Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 218

Question Number 198815    Answers: 0   Comments: 3

Determiner x

$$\mathrm{Determiner}\:\boldsymbol{\mathrm{x}} \\ $$

Question Number 198814    Answers: 2   Comments: 0

Simplify: ((((√(x + 4 (√(x - 4)))) + (√(x - 4 (√(x - 4))))) (√(x - 8)))/(4 (√(x^2 - 12x + 32))))

$$\mathrm{Simplify}: \\ $$$$\frac{\left(\sqrt{\mathrm{x}\:+\:\mathrm{4}\:\sqrt{\mathrm{x}\:-\:\mathrm{4}}}\:+\:\sqrt{\mathrm{x}\:-\:\mathrm{4}\:\sqrt{\mathrm{x}\:-\:\mathrm{4}}}\right)\:\sqrt{\mathrm{x}\:-\:\mathrm{8}}}{\mathrm{4}\:\sqrt{\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{12x}\:+\:\mathrm{32}}} \\ $$

Question Number 198813    Answers: 1   Comments: 0

suppose that : E= (√( 9 + 4 ( Σ_(k=2) ^n a_( k) ^( 2) ))) is given let a_( k) = a_(k−1) . (a_( k−1) +1) and a_1 =1 , a_( 2) = 2 , a_( 3) = 6 , a_4 = 42 , a_( 5) = 1806 and etc find the value of E =?

$$ \\ $$$$\:\:\:\:\:{suppose}\:\:{that}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:{E}=\:\sqrt{\:\mathrm{9}\:+\:\mathrm{4}\:\left(\:\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}\:\:{a}_{\:{k}} ^{\:\mathrm{2}} \:\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{is}\:\:{given} \\ $$$$\:\:\:\:\:{let}\:\:\:\:{a}_{\:{k}} \:=\:{a}_{{k}−\mathrm{1}} \:.\:\left({a}_{\:{k}−\mathrm{1}} \:+\mathrm{1}\right) \\ $$$$\:\:\:\:\:{and}\:\:\:{a}_{\mathrm{1}} \:=\mathrm{1}\:,\:\:\:{a}_{\:\mathrm{2}} \:=\:\mathrm{2}\:\:,\:{a}_{\:\mathrm{3}} =\:\mathrm{6}\:, \\ $$$$\:\:\:\:\:\:{a}_{\mathrm{4}} \:=\:\:\mathrm{42}\:\:\:,\:{a}_{\:\mathrm{5}} \:=\:\mathrm{1806}\:\:\:\:{and}\:\:{etc} \\ $$$$\:\:\:{find}\:{the}\:\:{value}\:\:{of}\:\:\:\:{E}\:=? \\ $$

Question Number 198809    Answers: 2   Comments: 0

sum of roots log _3 x + log _3 (2,5) + log _x 9 = 3+ log _x 5

$$\:\:\:\:\:{sum}\:{of}\:{roots}\: \\ $$$$\:\mathrm{log}\:_{\mathrm{3}} {x}\:+\:\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{2},\mathrm{5}\right)\:+\:\mathrm{log}\:_{{x}} \mathrm{9}\:=\:\mathrm{3}+\:\mathrm{log}\:_{{x}} \mathrm{5}\: \\ $$

Question Number 198806    Answers: 1   Comments: 0

Question Number 198802    Answers: 1   Comments: 0

radius r circle ; x^2 +y^2 +z^2 =r^2 F^ (x,y,z)=yze_1 ^ +xe_2 ^ −xye_3 ^ Find flux 𝛒=∫∫_( 𝚺) F^ ∙n^ dS

$$\mathrm{radius}\:{r}\:\mathrm{circle}\:;\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\hat {\boldsymbol{\mathrm{F}}}\left({x},{y},{z}\right)={yz}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +{x}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} −{xy}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} \\ $$$$\mathrm{Find}\:\mathrm{flux}\:\boldsymbol{\rho}=\int\int_{\:\boldsymbol{\Sigma}} \:\hat {\boldsymbol{\mathrm{F}}}\centerdot\hat {\boldsymbol{\mathrm{n}}}\:\mathrm{d}{S} \\ $$

Question Number 199092    Answers: 5   Comments: 0

Let the polynomial p(x)=5x^3 +3x^2 −10 have roots a,b and c. What is the value of (a/(b+c))+(b/(c+a))+(c/(a+b))?

$${Let}\:{the}\:{polynomial}\:{p}\left({x}\right)=\mathrm{5}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{10} \\ $$$${have}\:{roots}\:{a},{b}\:{and}\:{c}.\:{What}\:{is}\:{the}\:{value} \\ $$$${of}\:\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{a}}+\frac{{c}}{{a}+{b}}? \\ $$

Question Number 199089    Answers: 2   Comments: 0

Question Number 198786    Answers: 2   Comments: 4

Question Number 198785    Answers: 3   Comments: 0

Question Number 198772    Answers: 0   Comments: 1

x^4 +ax^3 +bx^2 +cx+d=0

$${x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$

Question Number 198763    Answers: 3   Comments: 3

Question Number 198761    Answers: 0   Comments: 0

Question Number 198754    Answers: 1   Comments: 0

Question Number 198753    Answers: 0   Comments: 0

Question Number 198750    Answers: 1   Comments: 0

Prove the following is a tautology: [(p⊻q)∧(p⇒r)]⇒(q⊻r)

$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{a}\:\mathrm{tautology}: \\ $$$$\left[\left({p}\veebar{q}\right)\wedge\left({p}\Rightarrow{r}\right)\right]\Rightarrow\left({q}\veebar{r}\right) \\ $$

Question Number 198749    Answers: 0   Comments: 0

Find area bounded by curve below cx^3 +c^2 +y(y+1)^2 =x^2 y+cx(3y+1)

$${Find}\:{area}\:{bounded}\:{by}\:{curve}\:{below} \\ $$$${cx}^{\mathrm{3}} +{c}^{\mathrm{2}} +{y}\left({y}+\mathrm{1}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} {y}+{cx}\left(\mathrm{3}{y}+\mathrm{1}\right) \\ $$

Question Number 198743    Answers: 1   Comments: 0

Question Number 198731    Answers: 2   Comments: 2

Question Number 198722    Answers: 0   Comments: 0

I have one question. What is Exact definition of the Vector Field Form Of an Eletric Field?? for exmple.. Vector Field v^ (x,y,z)=yze_1 ^ +xze_2 ^ +xye_3 ^ i mean in physics They do all sorts of calculations using the Electrical Field but i can′t understand it cus it′s such a Abstract concept ex...▽^ ×E^ =−(∂B^ /∂t) or 𝚽=∮_A D∙dA=Q_0 ...etc help me

$$\mathrm{I}\:\mathrm{have}\:\mathrm{one}\:\mathrm{question}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{Exact}\:\mathrm{definition}\:\mathrm{of}\:\mathrm{the}\:\mathrm{Vector}\:\mathrm{Field}\:\mathrm{Form}\:\mathrm{Of}\:\mathrm{an}\:\mathrm{Eletric}\:\mathrm{Field}?? \\ $$$$\mathrm{for}\:\mathrm{exmple}.. \\ $$$$\mathrm{Vector}\:\mathrm{Field}\: \\ $$$$\hat {\boldsymbol{\mathrm{v}}}\left({x},{y},{z}\right)={yz}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +{xz}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} +{xy}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} \\ $$$$\mathrm{i}\:\mathrm{mean}\:\mathrm{in}\:\mathrm{physics}\:\mathrm{They}\:\mathrm{do}\:\mathrm{all}\:\mathrm{sorts}\:\mathrm{of}\:\mathrm{calculations} \\ $$$$\mathrm{using}\:\mathrm{the}\:\mathrm{Electrical}\:\mathrm{Field} \\ $$$$\mathrm{but}\:\mathrm{i}\:\mathrm{can}'\mathrm{t}\:\mathrm{understand}\:\mathrm{it} \\ $$$$\mathrm{cus}\:\mathrm{it}'\mathrm{s}\:\mathrm{such}\:\mathrm{a}\:\mathrm{Abstract}\:\mathrm{concept} \\ $$$$\mathrm{ex}...\hat {\bigtriangledown}×\hat {\boldsymbol{\mathrm{E}}}=−\frac{\partial\hat {\boldsymbol{\mathrm{B}}}}{\partial{t}}\:\:\mathrm{or}\:\boldsymbol{\Phi}=\oint_{{A}} \boldsymbol{\mathrm{D}}\centerdot\mathrm{d}\boldsymbol{\mathrm{A}}={Q}_{\mathrm{0}} ...\mathrm{etc} \\ $$$$\mathrm{help}\:\mathrm{me} \\ $$

Question Number 211812    Answers: 1   Comments: 1

prove lim_(x→∞) ( 1 + (5/x) )^(1/x) − 1 = 5

$${prove}\:\underset{{x}\rightarrow\infty} {{lim}}\:\left(\:\mathrm{1}\:+\:\frac{\mathrm{5}}{{x}}\:\right)^{\frac{\mathrm{1}}{{x}}} −\:\mathrm{1}\:=\:\mathrm{5}\: \\ $$

Question Number 198688    Answers: 1   Comments: 0

y′′ + (2/x).y′ + y = 0 y=¿

$${y}''\:+\:\frac{\mathrm{2}}{{x}}.{y}'\:+\:{y}\:=\:\mathrm{0} \\ $$$${y}=¿ \\ $$

Question Number 198684    Answers: 3   Comments: 0

$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 198604    Answers: 1   Comments: 1

Question Number 198692    Answers: 0   Comments: 0

Question Number 198695    Answers: 1   Comments: 0

∫_0 ^∞ ((e^(at) −e^(−at) )/(e^(πt) −e^(−πt) )) dt = ??

$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{e}^{\mathrm{at}} −\mathrm{e}^{−\mathrm{at}} }{\mathrm{e}^{\pi\mathrm{t}} −\mathrm{e}^{−\pi\mathrm{t}} }\:\mathrm{dt}\:\:\:=\:\:\:?? \\ $$

  Pg 213      Pg 214      Pg 215      Pg 216      Pg 217      Pg 218      Pg 219      Pg 220      Pg 221      Pg 222   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com