Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 235

Question Number 197970    Answers: 2   Comments: 0

Question Number 197967    Answers: 1   Comments: 0

Question Number 197961    Answers: 0   Comments: 4

A cylindrical container is designed to contain bees. At exactly 12:00pm, there are 2 bees in the container. At every 1 min, the total number of bees in the container is doubled. By 1.00pm, the container is full of bees. At what time is the container A. Half full of the bees B. Quarter full of the bees C. 1/8th full of the bees D. 1/16th full of the bees Note: you can assume any size of the cylindrical container, and all bees are of equal size. Show working

$$ \\ $$A cylindrical container is designed to contain bees. At exactly 12:00pm, there are 2 bees in the container. At every 1 min, the total number of bees in the container is doubled. By 1.00pm, the container is full of bees. At what time is the container A. Half full of the bees B. Quarter full of the bees C. 1/8th full of the bees D. 1/16th full of the bees Note: you can assume any size of the cylindrical container, and all bees are of equal size. Show working

Question Number 197960    Answers: 1   Comments: 0

determiner le total de nombres de 5 chiffres comprises entre 10000 et 50000 divisibles simultanement par 5 et 9 (sans utiliser les formules d arrangement et de combinaison)

$$\mathrm{determiner}\:\mathrm{le}\:\mathrm{total}\:\mathrm{de}\:\mathrm{nombres}\:\mathrm{de}\: \\ $$$$\mathrm{5}\:\mathrm{chiffres}\:\mathrm{comprises}\:\mathrm{entre}\:\mathrm{10000}\:\mathrm{et}\: \\ $$$$\mathrm{50000}\:\:\mathrm{divisibles}\:\mathrm{simultanement}\:\mathrm{par} \\ $$$$\mathrm{5}\:\mathrm{et}\:\mathrm{9}\:\:\: \\ $$$$\left(\mathrm{sans}\:\mathrm{utiliser}\:\mathrm{les}\:\mathrm{formules}\:\mathrm{d}\:\mathrm{arrangement}\right. \\ $$$$\left.\mathrm{et}\:\mathrm{de}\:\mathrm{combinaison}\right) \\ $$$$ \\ $$

Question Number 197951    Answers: 0   Comments: 0

Σ_(n=1 ) ^∞ (n/(n^4 +n^2 +1)) − Σ_(n=1) ^∞ (n^2 /(n^8 +n^4 +1)) = ?

$$\:\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{{n}}{{n}^{\mathrm{4}} +{n}^{\mathrm{2}} +\mathrm{1}}\:−\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{8}} +{n}^{\mathrm{4}} +\mathrm{1}}\:=\:? \\ $$

Question Number 197950    Answers: 0   Comments: 0

Let x,y,z>0 , x+y+z=3 Prove That : (1/( (√(x^2 +2x))))+(1/( (√(z^2 +2z))))+(√3)((1/(y+2))−(y/9))+((((√x)+(√y)+(√z)+24))^(1/3) /( (√3)))≥((17)/(3(√3)))

$${Let}\:{x},{y},{z}>\mathrm{0}\:,\:{x}+{y}+{z}=\mathrm{3}\:{Prove}\:{That}\:: \\ $$$$\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}}+\frac{\mathrm{1}}{\:\sqrt{{z}^{\mathrm{2}} +\mathrm{2}{z}}}+\sqrt{\mathrm{3}}\left(\frac{\mathrm{1}}{{y}+\mathrm{2}}−\frac{{y}}{\mathrm{9}}\right)+\frac{\sqrt[{\mathrm{3}}]{\sqrt{{x}}+\sqrt{{y}}+\sqrt{{z}}+\mathrm{24}}}{\:\sqrt{\mathrm{3}}}\geqslant\frac{\mathrm{17}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$

Question Number 197947    Answers: 1   Comments: 0

calculate… L = lim _(n→∞) (( (1+(1/2) )(1+(1/3))… (1+(1/n))))^(1/n) = ?

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{calculate}\ldots \\ $$$$\:\:\mathrm{L}\:=\:\mathrm{lim}\:_{\mathrm{n}\rightarrow\infty} \sqrt[{{n}}]{\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\right)\ldots\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)}\:=\:?\:\:\:\:\:\:\:\: \\ $$$$\:\: \\ $$

Question Number 197944    Answers: 1   Comments: 0

tan(π/(12))=((sinα−sin(π/(12)))/(cosα+cos(π/(12)))) α=?

$${tan}\frac{\pi}{\mathrm{12}}=\frac{{sin}\alpha−{sin}\frac{\pi}{\mathrm{12}}}{{cos}\alpha+{cos}\frac{\pi}{\mathrm{12}}} \\ $$$$\alpha=? \\ $$

Question Number 197937    Answers: 1   Comments: 0

(√3) sin^2 θ∙tanβ+cos^2 β=?

$$\sqrt{\mathrm{3}}\:{sin}^{\mathrm{2}} \theta\centerdot{tan}\beta+{cos}^{\mathrm{2}} \beta=? \\ $$

Question Number 197935    Answers: 1   Comments: 0

Show that Σ_(n=1) ^∞ (((n!)^2 )/((2n)!)) =(1/3)+((2π(√3))/(27))

$$\mathrm{Show}\:\mathrm{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}\right)!}\:=\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{27}} \\ $$

Question Number 197922    Answers: 0   Comments: 1

Question Number 197920    Answers: 2   Comments: 1

Question Number 197919    Answers: 1   Comments: 0

I_m = ∫_0 ^1 (((⌊2^m x⌋)/3^m ) Σ_(n=m+1) ^∞ ((⌊2^n x⌋)/3^n ))dx then find the value of I = Σ_(m=1) ^∞ I_m = ?

$$\:\:\:\:\:\:\mathrm{I}_{{m}} \:\:\:\:\:=\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\lfloor\mathrm{2}^{{m}} {x}\rfloor}{\mathrm{3}^{{m}} }\:\underset{{n}={m}+\mathrm{1}} {\overset{\infty} {\sum}}\frac{\lfloor\mathrm{2}^{{n}} {x}\rfloor}{\mathrm{3}^{{n}} }\right){dx} \\ $$$$\:\:\:\:\:\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\mathrm{I}\:=\:\:\:\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{I}_{{m}} \:\:=\:\:?\: \\ $$

Question Number 197914    Answers: 1   Comments: 3

Determiner la surface hachuree (voir figure) BC=10cm ∡B=45° ∡C=30°

$$\boldsymbol{\mathrm{Determiner}}\:\boldsymbol{\mathrm{la}}\:\boldsymbol{\mathrm{surface}}\:\boldsymbol{\mathrm{hachuree}} \\ $$$$\left(\boldsymbol{\mathrm{voir}}\:\:\boldsymbol{\mathrm{figure}}\right) \\ $$$$\:\boldsymbol{\mathrm{BC}}=\mathrm{10}\boldsymbol{\mathrm{cm}}\:\:\:\:\:\measuredangle\boldsymbol{\mathrm{B}}=\mathrm{45}°\:\:\:\:\:\:\measuredangle\boldsymbol{\mathrm{C}}=\mathrm{30}° \\ $$

Question Number 197908    Answers: 1   Comments: 0

sin18^° =?

$${sin}\mathrm{18}^{°} =? \\ $$

Question Number 197895    Answers: 1   Comments: 0

Solve the equation: x^4 − x^3 − 4x^2 + 3x + 2 = 0

$${Solve}\:{the}\:{equation}: \\ $$$${x}^{\mathrm{4}} \:−\:{x}^{\mathrm{3}} \:−\:\mathrm{4}{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}\:+\:\mathrm{2}\:=\:\mathrm{0} \\ $$

Question Number 197891    Answers: 2   Comments: 0

Soit I=∫^( 1) _( 0) (√(t(√(t(1−t)))))dt Comment calculer I

$$\mathrm{Soit}\:\mathrm{I}=\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \sqrt{\mathrm{t}\sqrt{\mathrm{t}\left(\mathrm{1}−\mathrm{t}\right)}}\mathrm{dt} \\ $$$$\mathrm{Comment}\:\mathrm{calculer}\:\mathrm{I} \\ $$

Question Number 197917    Answers: 1   Comments: 1

Question Number 197916    Answers: 2   Comments: 0

Question Number 197882    Answers: 1   Comments: 0

Find the minimum value of ((5t^2 −8t+5)/((2+(√3))t^2 −2t+2−(√3))) where 2−(√3)<t<2+(√3).

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{5}{t}^{\mathrm{2}} −\mathrm{8}{t}+\mathrm{5}}{\left(\mathrm{2}+\sqrt{\mathrm{3}}\right){t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{2}−\sqrt{\mathrm{3}}}\:\:\mathrm{where}\:\mathrm{2}−\sqrt{\mathrm{3}}<{t}<\mathrm{2}+\sqrt{\mathrm{3}}. \\ $$

Question Number 197881    Answers: 1   Comments: 1

Question Number 197880    Answers: 1   Comments: 0

find the sum of infinite series (1/2^1 )∙(1/3^2 ) + (1/2^2 )∙(1/3^4 )(1^2 +2^2 +3^2 ) + (1/2^3 )∙(1/3^6 )(1^2 +2^2 +3^2 +...+7^2 )+ (1/2^4 )∙(1/3^8 )(1^2 +2^2 +3^2 +...+15^2 )+........

$$\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{infinite}\:\mathrm{series} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{1}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}} }\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right)\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{6}} }\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +...+\mathrm{7}^{\mathrm{2}} \right)+ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{8}} }\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +...+\mathrm{15}^{\mathrm{2}} \right)+........ \\ $$

Question Number 197876    Answers: 2   Comments: 1

Question Number 197874    Answers: 1   Comments: 0

Question Number 197865    Answers: 1   Comments: 0

Question Number 197860    Answers: 3   Comments: 0

((2^(17) +2^(16) +2^(15) +…+1)/(2^8 +2^7 +2^6 +…+1)) = ?

$$\:\:\:\:\frac{\mathrm{2}^{\mathrm{17}} +\mathrm{2}^{\mathrm{16}} +\mathrm{2}^{\mathrm{15}} +\ldots+\mathrm{1}}{\mathrm{2}^{\mathrm{8}} +\mathrm{2}^{\mathrm{7}} +\mathrm{2}^{\mathrm{6}} +\ldots+\mathrm{1}}\:=\:?\: \\ $$

  Pg 230      Pg 231      Pg 232      Pg 233      Pg 234      Pg 235      Pg 236      Pg 237      Pg 238      Pg 239   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com