Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 215
Question Number 199451 Answers: 3 Comments: 0
$$\mathrm{Find}: \\ $$$$\mathrm{1}.\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{5}\boldsymbol{\mathrm{n}}}]{\frac{\mathrm{5n}\:−\:\mathrm{25}}{\mathrm{3n}\:+\:\mathrm{15}}} \\ $$$$\mathrm{2}.\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{1}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} \:−\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{1}}\:\right) \\ $$$$\mathrm{3}.\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{4x}^{\mathrm{3}} \:−\:\mathrm{1}}{\mathrm{sin}^{\mathrm{6}} \:\mathrm{2x}} \\ $$
Question Number 199481 Answers: 1 Comments: 0
$${Give}\:\bigtriangleup{ABC}\:{is}\:{acute}\:{triangle}. \\ $$$${M}\:\:{is}\:{a}\:{midpoint}\:{of}\:{BC} \\ $$$${Prove}\:{that}\:{AB}+{AC}>\mathrm{2}{AM} \\ $$
Question Number 199447 Answers: 1 Comments: 0
$${b}_{{n}} ={sin}\left({a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}\right)\Rightarrow\:{S}_{{n}} =? \\ $$
Question Number 199446 Answers: 0 Comments: 0
$$\mathrm{53bxnx} \\ $$
Question Number 199433 Answers: 1 Comments: 1
Question Number 199432 Answers: 2 Comments: 0
$${without}\:{using}\:{calculator}: \\ $$$${what}\:{is}\:{larger}?\:\mathrm{log}_{\mathrm{2}} \:\mathrm{3}\:{or}\:\mathrm{log}_{\mathrm{3}} \:\mathrm{5}? \\ $$
Question Number 199424 Answers: 1 Comments: 0
$$\:\: \\ $$$$ \\ $$$$ \mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2x}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:\mathrm{4x}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{cos}\:\mathrm{3x} \\ $$$$\:\:\mathrm{for}\:\mathrm{0}<\mathrm{x}<\pi\: \\ $$
Question Number 199413 Answers: 2 Comments: 0
Question Number 199405 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{calculate}\:... \\ $$$$\:\:\mathrm{Q}:\:\:\:\:\:\:\mathrm{I}{f}\:\:,\:\:\:{f}\left({x}\right)\:=\mathrm{2}\:{e}^{{x}} \:−\mathrm{1}\:+\:\lfloor{e}^{{x}} +\:\frac{\mathrm{3}}{\mathrm{2}}\:+\lfloor{e}^{{x}} \rfloor\:\rfloor \\ $$$$\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\:{f}\:^{−\mathrm{1}} \:\left(\:\frac{\pi}{\mathrm{4}}\:\right)\:=? \\ $$$$\:\:\:\:\: \\ $$
Question Number 199399 Answers: 1 Comments: 0
$$\boldsymbol{{Solve}}:\:\boldsymbol{{log}}_{\mathrm{2}} \boldsymbol{{r}}+\boldsymbol{{log}}_{\mathrm{3}} \boldsymbol{{p}}=\mathrm{3} \\ $$$$\boldsymbol{{p}}+\boldsymbol{{r}}=\mathrm{11}\:\:\:\boldsymbol{{fund}}\:\boldsymbol{{p}}\:\boldsymbol{{and}}\:\boldsymbol{{r}}. \\ $$
Question Number 199393 Answers: 2 Comments: 0
Question Number 199392 Answers: 1 Comments: 0
Question Number 199391 Answers: 1 Comments: 0
Question Number 199389 Answers: 2 Comments: 0
$$\mathrm{log}_{\mathrm{12}} \mathrm{60}=? \\ $$$$\mathrm{log}_{\mathrm{6}} \mathrm{30}={a} \\ $$$$\mathrm{log}_{\mathrm{15}} \mathrm{24}={b} \\ $$
Question Number 199385 Answers: 2 Comments: 0
$$\mathrm{Find}: \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{x}^{\mathrm{15}} \:\sqrt{\mathrm{1}\:+\:\mathrm{3x}^{\mathrm{8}} }\:\mathrm{dx}\:=\:? \\ $$
Question Number 199382 Answers: 2 Comments: 0
$${if}\:{A}\:=\:\begin{bmatrix}{{cosh}\left({x}\right)\:\:\:\:\:\:{sinh}\left({x}\right)\:}\\{{sinh}\left({x}\right)\:\:\:\:\:\:{cosh}\left({x}\right)}\end{bmatrix}{find}\:{A}^{{k}} \:? \\ $$
Question Number 199381 Answers: 1 Comments: 0
Question Number 199380 Answers: 0 Comments: 0
Question Number 199377 Answers: 1 Comments: 0
$$\:\:\int\underset{\mathrm{R}} {\int}\mathrm{cos}\:\left(\mathrm{max}\left\{\mathrm{x}^{\mathrm{3}} ,\:\mathrm{y}^{\mathrm{3}/\mathrm{2}} \right\}\right)\mathrm{dx}\:\mathrm{dy}\:,\:\mathrm{where}\:\mathrm{R}\:=\:\left[\mathrm{0},\mathrm{1}\right]×\left[\mathrm{0},\mathrm{1}\right] \\ $$
Question Number 199374 Answers: 3 Comments: 3
Question Number 199371 Answers: 0 Comments: 1
Question Number 199370 Answers: 0 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{4}{e}^{\mathrm{3}{x}} −\mathrm{9}{e}^{\mathrm{2}{x}} +\mathrm{6}{x}+\mathrm{5}}{{x}^{\mathrm{3}} }=? \\ $$
Question Number 199369 Answers: 0 Comments: 0
$$\int_{−\mathrm{1}} ^{\mathrm{1}} \:\int_{−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:}} ^{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \:\int_{\mathrm{1}−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }} ^{\mathrm{1}+\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\mathrm{5}/\mathrm{2}} {dx}\:{dy}\:{dz}\:\:{is} \\ $$
Question Number 199368 Answers: 2 Comments: 0
Question Number 199349 Answers: 0 Comments: 0
Question Number 199339 Answers: 1 Comments: 2
Pg 210 Pg 211 Pg 212 Pg 213 Pg 214 Pg 215 Pg 216 Pg 217 Pg 218 Pg 219
Terms of Service
Privacy Policy
Contact: info@tinkutara.com