Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 213
Question Number 197834 Answers: 2 Comments: 0
Question Number 197822 Answers: 1 Comments: 2
$${find}\:{maximum}\:{of}\:\mid{z}^{\mathrm{2}} +\mathrm{2}{z}−\mathrm{3}\mid\:? \\ $$
Question Number 197821 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{find}\:{the}\:{value}\:\:{of}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\:\mathrm{ln}\:\left(\:\mathrm{1}+\:\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\:\right)}{\mathrm{2}\:+\:{x}^{\:\mathrm{2}} }\:{dx}\:=\:? \\ $$$$ \\ $$
Question Number 197819 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}\:\:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:{H}_{\:\mathrm{2}{n}} }{{n}}\:=\:? \\ $$$${where},{H}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:+...+\frac{\mathrm{1}}{{n}} \\ $$
Question Number 197808 Answers: 1 Comments: 1
$${prove}\:\underset{{n}\rightarrow\infty} {{lim}}\:{x}^{{n}} \:=\:\mathrm{0}\:\:\:\:{when}\:\mid{x}\mid\:<\:\mathrm{1} \\ $$
Question Number 197802 Answers: 1 Comments: 0
$$\:\:\:\mathrm{I}=\underset{−\mathrm{2}} {\overset{\mathrm{6}} {\int}}\:\frac{\mid\mathrm{x}−\mathrm{1}\mid}{\mathrm{x}−\mathrm{1}}\:\mathrm{dx}\:=? \\ $$
Question Number 197906 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{S}=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\Gamma^{\:\mathrm{2}} \left(\:{k}\:\right)}{{k}\:\Gamma\:\left(\mathrm{2}{k}\:\right)}\:=\:? \\ $$$$\:\:\:\:\:\:\:\:−−−− \\ $$
Question Number 197795 Answers: 2 Comments: 0
Question Number 197794 Answers: 1 Comments: 0
$$\:\:\:\:\mathrm{if}\:\mathrm{x}\:\:\:=\:\:\:\mathrm{log}\:\mathrm{tan}\left(\frac{\pi}{\mathrm{4}}+\frac{\mathrm{y}}{\mathrm{2}}\right),\:\:\mathrm{prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\mathrm{y}\:\:\:\:=\:\:\:−{i}\mathrm{log}\:\mathrm{tan}\left(\frac{{ix}}{\mathrm{2}}\:+\:\frac{\pi}{\mathrm{4}}\right)\:\:\:\:\:\mathrm{here}\:{i}\:\:=\:\sqrt{−\mathrm{1}} \\ $$
Question Number 197792 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{y}''\:+\:\mathrm{y}\:=\:\mathrm{e}^{\mathrm{x}} \:+\:\mathrm{x}^{\mathrm{3}} ,\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{2},\:\mathrm{y}'\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{y}''\:+\:\mathrm{y}^{'} \:−\:\mathrm{2y}\:=\:\mathrm{x}\:+\:\mathrm{sin2x},\:\:\:\:\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{1},\:\mathrm{y}'\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{y}''\:−\:\mathrm{y}'\:=\:\mathrm{xe}^{\mathrm{x}} ,\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{2},\:\mathrm{y}'\left(\mathrm{0}\right)=\:\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you} \\ $$
Question Number 197784 Answers: 1 Comments: 0
$$\:\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{2}+\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\:\left(\mathrm{1}+\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\right)}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{x}+\mathrm{5}+\mathrm{6}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\left(\mathrm{1}+\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\:\right)}\:=\:\mathrm{5} \\ $$
Question Number 197783 Answers: 2 Comments: 0
$$\int\frac{{x}.\boldsymbol{{arctg}}\left(\boldsymbol{{x}}\right)}{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}\boldsymbol{{dx}}=? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 197776 Answers: 1 Comments: 3
Question Number 197772 Answers: 2 Comments: 1
$$\mathrm{Can}\:\mathrm{anyone}\:\mathrm{do}\:\mathrm{this}? \\ $$$$\underset{\:\mathrm{1}} {\int}^{\:+\infty} \frac{\mathrm{t}−\mathrm{1}}{\left(\mathrm{1}+\mathrm{t}\right)^{\mathrm{3}} \:\mathrm{lnt}}\mathrm{dt} \\ $$
Question Number 197771 Answers: 1 Comments: 0
Question Number 197767 Answers: 0 Comments: 1
Question Number 197766 Answers: 1 Comments: 1
$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left(\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}\mathrm{sin}^{\mathrm{2}{n}+\mathrm{1}} {x}\:\mathrm{cos}\:{x}\right){dx}\:\:=\:? \\ $$
Question Number 197763 Answers: 0 Comments: 0
Question Number 197753 Answers: 3 Comments: 0
$${Solve}\:{the}\:{equation}: \\ $$$$\sqrt{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{14}{x}+\mathrm{9}}−\sqrt{{x}^{\mathrm{2}} −{x}−\mathrm{20}}=\mathrm{5}\sqrt{{x}+\mathrm{1}} \\ $$
Question Number 197752 Answers: 1 Comments: 0
$$\:\mathrm{find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{m} \\ $$$$\:\mathrm{such}\:\mathrm{that}\:\mathrm{m}^{\mathrm{19}} =\:\mathrm{1800}\:\left(\mathrm{mod}\:\mathrm{2029}\right) \\ $$
Question Number 197744 Answers: 1 Comments: 0
$$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {tan}^{−\mathrm{1}} {x}\:{dx}=? \\ $$
Question Number 197740 Answers: 3 Comments: 0
Question Number 197734 Answers: 1 Comments: 0
$$\boldsymbol{{c}}{alcul}\:\int\left(\boldsymbol{{lnx}}\right)^{\sqrt{\boldsymbol{{x}}}} \boldsymbol{{dx}} \\ $$$$\boldsymbol{{help}}\:\:\boldsymbol{{pls}} \\ $$
Question Number 197730 Answers: 2 Comments: 3
Question Number 197719 Answers: 0 Comments: 3
$$\mathrm{Determiner}\:\:\:\:\boldsymbol{\mathrm{x}} \\ $$
Question Number 197717 Answers: 0 Comments: 5
$$\measuredangle\boldsymbol{\mathrm{A}}=\mathrm{62}\:\:\:\measuredangle\boldsymbol{\mathrm{C}}=\mathrm{43} \\ $$$$\boldsymbol{\mathrm{Determiner}}:\:\:\mathrm{a}=\measuredangle\boldsymbol{\mathrm{B}}\:\:\:\:\mathrm{c}=\measuredangle\boldsymbol{\mathrm{D}}\:\:\:\:\:\mathrm{b}=\measuredangle\boldsymbol{\mathrm{F}} \\ $$
Pg 208 Pg 209 Pg 210 Pg 211 Pg 212 Pg 213 Pg 214 Pg 215 Pg 216 Pg 217
Terms of Service
Privacy Policy
Contact: info@tinkutara.com