Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 235
Question Number 196555 Answers: 0 Comments: 0
$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:\:\mathrm{show}\:\mathrm{that} \\ $$$$\Sigma\:\frac{\mathrm{1}\:+\:\mathrm{cos}\:\centerdot\:\left(\mathrm{A}\:−\:\mathrm{B}\right)\:\centerdot\:\mathrm{cos}\:\mathrm{C}}{\mathrm{h}_{\boldsymbol{\mathrm{C}}} \:\centerdot\:\mathrm{sec}\:\mathrm{C}}\:\:=\:\:\frac{\mathrm{3}}{\mathrm{2}\:\mathrm{R}} \\ $$
Question Number 196614 Answers: 2 Comments: 0
$${if}\:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{5}{n}}+\frac{\mathrm{1}}{\mathrm{2}+\mathrm{5}{n}}+\frac{\mathrm{1}}{\mathrm{3}+\mathrm{5}{n}}+...+\frac{\mathrm{1}}{\mathrm{6}{n}}, \\ $$$${find}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{S}_{{n}} =? \\ $$
Question Number 196612 Answers: 0 Comments: 1
Question Number 196544 Answers: 1 Comments: 0
Question Number 196540 Answers: 1 Comments: 0
$$\:\:{using}\:{definition}\:{of}\:{limit},\:{prove}\: \\ $$$$\:\:\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{x}}{{x}+\mathrm{1}}\:=\:\mathrm{1} \\ $$
Question Number 196539 Answers: 0 Comments: 0
$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}{f}\left({i}\right)=\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}{f}\left(\mathrm{6}+\mathrm{1}−{i}\right) \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{i}} {\sum}}{f}\left({i},{j}\right)=\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{i}} {\sum}}{f}\left(\mathrm{6}+\mathrm{1}−{j},\mathrm{6}+\mathrm{1}−{i}\right) \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{i}} {\sum}}\underset{{k}=\mathrm{1}} {\overset{{j}} {\sum}}{f}\left({i},{j},{k}\right)=\underset{{i}=\mathrm{1}} {\overset{\mathrm{6}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{i}} {\sum}}\underset{{k}=\mathrm{1}} {\overset{{j}} {\sum}}{f}\left(?\:,?\:,?\right) \\ $$
Question Number 196534 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{x}\:\sqrt{\mathrm{1}−\mathrm{cos}\:\left(\frac{\pi}{\mathrm{x}}\right)}\:=? \\ $$
Question Number 196525 Answers: 1 Comments: 0
Question Number 196523 Answers: 2 Comments: 0
$${resoudre}\:{dans}\:{c}\:{l}\:{equation}\:{sinx}=\mathrm{2}\:\:\:\:\:\bigstar{erly}\:{rolvinst}\bigstar\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:<{erly}\:{rolvinst}> \\ $$
Question Number 196522 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\forall\mathrm{n}\in\mathbb{N} \\ $$$$\underset{\:\mathrm{n}} {\int}^{\:\mathrm{n}+\mathrm{1}} \mathrm{ln}{t}\:\mathrm{dt}\:\leqslant\:\mathrm{ln}\left(\underset{\mathrm{n}} {\int}^{\:\mathrm{n}+\mathrm{1}} {t}\:\mathrm{dt}\right) \\ $$
Question Number 196519 Answers: 1 Comments: 0
$${if}\:{xyz}=\mathrm{1},\:{prove} \\ $$$$\left(\frac{{x}}{{x}−\mathrm{1}}\right)^{\mathrm{2}} +\left(\frac{{y}}{{y}−\mathrm{1}}\right)^{\mathrm{2}} +\left(\frac{{z}}{{z}−\mathrm{1}}\right)^{\mathrm{2}} \geqslant\mathrm{1}. \\ $$
Question Number 196518 Answers: 1 Comments: 0
$${resouxre}\:{cosx}=\mathrm{2} \\ $$
Question Number 196517 Answers: 1 Comments: 0
Question Number 196516 Answers: 1 Comments: 0
Question Number 196515 Answers: 1 Comments: 0
$$\mathrm{Find}:\:\:\:\int_{\mathrm{0}} ^{\:+\infty} \:\mathrm{x}^{\boldsymbol{\pi}} \:\mathrm{e}^{−\boldsymbol{\mathrm{x}}} \:\mathrm{dx}\:=\:? \\ $$
Question Number 196504 Answers: 0 Comments: 0
Question Number 196498 Answers: 1 Comments: 0
Question Number 196496 Answers: 1 Comments: 0
Question Number 196493 Answers: 1 Comments: 1
Question Number 196491 Answers: 1 Comments: 2
Question Number 196489 Answers: 0 Comments: 0
Question Number 196487 Answers: 1 Comments: 0
$$\int\left(\mathrm{sec}\:^{\mathrm{4}} {x}−\mathrm{cot}\:^{\mathrm{4}} {x}\right){dx} \\ $$
Question Number 196486 Answers: 0 Comments: 0
Question Number 196485 Answers: 1 Comments: 1
$$\underset{{k}={o}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} \:=? \\ $$
Question Number 196483 Answers: 0 Comments: 0
Question Number 196471 Answers: 1 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{n}}\left(\frac{\mathrm{1}}{\mathrm{2}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{n}}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{2}\:\:+\:\:\frac{\mathrm{2}}{\mathrm{n}}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{2}\:\:+\:\:\frac{\mathrm{3}}{\mathrm{n}}}\:\:+\:\:..\:\:+\:\:\frac{\mathrm{1}}{\mathrm{2}\:\:+\:\:\frac{\mathrm{n}}{\mathrm{n}}}\right) \\ $$
Pg 230 Pg 231 Pg 232 Pg 233 Pg 234 Pg 235 Pg 236 Pg 237 Pg 238 Pg 239
Terms of Service
Privacy Policy
Contact: info@tinkutara.com