Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 215

Question Number 197570    Answers: 0   Comments: 0

Question Number 197569    Answers: 0   Comments: 2

Question Number 197567    Answers: 1   Comments: 0

Question Number 197564    Answers: 1   Comments: 4

sir...number of 3 digit numbers which are divisible by a)3 b)4 c)6 d)7 e)8 f)9 g)11 when repetetion is 1)Allowwd 2)Not allowed.. kindly help me sir

$${sir}...{number}\:{of}\:\mathrm{3}\:{digit} \\ $$$${numbers}\:{which}\:{are}\:{divisible} \\ $$$${by}\: \\ $$$$\left.{a}\left.\right)\left.\mathrm{3}\left.\:\left.\:\left.{b}\left.\right)\mathrm{4}\:\:{c}\right)\mathrm{6}\:\:{d}\right)\mathrm{7}\:\:{e}\right)\mathrm{8}\:\:{f}\right)\mathrm{9}\:\:{g}\right)\mathrm{11} \\ $$$${when}\:{repetetion}\:{is} \\ $$$$\left.\mathrm{1}\left.\right){Allowwd}\:\:\mathrm{2}\right){Not}\:{allowed}.. \\ $$$${kindly}\:{help}\:{me}\:{sir} \\ $$

Question Number 197562    Answers: 0   Comments: 0

let f_n (x) = nsin^(2n+1) x cos x then the value of lim_(n→∞) ∫_0 ^(π/2) f_n (x) dx − ∫_0 ^(π/2) ( lim_(n→∞) f_n (x))dx = ?

$$\:\:\mathrm{let}\:\:\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:=\:\mathrm{nsin}^{\mathrm{2n}+\mathrm{1}} \mathrm{x}\:\mathrm{cos}\:\mathrm{x}\:\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:\mathrm{dx}\:−\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left(\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\right)\mathrm{dx}\:\:\:=\:\:?\: \\ $$

Question Number 197550    Answers: 1   Comments: 0

Calcul I=∫^( (π/2)) _( 0) ((ln(cost))/(1+sin^2 t))dt

$$\mathrm{Calcul}\:\:\:\mathrm{I}=\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{ln}\left(\mathrm{cost}\right)}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \mathrm{t}}\mathrm{dt} \\ $$

Question Number 197549    Answers: 0   Comments: 3

solve limits for functions f(x)=cos(sgn(1/x)) f(x)=sgn(cos(1/x)) Can someone help Thanks

$$ \\ $$$${solve}\:{limits}\:{for}\:{functions} \\ $$$${f}\left({x}\right)={cos}\left({sgn}\left(\mathrm{1}/{x}\right)\right) \\ $$$${f}\left({x}\right)={sgn}\left({cos}\left(\mathrm{1}/{x}\right)\right) \\ $$$$ \\ $$$${Can}\:{someone}\:{help} \\ $$$${Thanks} \\ $$

Question Number 197548    Answers: 1   Comments: 0

lim_(x→−∞) (((4x−(√(4x^2 +5)))/(2x−1)))^(bx) =?

$$\:\:\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{4x}−\sqrt{\mathrm{4x}^{\mathrm{2}} +\mathrm{5}}}{\mathrm{2x}−\mathrm{1}}\right)^{\mathrm{bx}} =?\: \\ $$

Question Number 197541    Answers: 2   Comments: 3

Montrer que x=((an+bm)/(m+n))

$$\boldsymbol{\mathrm{Montrer}}\:\boldsymbol{\mathrm{que}} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{x}}=\frac{\boldsymbol{\mathrm{an}}+\boldsymbol{\mathrm{bm}}}{\boldsymbol{\mathrm{m}}+\boldsymbol{\mathrm{n}}} \\ $$

Question Number 197530    Answers: 2   Comments: 0

f(x)−(x^2 /2)f′′(x)=0 f(x)=?

$$\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{f}''\left(\mathrm{x}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=? \\ $$

Question Number 197525    Answers: 2   Comments: 0

∫ ((tanx))^(1/n) dx

$$\int\:\sqrt[{{n}}]{{tanx}}\:{dx} \\ $$

Question Number 197524    Answers: 2   Comments: 0

Question Number 197517    Answers: 0   Comments: 0

Question Number 197514    Answers: 1   Comments: 0

lim_(x→∞) sin x sin^(−1) ((1/x))=?

$$\:\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{sin}\:\mathrm{x}\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{x}}\right)=? \\ $$

Question Number 197502    Answers: 0   Comments: 1

Question Number 197501    Answers: 1   Comments: 0

Question Number 197500    Answers: 1   Comments: 1

Question Number 197499    Answers: 1   Comments: 0

Question Number 197496    Answers: 2   Comments: 0

lim_(x→3) ((cos3−cosx)/(x−3))=?

$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\frac{{cos}\mathrm{3}−{cosx}}{{x}−\mathrm{3}}=? \\ $$

Question Number 197483    Answers: 1   Comments: 0

lim_(x→−∞) ((tan^(−1) (x))/( (√(1−x)))) =?

$$\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\:\sqrt{\mathrm{1}−\mathrm{x}}}\:=? \\ $$

Question Number 197482    Answers: 1   Comments: 0

lim_(x→∞) sin^(−1) (((x^2 (√3) +2)/(2x^2 −3x+1)) )=?

$$\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{x}^{\mathrm{2}} \sqrt{\mathrm{3}}\:+\mathrm{2}}{\mathrm{2x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{1}}\:\right)=?\: \\ $$

Question Number 197479    Answers: 2   Comments: 1

find: lim_(n→∞) U_n =((n^3 +2n^2 ))^(1/3) −((n^3 −3n^2 ))^(1/3)

$$\boldsymbol{{find}}: \\ $$$$ \\ $$$$\:\:\:\:\:\:\boldsymbol{{li}}\underset{\boldsymbol{{n}}\rightarrow\infty} {\boldsymbol{{m}}}\:\boldsymbol{{U}}_{\boldsymbol{{n}}} \:=\sqrt[{\mathrm{3}}]{\boldsymbol{{n}}^{\mathrm{3}} +\mathrm{2}\boldsymbol{{n}}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{\boldsymbol{{n}}^{\mathrm{3}} −\mathrm{3}\boldsymbol{{n}}^{\mathrm{2}} }\: \\ $$

Question Number 197476    Answers: 1   Comments: 7

find the sum (1/(x+1))+(2/(x^2 +1))+(4/(x^4 +1))+.........+(2^n /(x^2^n +1)) = ??

$$ \\ $$$$\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum} \\ $$$$\:\frac{\mathrm{1}}{{x}+\mathrm{1}}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{4}}{{x}^{\mathrm{4}} +\mathrm{1}}+.........+\frac{\mathrm{2}^{{n}} }{{x}^{\mathrm{2}^{{n}} } +\mathrm{1}}\:\:=\:?? \\ $$

Question Number 197475    Answers: 3   Comments: 0

x , y ∈ R , x^( 2) + xy = 12 y^( 2) + 2xy = 7 −−−−− x , y =?

$$ \\ $$$$\:\:\:\:\:\:{x}\:,\:{y}\:\in\:\mathbb{R}\:\:\:, \\ $$$$\:\:\:\:{x}^{\:\mathrm{2}} \:+\:{xy}\:=\:\mathrm{12} \\ $$$$\:\:\:\:\:{y}^{\:\mathrm{2}} \:+\:\mathrm{2}{xy}\:=\:\mathrm{7}\: \\ $$$$\:\:\:\:−−−−−\:\:\:{x}\:,\:{y}\:=? \\ $$

Question Number 197470    Answers: 2   Comments: 0

Solve the following equation x + 2y + 2z = 0 2x + y − 2z =0 3x + 4y − 6z =0 3x − 11y + 12z = 0

$${Solve}\:{the}\:{following}\:{equation} \\ $$$${x}\:+\:\mathrm{2}{y}\:+\:\mathrm{2}{z}\:=\:\mathrm{0} \\ $$$$\mathrm{2}{x}\:+\:{y}\:−\:\mathrm{2}{z}\:=\mathrm{0} \\ $$$$\mathrm{3}{x}\:+\:\mathrm{4}{y}\:−\:\mathrm{6}{z}\:=\mathrm{0} \\ $$$$\mathrm{3}{x}\:−\:\mathrm{11}{y}\:+\:\mathrm{12}{z}\:=\:\mathrm{0} \\ $$

Question Number 197469    Answers: 0   Comments: 0

solve limits for functions f(x)=cos(sgn(1/x)) f(x)=sgn(cos(1/x))

$$ \\ $$$${solve}\:{limits}\:{for}\:{functions} \\ $$$${f}\left({x}\right)={cos}\left({sgn}\left(\mathrm{1}/{x}\right)\right) \\ $$$${f}\left({x}\right)={sgn}\left({cos}\left(\mathrm{1}/{x}\right)\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

  Pg 210      Pg 211      Pg 212      Pg 213      Pg 214      Pg 215      Pg 216      Pg 217      Pg 218      Pg 219   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com