Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 210

Question Number 200717    Answers: 1   Comments: 0

2. A = 12 − 2x B = 3 + 2x (A∙B)_(min) = ?

$$\mathrm{2}. \\ $$$${A}\:=\:\mathrm{12}\:−\:\mathrm{2}{x} \\ $$$${B}\:=\:\mathrm{3}\:+\:\mathrm{2}{x} \\ $$$$\left({A}\centerdot{B}\right)_{\boldsymbol{{min}}} \:=\:? \\ $$

Question Number 200716    Answers: 1   Comments: 0

1. (a/8) + (b/5) = 6 ⇒ (a+b)_(max) = ?

$$\mathrm{1}.\: \\ $$$$\frac{{a}}{\mathrm{8}}\:+\:\frac{{b}}{\mathrm{5}}\:=\:\mathrm{6}\:\:\:\Rightarrow\:\:\:\left({a}+{b}\right)_{\boldsymbol{{max}}} \:=\:? \\ $$

Question Number 200736    Answers: 0   Comments: 0

Solve: A particle moves along the space curve r_− =(t^2 +t)i+(3t−2)j+(2t^3 −4t^2 )k. find (a)velocity (b)speed or magnitude of velocity (c)acceleration (d)magnitude of acceleration at time t=2

$$\boldsymbol{{Solve}}:\:\boldsymbol{{A}}\:\boldsymbol{{particle}}\:\boldsymbol{{moves}}\:\boldsymbol{{along}}\:\boldsymbol{{the}}\:\boldsymbol{{space}} \\ $$$$\boldsymbol{{curve}}\:\underset{−} {\boldsymbol{{r}}}=\left(\boldsymbol{{t}}^{\mathrm{2}} +\boldsymbol{{t}}\right)\boldsymbol{{i}}+\left(\mathrm{3}\boldsymbol{{t}}−\mathrm{2}\right)\boldsymbol{{j}}+\left(\mathrm{2}\boldsymbol{{t}}^{\mathrm{3}} −\mathrm{4}\boldsymbol{{t}}^{\mathrm{2}} \right)\boldsymbol{{k}}. \\ $$$$\boldsymbol{{find}} \\ $$$$\left(\boldsymbol{{a}}\right)\boldsymbol{{velocity}} \\ $$$$\left(\boldsymbol{{b}}\right)\boldsymbol{{speed}}\:\boldsymbol{{or}}\:\boldsymbol{{magnitude}}\:\boldsymbol{{of}}\:\boldsymbol{{velocity}} \\ $$$$\left(\boldsymbol{{c}}\right)\boldsymbol{{acceleration}} \\ $$$$\left(\boldsymbol{{d}}\right)\boldsymbol{{magnitude}}\:\boldsymbol{{of}}\:\boldsymbol{{acceleration}}\:\boldsymbol{{at}}\:\boldsymbol{{time}}\:\boldsymbol{{t}}=\mathrm{2} \\ $$

Question Number 200697    Answers: 1   Comments: 0

Question Number 200696    Answers: 4   Comments: 0

Question Number 200691    Answers: 1   Comments: 1

Question Number 200685    Answers: 1   Comments: 0

∫_0 ^(π/4) ln (1+tanx)dx

$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\:\left(\mathrm{1}+\mathrm{tan}{x}\right){dx}\: \\ $$$$ \\ $$

Question Number 200684    Answers: 1   Comments: 0

∫_(−4π) ^(4π) ((∣x∣ sin^(2n) x)/(sin^(2n) x+cos^(2n) x))dx

$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{−\mathrm{4}\pi} ^{\mathrm{4}\pi} \:\:\:\frac{\mid{x}\mid\:\mathrm{sin}\:^{\mathrm{2}{n}} {x}}{\mathrm{sin}\:^{\mathrm{2}{n}} {x}+\mathrm{cos}\:^{\mathrm{2}{n}} {x}}{dx} \\ $$$$ \\ $$$$ \\ $$

Question Number 200677    Answers: 0   Comments: 1

∫(df/dx)×(dg/dx) ?

$$\int\frac{\mathrm{df}}{\mathrm{dx}}×\frac{\mathrm{dg}}{\mathrm{dx}}\:\:\:\:\:? \\ $$

Question Number 200657    Answers: 1   Comments: 0

Question Number 203716    Answers: 3   Comments: 0

Question Number 200646    Answers: 2   Comments: 0

Question Number 200636    Answers: 1   Comments: 5

1−Determiner la valeur de EF 2−Laire du triangle ADE

$$\mathrm{1}−\mathrm{Determiner}\:\mathrm{la}\:\mathrm{valeur}\:\mathrm{de}\:\:\boldsymbol{\mathrm{EF}} \\ $$$$\mathrm{2}−\mathrm{Laire}\:\mathrm{du}\:\mathrm{triangle}\:\:\boldsymbol{\mathrm{ADE}} \\ $$$$ \\ $$

Question Number 200632    Answers: 0   Comments: 1

help me derived the formular of motion

$$\boldsymbol{\mathrm{help}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{derived}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{formular}}\:\boldsymbol{\mathrm{of}} \\ $$$$\:\boldsymbol{\mathrm{motion}} \\ $$

Question Number 200627    Answers: 1   Comments: 0

Question Number 200622    Answers: 2   Comments: 0

Question Number 200619    Answers: 1   Comments: 0

Question Number 200618    Answers: 1   Comments: 1

Question Number 200617    Answers: 1   Comments: 0

Question Number 200606    Answers: 1   Comments: 0

Question Number 200605    Answers: 0   Comments: 4

Question Number 200604    Answers: 0   Comments: 2

Question Number 200603    Answers: 1   Comments: 0

Question Number 200602    Answers: 1   Comments: 0

Question Number 200601    Answers: 0   Comments: 6

Question Number 200596    Answers: 1   Comments: 0

  Pg 205      Pg 206      Pg 207      Pg 208      Pg 209      Pg 210      Pg 211      Pg 212      Pg 213      Pg 214   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com