Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 228

Question Number 195954    Answers: 3   Comments: 0

Question Number 195953    Answers: 0   Comments: 0

Question Number 195952    Answers: 2   Comments: 0

Ω = Σ_(m=1) ^∞ Σ_(n=1) ^∞ (((−1)^( n+1) )/(m^2 n + mn^( 2) )) = ? −−−−−

$$ \\ $$$$\:\:\:\:\Omega\:=\:\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}+\mathrm{1}} }{{m}^{\mathrm{2}} {n}\:+\:{mn}^{\:\mathrm{2}} }\:\:=\:?\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:−−−−− \\ $$

Question Number 195948    Answers: 0   Comments: 0

An object is said to cross a thousand kilimeters in planks constant. How many times faster is the object to the speed of light. plank′s time = 10^(−44) sec.

$$\mathrm{An}\:\mathrm{object}\:\mathrm{is}\:\mathrm{said}\:\mathrm{to}\:\mathrm{cross}\:\mathrm{a}\:\mathrm{thousand}\: \\ $$$$\mathrm{kilimeters}\:\mathrm{in}\:\mathrm{planks}\:\mathrm{constant}.\:\mathrm{How}\:\mathrm{many} \\ $$$$\mathrm{times}\:\mathrm{faster}\:\mathrm{is}\:\mathrm{the}\:\mathrm{object}\:\mathrm{to}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of} \\ $$$$\mathrm{light}.\:\mathrm{plank}'\mathrm{s}\:\mathrm{time}\:=\:\mathrm{10}^{−\mathrm{44}} \mathrm{sec}. \\ $$

Question Number 195947    Answers: 2   Comments: 0

Question Number 195944    Answers: 1   Comments: 0

Question Number 195911    Answers: 0   Comments: 0

Question Number 195910    Answers: 1   Comments: 0

Question Number 195905    Answers: 1   Comments: 0

lim_(x→0) (((√(3+x^4 )) −(√(3+tan^4 x)))/x^6 ) =?

$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{3}+\mathrm{x}^{\mathrm{4}} }\:−\sqrt{\mathrm{3}+\mathrm{tan}\:^{\mathrm{4}} \mathrm{x}}}{\mathrm{x}^{\mathrm{6}} }\:=? \\ $$

Question Number 195904    Answers: 1   Comments: 0

Σ_(n=0) ^∞ [((2^n (2n)!)/(3^(2n+1) (n+1)!n!))]=λ Evaluate (λ)

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{\mathrm{2}^{{n}} \left(\mathrm{2}{n}\right)!}{\mathrm{3}^{\mathrm{2}{n}+\mathrm{1}} \left({n}+\mathrm{1}\right)!{n}!}\right]=\lambda \\ $$$${Evaluate}\:\left(\lambda\right) \\ $$

Question Number 195931    Answers: 1   Comments: 2

Question Number 195900    Answers: 1   Comments: 0

Question Number 195898    Answers: 1   Comments: 0

Question Number 195896    Answers: 2   Comments: 0

Question Number 195895    Answers: 1   Comments: 0

Calcul ∫^( (π/2)) _( 0) t(√(tan(t))) dt

$$\mathrm{Calcul}\:\:\:\:\:\:\:\:\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{t}\sqrt{\mathrm{tan}\left(\mathrm{t}\right)}\:\mathrm{dt} \\ $$

Question Number 195892    Answers: 1   Comments: 0

Question Number 195885    Answers: 2   Comments: 0

(dy/dx) + (√((1−y^2 )/(1−x^2 ))) = 0

$$\:\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\sqrt{\frac{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:=\:\mathrm{0}\: \\ $$

Question Number 195884    Answers: 0   Comments: 0

solve the integral by the method of Differentiation ∫_0 ^1 ((x^2 −1)/(log_2 (x)))dx

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{by}\:\mathrm{the}\:\mathrm{method}\: \\ $$$$\mathrm{of}\:\mathrm{Differentiation} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{log}_{\mathrm{2}} \left(\mathrm{x}\right)}\mathrm{dx} \\ $$

Question Number 195883    Answers: 0   Comments: 0

The speed of a boat is given by, V=k((l/t)−at), where k is the constant and l is the distance travel by boat in time t and a is the acceleration of water. If there is a change in l from 2cm to 1cm in time 2sec. to 1sec. If the acceleration of water changes from 0.95m/s^2 to 2m/s^2 . Find the motion of boat.

$$\mathrm{The}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{a}\:\mathrm{boat}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by},\:\mathrm{V}=\mathrm{k}\left(\frac{\mathrm{l}}{\mathrm{t}}−\mathrm{at}\right), \\ $$$$\mathrm{where}\:\mathrm{k}\:\mathrm{is}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{and}\:\mathrm{l}\:\mathrm{is}\:\mathrm{the}\:\mathrm{distance} \\ $$$$\mathrm{travel}\:\mathrm{by}\:\mathrm{boat}\:\mathrm{in}\:\mathrm{time}\:\mathrm{t}\:\mathrm{and}\:\mathrm{a}\:\mathrm{is}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{water}.\: \\ $$$$\mathrm{If}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{change}\:\mathrm{in}\:\mathrm{l}\:\mathrm{from}\:\mathrm{2cm}\:\mathrm{to}\:\mathrm{1cm}\:\mathrm{in}\:\mathrm{time}\:\mathrm{2sec}.\:\mathrm{to}\:\mathrm{1sec}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{acceleration} \\ $$$$\mathrm{of}\:\mathrm{water}\:\mathrm{changes}\:\mathrm{from}\:\mathrm{0}.\mathrm{95m}/\mathrm{s}^{\mathrm{2}} \:\mathrm{to}\:\mathrm{2m}/\mathrm{s}^{\mathrm{2}} .\:\mathrm{Find}\:\mathrm{the}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{boat}. \\ $$

Question Number 195880    Answers: 1   Comments: 1

Question Number 195878    Answers: 0   Comments: 0

Question Number 195874    Answers: 1   Comments: 0

Question Number 195872    Answers: 1   Comments: 0

z_1 , z_2 , z_3 ∈C.∣z_1 ∣=∣z_2 ∣=∣z_3 ∣=1. Prove that (((z_1 +z_2 )(z_2 +z_3 )(z_3 +z_1 ))/(z_1 z_2 z_3 ))∈R.

$${z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \in\mathbb{C}.\mid{z}_{\mathrm{1}} \mid=\mid{z}_{\mathrm{2}} \mid=\mid{z}_{\mathrm{3}} \mid=\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\frac{\left({z}_{\mathrm{1}} +{z}_{\mathrm{2}} \right)\left({z}_{\mathrm{2}} +{z}_{\mathrm{3}} \right)\left({z}_{\mathrm{3}} +{z}_{\mathrm{1}} \right)}{{z}_{\mathrm{1}} {z}_{\mathrm{2}} {z}_{\mathrm{3}} }\in\mathbb{R}. \\ $$

Question Number 195870    Answers: 1   Comments: 4

Question Number 195860    Answers: 0   Comments: 0

Question Number 195855    Answers: 1   Comments: 0

{ ((3(√(((12))^(1/3) −(3)^(1/3) ))=(x)^(1/3) +(y)^(1/3) −(z)^(1/3) )),((x,y,z ∈ N)) :} ⇒ x,y,z =? please help me

$$\begin{cases}{\mathrm{3}\sqrt{\sqrt[{\mathrm{3}}]{\mathrm{12}}−\sqrt[{\mathrm{3}}]{\mathrm{3}}}=\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{y}}−\sqrt[{\mathrm{3}}]{{z}}}\\{{x},{y},{z}\:\in\:{N}}\end{cases}\:\:\Rightarrow\:{x},{y},{z}\:=? \\ $$$${please}\:{help}\:{me} \\ $$

  Pg 223      Pg 224      Pg 225      Pg 226      Pg 227      Pg 228      Pg 229      Pg 230      Pg 231      Pg 232   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com