Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 238

Question Number 192346    Answers: 1   Comments: 0

Question Number 192350    Answers: 2   Comments: 0

Question Number 192349    Answers: 1   Comments: 0

Question Number 192348    Answers: 2   Comments: 0

Question Number 192299    Answers: 2   Comments: 0

Question Number 192297    Answers: 2   Comments: 0

Question Number 192288    Answers: 1   Comments: 0

Question Number 192289    Answers: 1   Comments: 0

∫_(−e) ^e ((sin x)/(sec^2 x+1)) dx =?

$$\:\:\:\:\:\:\:\:\underset{−\mathrm{e}} {\overset{\mathrm{e}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}}\:\mathrm{dx}\:=? \\ $$

Question Number 192286    Answers: 1   Comments: 0

Determine whether f(x)=(1/x)(2x^2 +1)is: 1.A function 2. injective 3. surjective 4. bijective

$$\mathrm{Determine}\:\mathrm{whether}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{x}}\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{1}\right)\mathrm{is}: \\ $$$$\mathrm{1}.\mathrm{A}\:\mathrm{function} \\ $$$$\mathrm{2}.\:\mathrm{injective} \\ $$$$\mathrm{3}.\:\mathrm{surjective} \\ $$$$\mathrm{4}.\:\mathrm{bijective} \\ $$

Question Number 192282    Answers: 1   Comments: 0

find the value of tan (π/9) + 4sin (π/9) = ?

$$\:\:\:{find}\:{the}\:{value}\:{of} \\ $$$$\:\:\:\:\mathrm{tan}\:\frac{\pi}{\mathrm{9}}\:+\:\mathrm{4sin}\:\frac{\pi}{\mathrm{9}}\:=\:? \\ $$

Question Number 192281    Answers: 0   Comments: 0

help me proving this f:R→R dan c∈R lim_(x→c) f(x)=L ⇔ lim_(c→0) f(x+c)=L

$$ \\ $$$$ \\ $$$$\:{help}\:{me}\:{proving}\:{this} \\ $$$$\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:{dan}\:{c}\in\mathbb{R} \\ $$$$\:\underset{{x}\rightarrow{c}} {\mathrm{lim}}\:{f}\left({x}\right)={L}\:\Leftrightarrow\:\underset{{c}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}+{c}\right)={L} \\ $$$$\: \\ $$$$ \\ $$

Question Number 192280    Answers: 2   Comments: 0

Question Number 192278    Answers: 1   Comments: 2

S=arctan((2/1^2 ))+artan((2/2^2 ))+........

$${S}={arctan}\left(\frac{\mathrm{2}}{\mathrm{1}^{\mathrm{2}} }\right)+{artan}\left(\frac{\mathrm{2}}{\mathrm{2}^{\mathrm{2}} }\right)+........ \\ $$

Question Number 192277    Answers: 1   Comments: 0

Let a_1 , a_2 , a_3 ,..., a_n be real numbers such that: (√a_1 ) + (√(a_2 −1 )) +(√(a_3 −2 )) +...+(√(a_n −(n−1) ))=(1/2)(a_1 +a_2 +a_3 +...+a_n )−((n(n−3))/4) Then find the value of [ Σ_(i=1) ^(100) (a_i )].

$$ \\ $$$${Let}\:{a}_{\mathrm{1}} ,\:{a}_{\mathrm{2}} ,\:{a}_{\mathrm{3}} ,...,\:{a}_{{n}} \:{be}\:{real}\:{numbers}\:{such}\:{that}: \\ $$$$\sqrt{{a}_{\mathrm{1}} }\:+\:\sqrt{{a}_{\mathrm{2}} −\mathrm{1}\:\:}\:+\sqrt{{a}_{\mathrm{3}} −\mathrm{2}\:}\:+...+\sqrt{{a}_{{n}} −\left({n}−\mathrm{1}\right)\:}=\frac{\mathrm{1}}{\mathrm{2}}\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} +...+{a}_{{n}} \right)−\frac{{n}\left({n}−\mathrm{3}\right)}{\mathrm{4}} \\ $$$$\boldsymbol{{Then}}\:\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\left[\:\underset{\boldsymbol{{i}}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\left(\boldsymbol{{a}}_{\boldsymbol{{i}}} \right)\right]. \\ $$

Question Number 192276    Answers: 1   Comments: 0

lim_(n→∞) (Σ_(k=0) ^n [((k(n−k)!+(k+1))/((k+1)!(n−k)!))])

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left[\frac{{k}\left({n}−{k}\right)!+\left({k}+\mathrm{1}\right)}{\left({k}+\mathrm{1}\right)!\left({n}−{k}\right)!}\right]\right) \\ $$

Question Number 192275    Answers: 2   Comments: 0

2009^3^(2016n+2013) +2010^2^(2016n+2013) ≡x mod(11) where n is any integer ≥0

$$\mathrm{2009}^{\mathrm{3}^{\mathrm{2016}{n}+\mathrm{2013}} } +\mathrm{2010}^{\mathrm{2}^{\mathrm{2016}{n}+\mathrm{2013}} } \equiv{x}\:{mod}\left(\mathrm{11}\right)\:{where}\:{n}\:{is}\:{any}\:{integer}\:\geq\mathrm{0} \\ $$$$ \\ $$

Question Number 192274    Answers: 1   Comments: 0

prove that lim_(n→∞) (Σ_(k=1) ^n (n^2 /( (√(n^6 +k)))))=1

$${prove}\:{that}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{n}^{\mathrm{2}} }{\:\sqrt{{n}^{\mathrm{6}} +{k}}}\right)=\mathrm{1} \\ $$$$ \\ $$$$ \\ $$

Question Number 192270    Answers: 2   Comments: 0

prove that sin 50° + sin 10° = cos 20°

$$\:{prove}\:{that} \\ $$$$\:\:\mathrm{sin}\:\mathrm{50}°\:+\:\mathrm{sin}\:\mathrm{10}°\:=\:\mathrm{cos}\:\mathrm{20}° \\ $$

Question Number 192266    Answers: 1   Comments: 0

Question Number 192265    Answers: 1   Comments: 0

Question Number 192261    Answers: 0   Comments: 0

f(x)=⌊ (( 1)/(1+(√x))) ⌋ is derivable on ( 0 , k ). find the value of k_( max) =?

$$ \\ $$$$\:\:\:{f}\left({x}\right)=\lfloor\:\frac{\:\mathrm{1}}{\mathrm{1}+\sqrt{{x}}}\:\rfloor\:{is}\:{derivable}\: \\ $$$$\:\:{on}\:\:\left(\:\mathrm{0}\:,\:\:{k}\:\right).\:{find}\:{the}\:{value}\:{of} \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{k}_{\:{max}} =?\: \\ $$$$\:\:\: \\ $$

Question Number 192257    Answers: 0   Comments: 3

A bullet with a velocity of 30 ms^(−1) after pentrating a 6 cm whole tree the velocity is reduced by one−third and then the bullet travels for 1s more. Will the bullet penetratee th tree? Analyze mathematically.

$$ \\ $$$$\mathrm{A}\:\mathrm{bullet}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{30}\:\mathrm{ms}^{−\mathrm{1}} \:\mathrm{after} \\ $$$$\mathrm{pentrating}\:\mathrm{a}\:\mathrm{6}\:{cm}\:\mathrm{whole}\:\mathrm{tree}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{is}\: \\ $$$$\mathrm{reduced}\:\mathrm{by}\:\mathrm{one}−\mathrm{third}\:\mathrm{and}\:\mathrm{then}\:\mathrm{the}\:\mathrm{bullet} \\ $$$$\mathrm{travel}{s}\:\mathrm{for}\:\mathrm{1s}\:\mathrm{more}.\: \\ $$$$ \\ $$$$ \\ $$$${Will}\:\mathrm{the}\:\mathrm{bullet}\:\mathrm{penetratee} \\ $$$$\mathrm{th}\:\mathrm{tree}?\:\mathrm{Analyze}\:\mathrm{mathematically}. \\ $$

Question Number 192256    Answers: 0   Comments: 0

given f(x)=cx(x−20) and A=(2,5) find the nearst point to A on the graph

$$\mathrm{given}\:{f}\left({x}\right)={cx}\left({x}−\mathrm{20}\right)\:\mathrm{and}\:{A}=\left(\mathrm{2},\mathrm{5}\right) \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{nearst}\:\mathrm{point}\:\mathrm{to}\:{A}\:\mathrm{on}\:\mathrm{the}\:\mathrm{graph} \\ $$

Question Number 192255    Answers: 0   Comments: 0

If θ be the acute angle between two regression line in the case of two variables x and y Show that tan θ=((1−r)/r).((σ_x σ_y )/(σ_x ^2 +σ_y ^2 )) where r,σ_x ,σ_y have their usual meanings. Explain the significance where r=0 and r=±r 1/2/2024

$${If}\:\theta\:{be}\:{the}\:{acute}\:{angle}\:{between}\:{two}\:{regression} \\ $$$${line}\:{in}\:{the}\:{case}\:{of}\:{two}\:{variables}\:{x}\:{and}\:{y} \\ $$$${Show}\:{that} \\ $$$$\:\:\mathrm{tan}\:\theta=\frac{\mathrm{1}−{r}}{{r}}.\frac{\sigma_{{x}} \sigma_{{y}} }{\sigma_{{x}} ^{\mathrm{2}} +\sigma_{{y}} ^{\mathrm{2}} }\:\:\: \\ $$$${where}\:\:{r},\sigma_{{x}} ,\sigma_{{y}} \:\:{have}\:{their}\:{usual}\:{meanings}. \\ $$$${Explain}\:{the}\:{significance}\:{where}\:{r}=\mathrm{0}\:\:\:{and}\:{r}=\pm{r} \\ $$$$\mathrm{1}/\mathrm{2}/\mathrm{2024} \\ $$

Question Number 192254    Answers: 0   Comments: 0

Establish the formular σ_(x−y) ^2 =σ_x ^2 +σ_y ^2 −2rσ_x σ_y where by r is the correlation coefficient between x and y 1/2/2024

$${Establish}\:{the}\:{formular}\:\: \\ $$$$\sigma_{{x}−{y}} ^{\mathrm{2}} =\sigma_{{x}} ^{\mathrm{2}} +\sigma_{{y}} ^{\mathrm{2}} −\mathrm{2}{r}\sigma_{{x}} \sigma_{{y}} \:\: \\ $$$${where}\:{by}\:{r}\:{is}\:{the}\:{correlation} \\ $$$${coefficient}\:{between}\:{x}\:{and}\:{y} \\ $$$$\mathrm{1}/\mathrm{2}/\mathrm{2024} \\ $$

Question Number 192248    Answers: 0   Comments: 1

  Pg 233      Pg 234      Pg 235      Pg 236      Pg 237      Pg 238      Pg 239      Pg 240      Pg 241      Pg 242   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com