Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 218
Question Number 198237 Answers: 1 Comments: 0
$${if}\:\:−\sqrt{\mathrm{3}}\leqslant{sin}\left({x}+\varphi\right)+{cosx}\leqslant\sqrt{\mathrm{3}} \\ $$$$\varphi=? \\ $$
Question Number 198235 Answers: 1 Comments: 0
Question Number 198269 Answers: 1 Comments: 0
$${calcul} \\ $$$$\underset{{k}={o}} {\overset{{n}} {\sum}}{sin}\left({k}\right) \\ $$
Question Number 198232 Answers: 1 Comments: 0
$${find}\: \\ $$$$\underset{{k}={o}} {\overset{{n}} {\sum}}{sin}\left({k}\right) \\ $$
Question Number 198231 Answers: 1 Comments: 0
Question Number 198228 Answers: 1 Comments: 0
$$\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}\right)^{{x}^{\mathrm{2}} −{x}} >\mathrm{1} \\ $$
Question Number 198222 Answers: 1 Comments: 1
$$\:\:\:\mathrm{log}\:_{\mathrm{4}} \left(\mathrm{5}^{\mathrm{x}} −\mathrm{3}^{\mathrm{x}} \right)\:=\:\mathrm{log}\:_{\mathrm{5}} \left(\mathrm{4}^{\mathrm{x}} +\mathrm{3}^{\mathrm{x}\:} \right) \\ $$
Question Number 198210 Answers: 1 Comments: 1
$$\:\boldsymbol{\mathrm{Red}}\:\boldsymbol{\mathrm{Area}}? \\ $$
Question Number 198207 Answers: 1 Comments: 1
$$\frac{\mathrm{yellow}\:\mathrm{Area}}{\mathrm{Squart}\:\mathrm{Area}}=? \\ $$
Question Number 198204 Answers: 0 Comments: 0
Question Number 198197 Answers: 1 Comments: 1
$${please}\:{helpe} \\ $$$${sinz}\:=\:\mathrm{2}.\:{Find}\:{z} \\ $$
Question Number 198187 Answers: 1 Comments: 1
Question Number 198184 Answers: 1 Comments: 0
Question Number 198182 Answers: 1 Comments: 0
Question Number 198186 Answers: 1 Comments: 0
Question Number 198178 Answers: 2 Comments: 0
$${f}\left({xf}\left({y}\right)+{x}\right)={xy}+{f}\left({x}\right) \\ $$$${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({x}\right)=? \\ $$
Question Number 198176 Answers: 1 Comments: 0
Question Number 198175 Answers: 1 Comments: 0
$${Prove}\:{The}\:{following}\:{Functional}\:{equation}: \\ $$$$\zeta\left({x},{s}\right)=\frac{\mathrm{2}\Gamma\left(\mathrm{1}−{s}\right)}{\left(\mathrm{2}\pi\right)^{\left(\mathrm{1}−{s}\right)} }\left\{{sin}\left(\frac{\pi{s}}{\mathrm{2}}\right)\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{{cos}\left(\mathrm{2}\pi{mx}\right)}{{m}^{\left(\mathrm{1}−{s}\right)} }\right]+{cos}\left(\frac{\pi{s}}{\mathrm{2}}\right)\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{{sin}\left(\mathrm{2}\pi{mx}\right)}{{m}^{\left(\mathrm{1}−{s}\right)} }\right]\right\} \\ $$
Question Number 198166 Answers: 3 Comments: 0
$${if}\:{f}\left({x}\right)={x}^{\mathrm{2}} +{bx}+{c} \\ $$$${f}\left({f}\left(\mathrm{1}\right)\right)={f}\left({f}\left(\mathrm{2}\right)\right)=\mathrm{0}\:{and}\:{f}\left(\mathrm{1}\right)\neq{f}\left(\mathrm{2}\right) \\ $$$${find}\:{f}\left(\mathrm{0}\right)=? \\ $$
Question Number 198161 Answers: 1 Comments: 0
Question Number 198158 Answers: 1 Comments: 0
Question Number 198152 Answers: 2 Comments: 0
$$\:\:\:\:{a}_{{n}+\mathrm{2}} \:=\:\:\:\sqrt{{a}_{{n}} ×{a}_{{n}+\mathrm{1}} }\:\:\:\forall\:{n}\geqslant\mathrm{1}\:,\:{n}\:\in\:\mathrm{N} \\ $$$$\:\mathrm{and}\:\mathrm{here}\:\:\mathrm{a}_{\mathrm{1}\:} =\:\alpha\:\:{and}\:{a}_{\mathrm{2}} =\:\beta\:\:\mathrm{then} \\ $$$$\:\:\:\mathrm{prove}\:\mathrm{that}\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}+\mathrm{2}} \:\:\:=\:\:\left(\alpha×\beta^{\mathrm{2}} \right)^{\mathrm{1}/\mathrm{3}} \\ $$
Question Number 198151 Answers: 1 Comments: 0
Question Number 198147 Answers: 1 Comments: 0
$${if}\:{a},{x},{y},{b}\:{is}\:{an}\:{AP}\:{and}\:{a},{p},{q},{b}\:{is}\:{a}\:{GP}. \\ $$$${prove}\:{that}\:{xy}\geqslant{pq}. \\ $$$$\left({with}\:{a},\:{b}\:>\mathrm{0}\right) \\ $$
Question Number 198146 Answers: 0 Comments: 1
$${Please}\:{suggest}\:{youtube}\:{playlist}\:{to} \\ $$$${prepare}\:{one}\:{for}\:{mathematics}\:{olympiad}. \\ $$$${Thanks}\:{in}\:{advance}. \\ $$$$ \\ $$
Question Number 198156 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\frac{\mathrm{2t}−\mathrm{1}}{\mathrm{lnt}−\mathrm{ln}\left(\mathrm{1}−\mathrm{t}\right)}=\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \mathrm{t}^{\mathrm{x}} \left(\mathrm{1}−\mathrm{t}\right)^{\mathrm{1}−\mathrm{x}} \mathrm{dx} \\ $$$$\mathrm{and}\:\:\:\:\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{\mathrm{2t}−\mathrm{1}}{\mathrm{lnt}−\mathrm{ln}\left(\mathrm{1}−\mathrm{t}\right)}\mathrm{dt}\:\:=\:\:\frac{\pi}{\mathrm{2}}\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{\mathrm{x}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{sin}\left(\pi\mathrm{x}\right)}\mathrm{dx} \\ $$
Pg 213 Pg 214 Pg 215 Pg 216 Pg 217 Pg 218 Pg 219 Pg 220 Pg 221 Pg 222
Terms of Service
Privacy Policy
Contact: info@tinkutara.com