Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 210
Question Number 197950 Answers: 0 Comments: 0
$${Let}\:{x},{y},{z}>\mathrm{0}\:,\:{x}+{y}+{z}=\mathrm{3}\:{Prove}\:{That}\:: \\ $$$$\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}}+\frac{\mathrm{1}}{\:\sqrt{{z}^{\mathrm{2}} +\mathrm{2}{z}}}+\sqrt{\mathrm{3}}\left(\frac{\mathrm{1}}{{y}+\mathrm{2}}−\frac{{y}}{\mathrm{9}}\right)+\frac{\sqrt[{\mathrm{3}}]{\sqrt{{x}}+\sqrt{{y}}+\sqrt{{z}}+\mathrm{24}}}{\:\sqrt{\mathrm{3}}}\geqslant\frac{\mathrm{17}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$
Question Number 197947 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{calculate}\ldots \\ $$$$\:\:\mathrm{L}\:=\:\mathrm{lim}\:_{\mathrm{n}\rightarrow\infty} \sqrt[{{n}}]{\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\right)\ldots\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)}\:=\:?\:\:\:\:\:\:\:\: \\ $$$$\:\: \\ $$
Question Number 197944 Answers: 1 Comments: 0
$${tan}\frac{\pi}{\mathrm{12}}=\frac{{sin}\alpha−{sin}\frac{\pi}{\mathrm{12}}}{{cos}\alpha+{cos}\frac{\pi}{\mathrm{12}}} \\ $$$$\alpha=? \\ $$
Question Number 197937 Answers: 1 Comments: 0
$$\sqrt{\mathrm{3}}\:{sin}^{\mathrm{2}} \theta\centerdot{tan}\beta+{cos}^{\mathrm{2}} \beta=? \\ $$
Question Number 197935 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}\right)!}\:=\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{27}} \\ $$
Question Number 197922 Answers: 0 Comments: 1
Question Number 197920 Answers: 2 Comments: 1
Question Number 197919 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\mathrm{I}_{{m}} \:\:\:\:\:=\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\lfloor\mathrm{2}^{{m}} {x}\rfloor}{\mathrm{3}^{{m}} }\:\underset{{n}={m}+\mathrm{1}} {\overset{\infty} {\sum}}\frac{\lfloor\mathrm{2}^{{n}} {x}\rfloor}{\mathrm{3}^{{n}} }\right){dx} \\ $$$$\:\:\:\:\:\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\mathrm{I}\:=\:\:\:\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{I}_{{m}} \:\:=\:\:?\: \\ $$
Question Number 197914 Answers: 1 Comments: 3
$$\boldsymbol{\mathrm{Determiner}}\:\boldsymbol{\mathrm{la}}\:\boldsymbol{\mathrm{surface}}\:\boldsymbol{\mathrm{hachuree}} \\ $$$$\left(\boldsymbol{\mathrm{voir}}\:\:\boldsymbol{\mathrm{figure}}\right) \\ $$$$\:\boldsymbol{\mathrm{BC}}=\mathrm{10}\boldsymbol{\mathrm{cm}}\:\:\:\:\:\measuredangle\boldsymbol{\mathrm{B}}=\mathrm{45}°\:\:\:\:\:\:\measuredangle\boldsymbol{\mathrm{C}}=\mathrm{30}° \\ $$
Question Number 197908 Answers: 1 Comments: 0
$${sin}\mathrm{18}^{°} =? \\ $$
Question Number 197895 Answers: 1 Comments: 0
$${Solve}\:{the}\:{equation}: \\ $$$${x}^{\mathrm{4}} \:−\:{x}^{\mathrm{3}} \:−\:\mathrm{4}{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}\:+\:\mathrm{2}\:=\:\mathrm{0} \\ $$
Question Number 197891 Answers: 2 Comments: 0
$$\mathrm{Soit}\:\mathrm{I}=\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \sqrt{\mathrm{t}\sqrt{\mathrm{t}\left(\mathrm{1}−\mathrm{t}\right)}}\mathrm{dt} \\ $$$$\mathrm{Comment}\:\mathrm{calculer}\:\mathrm{I} \\ $$
Question Number 197917 Answers: 1 Comments: 1
Question Number 197916 Answers: 2 Comments: 0
Question Number 197882 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{5}{t}^{\mathrm{2}} −\mathrm{8}{t}+\mathrm{5}}{\left(\mathrm{2}+\sqrt{\mathrm{3}}\right){t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{2}−\sqrt{\mathrm{3}}}\:\:\mathrm{where}\:\mathrm{2}−\sqrt{\mathrm{3}}<{t}<\mathrm{2}+\sqrt{\mathrm{3}}. \\ $$
Question Number 197881 Answers: 1 Comments: 1
Question Number 197880 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{infinite}\:\mathrm{series} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{1}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}} }\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right)\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{6}} }\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +...+\mathrm{7}^{\mathrm{2}} \right)+ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{8}} }\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +...+\mathrm{15}^{\mathrm{2}} \right)+........ \\ $$
Question Number 197876 Answers: 2 Comments: 1
Question Number 197874 Answers: 1 Comments: 0
Question Number 197865 Answers: 1 Comments: 0
Question Number 197860 Answers: 3 Comments: 0
$$\:\:\:\:\frac{\mathrm{2}^{\mathrm{17}} +\mathrm{2}^{\mathrm{16}} +\mathrm{2}^{\mathrm{15}} +\ldots+\mathrm{1}}{\mathrm{2}^{\mathrm{8}} +\mathrm{2}^{\mathrm{7}} +\mathrm{2}^{\mathrm{6}} +\ldots+\mathrm{1}}\:=\:?\: \\ $$
Question Number 197851 Answers: 0 Comments: 0
$$\mathrm{If}\:\mathrm{z}_{\mathrm{1}} \:=\:\sqrt{\frac{\alpha−\beta}{\mathrm{2}}}\:\mathrm{and}\:\mathrm{z}_{\mathrm{2}} \:=\:\sqrt{\frac{\alpha+\beta}{\mathrm{2}}}\:.\:\mathrm{Show} \\ $$$$\mathrm{that}\:\mid\mathrm{z}_{\mathrm{1}} −\mathrm{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:+\:\mid\mathrm{z}_{\mathrm{1}} +\mathrm{z}_{\mathrm{2}} \mid\:=\:\mathrm{2}\mid\mathrm{z}\mid^{\mathrm{2}} +\mid\mathrm{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:\mathrm{and} \\ $$$$\mathrm{deduce}\:\mathrm{that}\: \\ $$$$\mid\alpha+\sqrt{\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} }\mid\:+\:\mid\alpha−\sqrt{\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} }\mid\:=\:\mid\alpha+\beta\mid\:+\:\mid\alpha−\beta\mid \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{in}\:\mathrm{advance} \\ $$
Question Number 197850 Answers: 1 Comments: 0
$${Solve}\:{the}\:{equation}: \\ $$$$\left(\mathrm{2}{sin}\:{x}\:−\:\mathrm{1}\right)\left(\mathrm{2}{cos}\:\mathrm{2}{x}\:+\:\mathrm{2}{sin}\:{x}\:+\mathrm{1}\right)\:=\:\mathrm{3}\left(\mathrm{1}−\mathrm{2}{cos}\:\mathrm{2}{x}\right) \\ $$
Question Number 197848 Answers: 4 Comments: 0
Question Number 197847 Answers: 2 Comments: 0
$$\mathrm{If}\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} <\mathrm{1},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of} \\ $$$$\frac{{x}+{y}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}. \\ $$
Question Number 197843 Answers: 0 Comments: 2
$$\boldsymbol{\mathrm{Exercice}}\:\:\mathrm{2} \\ $$
Pg 205 Pg 206 Pg 207 Pg 208 Pg 209 Pg 210 Pg 211 Pg 212 Pg 213 Pg 214
Terms of Service
Privacy Policy
Contact: info@tinkutara.com