Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 218
Question Number 199769 Answers: 0 Comments: 0
$$\mathrm{62}{n}\mathrm{7}{z}\mathrm{7} \\ $$
Question Number 199766 Answers: 1 Comments: 0
Question Number 199753 Answers: 1 Comments: 0
Question Number 199752 Answers: 0 Comments: 0
Question Number 199738 Answers: 1 Comments: 0
Question Number 199733 Answers: 1 Comments: 0
Question Number 199732 Answers: 2 Comments: 0
Question Number 199731 Answers: 2 Comments: 0
Question Number 199730 Answers: 1 Comments: 0
Question Number 199729 Answers: 1 Comments: 0
Question Number 199728 Answers: 1 Comments: 0
Question Number 199723 Answers: 1 Comments: 0
Question Number 199721 Answers: 0 Comments: 0
Question Number 199719 Answers: 1 Comments: 0
Question Number 199718 Answers: 1 Comments: 0
$$\:\begin{cases}{\mathrm{cos}\:\mathrm{x}+\mathrm{cos}\:\mathrm{y}=\frac{\mathrm{1}}{\mathrm{2}}}\\{\mathrm{sin}\:\mathrm{x}+\mathrm{sin}\:\mathrm{y}=\frac{\mathrm{1}}{\mathrm{4}}}\\{\mathrm{sin}\:\mathrm{2x}\:+\:\mathrm{sin}\:\mathrm{2y}=−\frac{\mathrm{27}}{\mathrm{20}}}\end{cases} \\ $$$$\:\:\:\mathrm{sin}\:\left(\mathrm{x}+\mathrm{y}\right)\:=\:... \\ $$
Question Number 199714 Answers: 0 Comments: 3
$$\:{Statement}\: \\ $$$$\:{Does}\:{the}\:{number}\:{of}\:{data}\:{have} \\ $$$$\:{to}\:{be}\:{more}\:{than}\:\mathrm{100}\:{in}\:{order}\: \\ $$$$\:{to}\:{have}\:{a}\:{percentile}\:{value}\:? \\ $$
Question Number 199711 Answers: 3 Comments: 0
Question Number 199709 Answers: 1 Comments: 0
$${u}_{\mathrm{1}} \:=\:\mathrm{2}\: \\ $$$${u}_{{n}+\mathrm{1}} \:=\:\mathrm{3}{u}_{{n}} \:+\:\mathrm{2} \\ $$$${u}_{{n}} \:\rightarrow\:{n}\:¿ \\ $$
Question Number 199708 Answers: 0 Comments: 1
$${n}^{\mathrm{20}} +\mathrm{11}^{{n}} =\mathrm{2023}\:\left({n}\in{N}\right) \\ $$$${n}=¿ \\ $$
Question Number 199707 Answers: 1 Comments: 0
$${study}\:{the}\:{convergence} \\ $$$$\underset{{n}\geqslant{o}} {\overset{} {\sum}}{sin}\left(\pi\sqrt{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{2}\:\:\:\:}\right. \\ $$
Question Number 199706 Answers: 0 Comments: 0
Question Number 199705 Answers: 0 Comments: 0
$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{first}\:\mathrm{order}\:\mathrm{energy}\:\mathrm{correction}\: \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{one}\:\mathrm{dimentional}\:\mathrm{non}-\mathrm{degenerate} \\ $$$$\mathrm{an}\:\mathrm{harmonic}\:\mathrm{oscillator}\:\mathrm{whose}\:\mathrm{harmiltonian} \\ $$$$\mathrm{id}\:\mathrm{written}\:\mathrm{as}; \\ $$$$\hat {\mathrm{H}}=−\frac{\mathrm{h}^{\mathrm{2}} }{\mathrm{2}{m}}\:\frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{dx}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{kx}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{5}}\Upsilon\mathrm{x}^{\mathrm{3}} \:+\frac{\mathrm{1}}{\mathrm{12}}\beta\mathrm{x}^{\mathrm{4}} \\ $$
Question Number 199694 Answers: 1 Comments: 0
Question Number 199688 Answers: 4 Comments: 1
Question Number 199686 Answers: 0 Comments: 0
$${Can}\:{you}\:{help}\:{me}..???\:{pls}.... \\ $$$$\: \\ $$$$\: \\ $$$$\mathrm{Evaluate}\:\int\int_{\:\boldsymbol{\mathcal{S}}} \:\hat {\boldsymbol{\mathrm{F}}}\centerdot\mathrm{d}\hat {\boldsymbol{\mathrm{S}}} \\ $$$$\mathrm{Parametric}\:\mathrm{Surface} \\ $$$$\hat {\boldsymbol{\mathrm{S}}}\left({u},{v}\right)=\left(\mathrm{2}+\mathrm{sin}\left({u}\right)\right)\mathrm{cos}\left({v}\right)\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +\left(\mathrm{2}+\mathrm{sin}\left({u}\right)\right)\mathrm{sin}\left({v}\right)\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} +\left(\mathrm{cos}\left({v}\right)+{u}\right)\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} \\ $$$$\mathrm{Vector}\:\mathrm{Field}\:\hat {\boldsymbol{\mathrm{F}}}\left({x},{y}\right)={x}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +{y}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} +{z}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} \\ $$
Question Number 199672 Answers: 1 Comments: 0
Pg 213 Pg 214 Pg 215 Pg 216 Pg 217 Pg 218 Pg 219 Pg 220 Pg 221 Pg 222
Terms of Service
Privacy Policy
Contact: info@tinkutara.com