Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 218

Question Number 198237    Answers: 1   Comments: 0

if −(√3)≤sin(x+ϕ)+cosx≤(√3) ϕ=?

$${if}\:\:−\sqrt{\mathrm{3}}\leqslant{sin}\left({x}+\varphi\right)+{cosx}\leqslant\sqrt{\mathrm{3}} \\ $$$$\varphi=? \\ $$

Question Number 198235    Answers: 1   Comments: 0

Question Number 198269    Answers: 1   Comments: 0

calcul Σ_(k=o) ^n sin(k)

$${calcul} \\ $$$$\underset{{k}={o}} {\overset{{n}} {\sum}}{sin}\left({k}\right) \\ $$

Question Number 198232    Answers: 1   Comments: 0

find Σ_(k=o) ^n sin(k)

$${find}\: \\ $$$$\underset{{k}={o}} {\overset{{n}} {\sum}}{sin}\left({k}\right) \\ $$

Question Number 198231    Answers: 1   Comments: 0

Question Number 198228    Answers: 1   Comments: 0

(4x^2 +2x+1)^(x^2 −x) >1

$$\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}\right)^{{x}^{\mathrm{2}} −{x}} >\mathrm{1} \\ $$

Question Number 198222    Answers: 1   Comments: 1

log _4 (5^x −3^x ) = log _5 (4^x +3^(x ) )

$$\:\:\:\mathrm{log}\:_{\mathrm{4}} \left(\mathrm{5}^{\mathrm{x}} −\mathrm{3}^{\mathrm{x}} \right)\:=\:\mathrm{log}\:_{\mathrm{5}} \left(\mathrm{4}^{\mathrm{x}} +\mathrm{3}^{\mathrm{x}\:} \right) \\ $$

Question Number 198210    Answers: 1   Comments: 1

Red Area?

$$\:\boldsymbol{\mathrm{Red}}\:\boldsymbol{\mathrm{Area}}? \\ $$

Question Number 198207    Answers: 1   Comments: 1

((yellow Area)/(Squart Area))=?

$$\frac{\mathrm{yellow}\:\mathrm{Area}}{\mathrm{Squart}\:\mathrm{Area}}=? \\ $$

Question Number 198204    Answers: 0   Comments: 0

Question Number 198197    Answers: 1   Comments: 1

please helpe sinz = 2. Find z

$${please}\:{helpe} \\ $$$${sinz}\:=\:\mathrm{2}.\:{Find}\:{z} \\ $$

Question Number 198187    Answers: 1   Comments: 1

Question Number 198184    Answers: 1   Comments: 0

Question Number 198182    Answers: 1   Comments: 0

Question Number 198186    Answers: 1   Comments: 0

Question Number 198178    Answers: 2   Comments: 0

f(xf(y)+x)=xy+f(x) f:R→R f(x)=?

$${f}\left({xf}\left({y}\right)+{x}\right)={xy}+{f}\left({x}\right) \\ $$$${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({x}\right)=? \\ $$

Question Number 198176    Answers: 1   Comments: 0

Question Number 198175    Answers: 1   Comments: 0

Prove The following Functional equation: ζ(x,s)=((2Γ(1−s))/((2π)^((1−s)) )){sin(((πs)/2))Σ_(m=1) ^∞ [((cos(2πmx))/m^((1−s)) )]+cos(((πs)/2))Σ_(m=1) ^∞ [((sin(2πmx))/m^((1−s)) )]}

$${Prove}\:{The}\:{following}\:{Functional}\:{equation}: \\ $$$$\zeta\left({x},{s}\right)=\frac{\mathrm{2}\Gamma\left(\mathrm{1}−{s}\right)}{\left(\mathrm{2}\pi\right)^{\left(\mathrm{1}−{s}\right)} }\left\{{sin}\left(\frac{\pi{s}}{\mathrm{2}}\right)\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{{cos}\left(\mathrm{2}\pi{mx}\right)}{{m}^{\left(\mathrm{1}−{s}\right)} }\right]+{cos}\left(\frac{\pi{s}}{\mathrm{2}}\right)\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{{sin}\left(\mathrm{2}\pi{mx}\right)}{{m}^{\left(\mathrm{1}−{s}\right)} }\right]\right\} \\ $$

Question Number 198166    Answers: 3   Comments: 0

if f(x)=x^2 +bx+c f(f(1))=f(f(2))=0 and f(1)≠f(2) find f(0)=?

$${if}\:{f}\left({x}\right)={x}^{\mathrm{2}} +{bx}+{c} \\ $$$${f}\left({f}\left(\mathrm{1}\right)\right)={f}\left({f}\left(\mathrm{2}\right)\right)=\mathrm{0}\:{and}\:{f}\left(\mathrm{1}\right)\neq{f}\left(\mathrm{2}\right) \\ $$$${find}\:{f}\left(\mathrm{0}\right)=? \\ $$

Question Number 198161    Answers: 1   Comments: 0

Question Number 198158    Answers: 1   Comments: 0

Question Number 198152    Answers: 2   Comments: 0

a_(n+2) = (√(a_n ×a_(n+1) )) ∀ n≥1 , n ∈ N and here a_(1 ) = α and a_2 = β then prove that lim_(n→∞) a_(n+2) = (α×β^2 )^(1/3)

$$\:\:\:\:{a}_{{n}+\mathrm{2}} \:=\:\:\:\sqrt{{a}_{{n}} ×{a}_{{n}+\mathrm{1}} }\:\:\:\forall\:{n}\geqslant\mathrm{1}\:,\:{n}\:\in\:\mathrm{N} \\ $$$$\:\mathrm{and}\:\mathrm{here}\:\:\mathrm{a}_{\mathrm{1}\:} =\:\alpha\:\:{and}\:{a}_{\mathrm{2}} =\:\beta\:\:\mathrm{then} \\ $$$$\:\:\:\mathrm{prove}\:\mathrm{that}\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}+\mathrm{2}} \:\:\:=\:\:\left(\alpha×\beta^{\mathrm{2}} \right)^{\mathrm{1}/\mathrm{3}} \\ $$

Question Number 198151    Answers: 1   Comments: 0

Question Number 198147    Answers: 1   Comments: 0

if a,x,y,b is an AP and a,p,q,b is a GP. prove that xy≥pq. (with a, b >0)

$${if}\:{a},{x},{y},{b}\:{is}\:{an}\:{AP}\:{and}\:{a},{p},{q},{b}\:{is}\:{a}\:{GP}. \\ $$$${prove}\:{that}\:{xy}\geqslant{pq}. \\ $$$$\left({with}\:{a},\:{b}\:>\mathrm{0}\right) \\ $$

Question Number 198146    Answers: 0   Comments: 1

Please suggest youtube playlist to prepare one for mathematics olympiad. Thanks in advance.

$${Please}\:{suggest}\:{youtube}\:{playlist}\:{to} \\ $$$${prepare}\:{one}\:{for}\:{mathematics}\:{olympiad}. \\ $$$${Thanks}\:{in}\:{advance}. \\ $$$$ \\ $$

Question Number 198156    Answers: 1   Comments: 0

Prove that ((2t−1)/(lnt−ln(1−t)))=∫^( 1) _( 0) t^x (1−t)^(1−x) dx and ∫^( 1) _( 0) ((2t−1)/(lnt−ln(1−t)))dt = (π/2)∫^( 1) _( 0) ((x(1−x))/(sin(πx)))dx

$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\frac{\mathrm{2t}−\mathrm{1}}{\mathrm{lnt}−\mathrm{ln}\left(\mathrm{1}−\mathrm{t}\right)}=\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \mathrm{t}^{\mathrm{x}} \left(\mathrm{1}−\mathrm{t}\right)^{\mathrm{1}−\mathrm{x}} \mathrm{dx} \\ $$$$\mathrm{and}\:\:\:\:\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{\mathrm{2t}−\mathrm{1}}{\mathrm{lnt}−\mathrm{ln}\left(\mathrm{1}−\mathrm{t}\right)}\mathrm{dt}\:\:=\:\:\frac{\pi}{\mathrm{2}}\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{\mathrm{x}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{sin}\left(\pi\mathrm{x}\right)}\mathrm{dx} \\ $$

  Pg 213      Pg 214      Pg 215      Pg 216      Pg 217      Pg 218      Pg 219      Pg 220      Pg 221      Pg 222   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com