{to}\:\mathrm{k}? \\ $$$$\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$

Question Number 196705    Answers: 0   Comments: 0

lim_(n→∞) ∫_(−∞) ^( ∞) ((n!2^(2ncos(φ)) )/(Π_(k=1) ^∞ (2ne^(iφ) −k)))dφ

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{−\infty} {\overset{\:\:\:\:\infty} {\int}}\frac{{n}!\mathrm{2}^{\mathrm{2}{ncos}\left(\phi\right)} }{\underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{2}{ne}^{{i}\phi} −{k}\right)}{d}\phi \\ $$

Question Number 196688    Answers: 1   Comments: 0

Question Number 196683    Answers: 2   Comments: 0

If y = ((e^x − e^(− x) )/(e^x + e^(− x) )) then show that x = (1/2)log_e (((1 + y)/(1 − y))).

$$\mathrm{If}\:{y}\:=\:\frac{{e}^{{x}} \:−\:{e}^{−\:{x}} }{{e}^{{x}} \:+\:{e}^{−\:{x}} }\:\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$${x}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{log}_{{e}} \left(\frac{\mathrm{1}\:+\:{y}}{\mathrm{1}\:−\:{y}}\right). \\ $$

Question Number 196682    Answers: 1   Comments: 0

  Pg 233      Pg 234      Pg 235      Pg 236      Pg 237      Pg 238      Pg 239      Pg 240      Pg 241      Pg 242   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com