Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 209

Question Number 199932    Answers: 2   Comments: 0

1. If 3 ∙ ab^(−) + bc^(−) = 115 Find: max(a+b+c)=? 2. a,b,c∈N If (a/2) + (b/3) = (c/4) Find: min(a+b+c)=?

$$\mathrm{1}. \\ $$$$\mathrm{If}\:\:\:\mathrm{3}\:\centerdot\:\overline {\mathrm{ab}}\:+\:\overline {\mathrm{bc}}\:=\:\mathrm{115} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{max}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)=? \\ $$$$ \\ $$$$\mathrm{2}. \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}\in\mathbb{N} \\ $$$$\mathrm{If}\:\:\:\frac{\mathrm{a}}{\mathrm{2}}\:\:+\:\:\frac{\mathrm{b}}{\mathrm{3}}\:\:=\:\:\frac{\mathrm{c}}{\mathrm{4}} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{min}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)=? \\ $$

Question Number 199923    Answers: 2   Comments: 0

Question Number 199922    Answers: 2   Comments: 0

Question Number 199921    Answers: 1   Comments: 0

Question Number 199916    Answers: 0   Comments: 0

Question Number 199915    Answers: 1   Comments: 0

Question Number 199913    Answers: 0   Comments: 0

To calculate the mean and median of the distribution, you can follow these steps: 1. Calculate the midpoint for each weight range: - For 118-126: Midpoint = (118 + 126) / 2 = 122 - For 127-135: Midpoint = (127 + 135) / 2 = 131 - For 136-144: Midpoint = (136 + 144) / 2 = 140 - For 145-153: Midpoint = (145 + 153) / 2 = 149 - For 154-162: Midpoint = (154 + 162) / 2 = 158 - For 163-171: Midpoint = (163 + 171) / 2 = 167 - For 172-180: Midpoint = (172 + 180) / 2 = 176 2. Multiply each midpoint by its corresponding frequency to find the sum of the products. - (122 * 3) + (131 * 5) + (140 * 9) + (149 * 12) + (158 * 5) + (167 * 4) + (176 * 2) 3. Sum the frequencies to find the total number of data points. - 3 + 5 + 9 + 12 + 5 + 4 + 2 = 40 4. Calculate the mean (average) by dividing the sum of the products by the total number of data points: - Mean = (Sum of products) / (Total number of data points) 5. To find the median, you can start by listing the weights in ascending order. Then, locate the middle value. Since there are 40 data points (an even number), the median will be the average of the 20th and 21st values. - Arrange the midpoints in ascending order: 122, 131, 140, 149, 158, 167, 176. - The 20th value is 149, and the 21st value is 158. - Median = (149 + 158) / 2 Now, you can calculate the mean and median based on the given data.

$$ \\ $$To calculate the mean and median of the distribution, you can follow these steps: 1. Calculate the midpoint for each weight range: - For 118-126: Midpoint = (118 + 126) / 2 = 122 - For 127-135: Midpoint = (127 + 135) / 2 = 131 - For 136-144: Midpoint = (136 + 144) / 2 = 140 - For 145-153: Midpoint = (145 + 153) / 2 = 149 - For 154-162: Midpoint = (154 + 162) / 2 = 158 - For 163-171: Midpoint = (163 + 171) / 2 = 167 - For 172-180: Midpoint = (172 + 180) / 2 = 176 2. Multiply each midpoint by its corresponding frequency to find the sum of the products. - (122 * 3) + (131 * 5) + (140 * 9) + (149 * 12) + (158 * 5) + (167 * 4) + (176 * 2) 3. Sum the frequencies to find the total number of data points. - 3 + 5 + 9 + 12 + 5 + 4 + 2 = 40 4. Calculate the mean (average) by dividing the sum of the products by the total number of data points: - Mean = (Sum of products) / (Total number of data points) 5. To find the median, you can start by listing the weights in ascending order. Then, locate the middle value. Since there are 40 data points (an even number), the median will be the average of the 20th and 21st values. - Arrange the midpoints in ascending order: 122, 131, 140, 149, 158, 167, 176. - The 20th value is 149, and the 21st value is 158. - Median = (149 + 158) / 2 Now, you can calculate the mean and median based on the given data.

Question Number 199911    Answers: 3   Comments: 6

Question Number 199908    Answers: 2   Comments: 0

lim_(x→0) (((2^x +3^x +5^x )/3))^(3/x) =?

$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{2}^{\mathrm{x}} +\mathrm{3}^{\mathrm{x}} +\mathrm{5}^{\mathrm{x}} }{\mathrm{3}}\right)^{\frac{\mathrm{3}}{\mathrm{x}}} =?\: \\ $$

Question Number 199907    Answers: 1   Comments: 0

∫ (dx/( (√x) + (x)^(1/3) )) =?

$$\:\:\:\:\:\int\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\:=?\: \\ $$

Question Number 199903    Answers: 2   Comments: 1

∫((x^2 dx)/( (√(x^2 −16)))) = ?

$$\int\frac{{x}^{\mathrm{2}} {dx}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{16}}}\:=\:? \\ $$

Question Number 199900    Answers: 2   Comments: 0

Question Number 199899    Answers: 1   Comments: 0

Question Number 199898    Answers: 1   Comments: 0

Question Number 199876    Answers: 0   Comments: 0

Question Number 199864    Answers: 1   Comments: 0

Find the remainder Σ_(n=1) ^(2019) n^4 when divide by 53

$$\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{2019}} {\sum}}\mathrm{n}^{\mathrm{4}} \:\mathrm{when} \\ $$$$\:\:\mathrm{divide}\:\mathrm{by}\:\mathrm{53}\: \\ $$

Question Number 199863    Answers: 1   Comments: 0

−5+(−8)+(−11)+...+(−230)

$$−\mathrm{5}+\left(−\mathrm{8}\right)+\left(−\mathrm{11}\right)+...+\left(−\mathrm{230}\right) \\ $$

Question Number 199862    Answers: 0   Comments: 0

consider the taylor expansion of the function (1/(1+x^3 )) centered at x = 1/2 then the radius of convergence of the power series repersentation of the function is

$$\mathrm{consider}\:\mathrm{the}\:\mathrm{taylor}\:\mathrm{expansion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} } \\ $$$$\mathrm{centered}\:\mathrm{at}\:\mathrm{x}\:=\:\mathrm{1}/\mathrm{2}\:\mathrm{then}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{convergence} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{power}\:\mathrm{series}\:\mathrm{repersentation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{is} \\ $$

Question Number 199858    Answers: 3   Comments: 0

Question Number 199893    Answers: 0   Comments: 2

Question Number 199891    Answers: 0   Comments: 1

solve by laplce transform y^(′′) −y^′ +y =(x+1)e^x

$${solve}\:{by}\:{laplce}\:{transform} \\ $$$${y}^{''} −{y}^{'} +{y}\:=\left({x}+\mathrm{1}\right){e}^{{x}} \\ $$

Question Number 199890    Answers: 0   Comments: 0

Question Number 199889    Answers: 0   Comments: 0

Question Number 199888    Answers: 0   Comments: 0

Question Number 199854    Answers: 1   Comments: 0

Question Number 199847    Answers: 0   Comments: 6

Find all possible value (a/(a+b+d )) +(b/(a+b+c)) + (c/(b+c+d))+(d/(a+c+d)) when a,b,c,d vary over positive reals

$$\:\mathrm{Find}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{value}\: \\ $$$$\:\frac{\mathrm{a}}{\mathrm{a}+\mathrm{b}+\mathrm{d}\:}\:+\frac{\mathrm{b}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\:+\:\frac{\mathrm{c}}{\mathrm{b}+\mathrm{c}+\mathrm{d}}+\frac{\mathrm{d}}{\mathrm{a}+\mathrm{c}+\mathrm{d}}\: \\ $$$$\:\mathrm{when}\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\:\mathrm{vary}\:\mathrm{over}\:\mathrm{positive} \\ $$$$\:\mathrm{reals}\: \\ $$

  Pg 204      Pg 205      Pg 206      Pg 207      Pg 208      Pg 209      Pg 210      Pg 211      Pg 212      Pg 213   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com