Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 238
Question Number 197036 Answers: 1 Comments: 0
$${calcule}\:{la}\:{derive}\:{de}: \\ $$$${g}\left({x}\right)=\:{arctan}\left(\frac{{x}−\mathrm{1}}{\mathrm{2}{x}−\mathrm{3}}\right) \\ $$
Question Number 197035 Answers: 1 Comments: 0
$$\mathrm{tan18}=\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{then}}\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{you}}\:\mathrm{tan72}? \\ $$
Question Number 197034 Answers: 1 Comments: 0
Question Number 197032 Answers: 1 Comments: 0
$$\left(\mathrm{logtan3}\right)\left(\mathrm{logtan6}\right)\left(\mathrm{logtan9}\right)\left(...\left(\mathrm{logtan87}\right)=?\right. \\ $$$$\boldsymbol{\mathrm{plz}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{need}} \\ $$
Question Number 197029 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{x}^{\mathrm{8}} −\mathrm{sin}\:^{\mathrm{8}} \mathrm{x}}{\mathrm{x}^{\mathrm{10}} }\:=? \\ $$
Question Number 197027 Answers: 2 Comments: 0
Question Number 197024 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:{calculate} \\ $$$$\:\Omega=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}\left({x}\right)\:\sqrt{\:\mathrm{1}\overset{} {+}\:{sin}\left({x}\right){cos}\left({x}\right)}\:{dx}=? \\ $$$$ \\ $$
Question Number 197018 Answers: 2 Comments: 0
Question Number 197017 Answers: 0 Comments: 1
Question Number 197011 Answers: 2 Comments: 0
Question Number 197010 Answers: 1 Comments: 0
Question Number 197008 Answers: 1 Comments: 0
Question Number 197005 Answers: 1 Comments: 0
Question Number 197003 Answers: 0 Comments: 0
Question Number 197002 Answers: 0 Comments: 1
Question Number 197001 Answers: 0 Comments: 0
$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{−\pi} {\overset{\:\:\:\pi} {\int}}\frac{{n}!\mathrm{2}^{\mathrm{2}{ncos}\left(\phi\right)} }{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{2}{ne}^{{i}\phi} −{k}\right)}{d}\phi \\ $$
Question Number 196992 Answers: 0 Comments: 0
$$\mathrm{If}\:\mathrm{A}\left({a}^{\mathrm{2}} ,\:\mathrm{2}{a}\right),\:\mathrm{B}\left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} },\:\frac{−\:\mathrm{2}}{{a}}\right)\:\mathrm{and}\:\mathrm{S}\left(\mathrm{1},\:\mathrm{0}\right)\: \\ $$$$\mathrm{are}\:\mathrm{three}\:\mathrm{points}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}, \\ $$$$\frac{\mathrm{1}}{\mathrm{SA}}\:+\:\frac{\mathrm{1}}{\mathrm{SB}}\:=\:\mathrm{1}. \\ $$
Question Number 196986 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}n}\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \mathrm{e}^{−\mathrm{nt}\left(\mathrm{1}−\mathrm{ln}\left(\mathrm{1}−\mathrm{t}\right)\right)} \mathrm{dt}=\sqrt{\mathrm{2}\pi} \\ $$
Question Number 196983 Answers: 3 Comments: 1
Question Number 196976 Answers: 1 Comments: 0
Question Number 196973 Answers: 1 Comments: 0
Question Number 196972 Answers: 1 Comments: 0
Question Number 196971 Answers: 1 Comments: 0
$$\:\:{solve}\:\begin{cases}{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{9}{y}=\mathrm{1}}\\{\mathrm{3}{y}^{\mathrm{2}} −\mathrm{9}{x}=\mathrm{0}}\end{cases} \\ $$
Question Number 196968 Answers: 2 Comments: 0
Question Number 196965 Answers: 1 Comments: 0
Question Number 196964 Answers: 2 Comments: 0
Pg 233 Pg 234 Pg 235 Pg 236 Pg 237 Pg 238 Pg 239 Pg 240 Pg 241 Pg 242
Terms of Service
Privacy Policy
Contact: info@tinkutara.com