Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 235

Question Number 195252    Answers: 1   Comments: 0

∫_(spillover) (dx/( (√e^(5x) ) (√((e^(2x) +e^(−2x) )^3 ))))

$$\int_{\boldsymbol{{spillover}}} \:\:\:\:\:\:\frac{{dx}}{\:\sqrt{{e}^{\mathrm{5}{x}} }\:\sqrt{\left({e}^{\mathrm{2}{x}} +{e}^{−\mathrm{2}{x}} \right)^{\mathrm{3}} }} \\ $$

Question Number 195251    Answers: 0   Comments: 1

If x^([16(log _5 x)^3 −68log _5 x]) =5^(−16) then Find the the product of x

$${If}\:\:{x}^{\left[\mathrm{16}\left(\mathrm{log}\:_{\mathrm{5}} {x}\right)^{\mathrm{3}} −\mathrm{68log}\:_{\mathrm{5}} {x}\right]} =\mathrm{5}^{−\mathrm{16}} \: \\ $$$$\:{then}\:{Find}\:{the}\:{the}\:{product}\:{of}\:{x} \\ $$$$ \\ $$

Question Number 195248    Answers: 0   Comments: 3

Question Number 195232    Answers: 0   Comments: 0

a, b, c>0, a+b+c≥1. Find max Σ_(cyc) ((a−bc)/(a+bc)).

$${a},\:{b},\:{c}>\mathrm{0},\:\:{a}+{b}+{c}\geqslant\mathrm{1}.\:\mathrm{Find} \\ $$$$\mathrm{max}\:\underset{\mathrm{cyc}} {\sum}\:\frac{{a}−{bc}}{{a}+{bc}}. \\ $$

Question Number 195231    Answers: 1   Comments: 0

determinant ((( )))

$$\:\:\:\:\:\begin{array}{|c|}{\:\cancel{\underline{\underbrace{ }}}}\\\hline\end{array} \\ $$

Question Number 195229    Answers: 0   Comments: 9

below equestion is show elips and hypharabollah (x^2 /(cos3))+(y^2 /(sin3))=1

$${below}\:{equestion}\:{is}\:{show}\:\:{elips}\:{and} \\ $$$${hypharabollah} \\ $$$$\frac{{x}^{\mathrm{2}} }{{cos}\mathrm{3}}+\frac{{y}^{\mathrm{2}} }{{sin}\mathrm{3}}=\mathrm{1} \\ $$

Question Number 195227    Answers: 0   Comments: 0

α_1 ^3 [((Π_(i=2) ^n (x−α_i ))/(Π_(i=2) ^n (α_1 −α_i )))]+Σ_(j=2) ^n (α_j ^3 [((Π_(i=1) ^(j−1) (x−α_i )Π_(i=j+1) ^n (x−α_j ))/(Π_(i=1) ^(j−1) (α_j −α_i )Π_(i=j+1) ^n (α_j −α_i )))]+α_n ^3 [((Π_(i=1) ^(n−1) (x−α_i ))/(Π_(i=1) ^(n−1) (α_n −α_i )))]−x^3 =0 solve for x . [ where n≥5 ]

$$ \\ $$$$\alpha_{\mathrm{1}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{2}} {\overset{{n}} {\prod}}\left({x}−\alpha_{{i}} \right)}{\underset{{i}=\mathrm{2}} {\overset{{n}} {\prod}}\left(\alpha_{\mathrm{1}} −\alpha_{{i}} \right)}\right]+\underset{{j}=\mathrm{2}} {\overset{{n}} {\sum}}\left(\alpha_{{j}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{1}} {\overset{{j}−\mathrm{1}} {\prod}}\left({x}−\alpha_{{i}} \right)\underset{{i}={j}+\mathrm{1}} {\overset{{n}} {\prod}}\left({x}−\alpha_{{j}} \right)}{\underset{{i}=\mathrm{1}} {\overset{{j}−\mathrm{1}} {\prod}}\left(\alpha_{{j}} −\alpha_{{i}} \right)\underset{{i}={j}+\mathrm{1}} {\overset{{n}} {\prod}}\left(\alpha_{{j}} −\alpha_{{i}} \right)}\right]+\alpha_{{n}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left({x}−\alpha_{{i}} \right)}{\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\alpha_{{n}} −\alpha_{{i}} \right)}\right]−{x}^{\mathrm{3}} =\mathrm{0}\right. \\ $$$${solve}\:{for}\:{x}\:.\:\:\:\:\:\:\:\:\:\:\:\:\left[\:{where}\:{n}\geqslant\mathrm{5}\:\right] \\ $$

Question Number 195224    Answers: 2   Comments: 0

∫_1 ^e 0 dx = ??

$$\:\:\:\:\:\:\:\int_{\mathrm{1}} ^{\mathrm{e}} \mathrm{0}\:{dx}\:=\:?? \\ $$

Question Number 195208    Answers: 4   Comments: 0

Question Number 195202    Answers: 0   Comments: 0

Question Number 195203    Answers: 1   Comments: 0

Calculer ∫^( +∞) _( 0) (dt/((e^t −e^(−t) )^2 +a^2 ))

$$\mathrm{Calculer}\:\underset{\:\mathrm{0}} {\int}^{\:+\infty} \frac{\mathrm{dt}}{\left(\mathrm{e}^{\mathrm{t}} −\mathrm{e}^{−\mathrm{t}} \right)^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} } \\ $$

Question Number 195195    Answers: 1   Comments: 1

find the limit: _(x→a ) ^(lim) (x^(1/3) /x^(1/2) ) − (a^(1/3) /a^(1/2) )

$$\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{limit}: \\ $$$$\:\underset{\mathrm{x}\rightarrow\mathrm{a}\:} {\overset{\mathrm{lim}} {\:}}\:\:\:\frac{\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{2}}} }\:−\:\frac{\boldsymbol{\mathrm{a}}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\boldsymbol{\mathrm{a}}^{\frac{\mathrm{1}}{\mathrm{2}}} } \\ $$

Question Number 195194    Answers: 2   Comments: 0

Question Number 195192    Answers: 1   Comments: 0

lim_(x→∞) (sinx+(π/2))^x =?

$$ \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{sinx}+\frac{\pi}{\mathrm{2}}\right)^{\mathrm{x}} =? \\ $$

Question Number 195206    Answers: 1   Comments: 0

Question Number 195185    Answers: 0   Comments: 0

1/ Montrer que ∫^( +∞) _( 0) (((1−x^2 )^(2p−1) )/(1−x^(4p) ))dx=((2^(2p−3) /p))π[1+2Σ_(k=1) ^(p−1) cos^(2p−1) (((kπ)/(2p)))] 2/ En de^ duire ∫^( 1) _( 0) (((1−x^2 )^(2p−1) )/(1−x^(4p) ))dx

$$\mathrm{1}/\:\:\mathrm{Montrer}\:\mathrm{que}\:\underset{\:\mathrm{0}} {\int}^{\:+\infty} \:\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}{p}−\mathrm{1}} }{\mathrm{1}−{x}^{\mathrm{4}{p}} }{dx}=\left(\frac{\mathrm{2}^{\mathrm{2}{p}−\mathrm{3}} }{{p}}\right)\pi\left[\mathrm{1}+\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{{p}−\mathrm{1}} {\sum}}{cos}^{\mathrm{2}{p}−\mathrm{1}} \left(\frac{{k}\pi}{\mathrm{2}{p}}\right)\right] \\ $$$$\mathrm{2}/\:\:\:\:\mathrm{En}\:\mathrm{d}\acute {\mathrm{e}duire}\:\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}{p}−\mathrm{1}} }{\mathrm{1}−{x}^{\mathrm{4}{p}} }{dx} \\ $$

Question Number 195180    Answers: 1   Comments: 0

1. f(x)= { ((sinx , (π/2)<x≤2π)),((cosx , 0≤x≤(π/2))) :} then find the f^′ ((π/2)) =? 2. f(x)= { ((sinx , (π/2)<x≤2π)),((cosx , 0≤x≤(π/2))) :} then find the f′(2π) =?

$$ \\ $$$$\mathrm{1}.\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}^{'} \left(\frac{\pi}{\mathrm{2}}\right)\:=? \\ $$$$\mathrm{2}.\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}'\left(\mathrm{2}\pi\right)\:=? \\ $$$$ \\ $$

Question Number 195178    Answers: 2   Comments: 0

Question Number 195175    Answers: 1   Comments: 0

Question Number 195171    Answers: 0   Comments: 0

Question Number 195170    Answers: 2   Comments: 0

f(x)= { ((x^7 +2x+1 ;x≥2)),((x^2 +7x+4 ;x<1)) :} f^′ (1)=?

$${f}\left({x}\right)=\begin{cases}{{x}^{\mathrm{7}} +\mathrm{2}{x}+\mathrm{1}\:\:\:\:\:\:\:;{x}\geqslant\mathrm{2}}\\{{x}^{\mathrm{2}} +\mathrm{7}{x}+\mathrm{4}\:\:\:\:\:\:\:\:;{x}<\mathrm{1}}\end{cases} \\ $$$${f}^{'} \left(\mathrm{1}\right)=? \\ $$

Question Number 195165    Answers: 0   Comments: 1

If r_1 ^(→) =(sinθ,cosθ,θ), r_2 ^(→) =(cosθ,−sinθ,−3) and r_3 ^(→) =(2,3,−1), find (d/dθ){r_1 ^(→) ×(r_2 ^(→) ×r_3 ^(→) )} at θ=0

$$\mathrm{If}\:\overset{\rightarrow} {\mathrm{r}_{\mathrm{1}} }=\left(\mathrm{sin}\theta,\mathrm{cos}\theta,\theta\right),\:\overset{\rightarrow} {\mathrm{r}_{\mathrm{2}} }=\left(\mathrm{cos}\theta,−\mathrm{sin}\theta,−\mathrm{3}\right)\:\mathrm{and} \\ $$$$\:\overset{\rightarrow} {\mathrm{r}_{\mathrm{3}} }=\left(\mathrm{2},\mathrm{3},−\mathrm{1}\right),\:\mathrm{find}\:\frac{\mathrm{d}}{\mathrm{d}\theta}\left\{\overset{\rightarrow} {\mathrm{r}_{\mathrm{1}} }×\left(\overset{\rightarrow} {\mathrm{r}_{\mathrm{2}} }×\overset{\rightarrow} {\mathrm{r}_{\mathrm{3}} }\right)\right\}\:\mathrm{at}\:\theta=\mathrm{0} \\ $$

Question Number 195157    Answers: 1   Comments: 0

Prove that (x^3 /(2sin^2 ((1/2)arctan (x/y))))+(y^3 /(2cos^2 ((1/2)arctan (y/x))))=(x+y)(x^2 +y^2 )

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\frac{{x}^{\mathrm{3}} }{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\:\frac{{x}}{{y}}\right)}+\frac{{y}^{\mathrm{3}} }{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\:\frac{{y}}{{x}}\right)}=\left({x}+{y}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$

Question Number 195154    Answers: 1   Comments: 0

lim_(x→2π) (((tan (π cos x))/(x^2 (x−5π)+4π^2 (2x−π))))=?

$$\:\:\:\:\underset{{x}\rightarrow\mathrm{2}\pi} {\mathrm{lim}}\:\left(\frac{\mathrm{tan}\:\left(\pi\:\mathrm{cos}\:{x}\right)}{{x}^{\mathrm{2}} \left({x}−\mathrm{5}\pi\right)+\mathrm{4}\pi^{\mathrm{2}} \left(\mathrm{2}{x}−\pi\right)}\right)=? \\ $$$$ \\ $$

Question Number 195148    Answers: 3   Comments: 0

determinant (((lim_(x→0) ((1+x sin x−cos x)/(sin^2 x))=?)))

$$\:\:\begin{array}{|c|}{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}+\mathrm{x}\:\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}=?}\\\hline\end{array} \\ $$

Question Number 195137    Answers: 1   Comments: 0

f(x)=arctan(((4sinx)/(3+5cosx))) then f^′ ((π/3))=?

$${f}\left({x}\right)={arctan}\left(\frac{\mathrm{4}{sinx}}{\mathrm{3}+\mathrm{5}{cosx}}\right)\:\:\:{then}\:{f}^{'} \left(\frac{\pi}{\mathrm{3}}\right)=? \\ $$

  Pg 230      Pg 231      Pg 232      Pg 233      Pg 234      Pg 235      Pg 236      Pg 237      Pg 238      Pg 239   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com