Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 208

Question Number 195263    Answers: 2   Comments: 0

{ ((y sin x+cos x = 2)),((4sin x−2y cos x = y)) :} tan x =?

$$\:\:\:\:\:\:\begin{cases}{{y}\:\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\:=\:\mathrm{2}}\\{\mathrm{4sin}\:{x}−\mathrm{2}{y}\:\mathrm{cos}\:{x}\:=\:{y}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\mathrm{tan}\:{x}\:=?\: \\ $$

Question Number 195259    Answers: 0   Comments: 1

prove that lim_(n→∞) ((e^n ∙(n!))/(n^n (√n)))=(√(2π))

$${prove}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{{e}^{{n}} \centerdot\left({n}!\right)}{{n}^{{n}} \:\sqrt{{n}}}=\sqrt{\mathrm{2}\pi} \\ $$

Question Number 195255    Answers: 2   Comments: 0

∫(dx/(cos^3 x(√(4sin xcos x))))

$$\int\frac{{dx}}{\mathrm{cos}\:^{\mathrm{3}} {x}\sqrt{\mathrm{4sin}\:{x}\mathrm{cos}\:{x}}} \\ $$

Question Number 195254    Answers: 1   Comments: 0

∫^(spillover) ((sin^2 xcos^2 x)/((sin^5 x+cos^3 xsin^2 x+sin^3 xcos^2 x+cos^5 x)^2 ))dx

$$\int^{\boldsymbol{{spillover}}} \frac{\mathrm{sin}\:^{\mathrm{2}} {x}\mathrm{cos}\:^{\mathrm{2}} {x}}{\left(\mathrm{sin}\:^{\mathrm{5}} {x}+\mathrm{cos}\:^{\mathrm{3}} {x}\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{sin}\:^{\mathrm{3}} {x}\mathrm{cos}\:^{\mathrm{2}} {x}+\mathrm{cos}\:^{\mathrm{5}} {x}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 195253    Answers: 2   Comments: 1

If 10sin^4 x+15cos^4 x=6. find the value of 27cosec^6 x+8sec^6 x

$${If}\:\mathrm{10sin}\:^{\mathrm{4}} {x}+\mathrm{15cos}\:^{\mathrm{4}} {x}=\mathrm{6}. \\ $$$${find}\:{the}\:{value}\:{of} \\ $$$$\mathrm{27cosec}\:^{\mathrm{6}} {x}+\mathrm{8sec}\:^{\mathrm{6}} {x} \\ $$$$ \\ $$

Question Number 195252    Answers: 1   Comments: 0

∫_(spillover) (dx/( (√e^(5x) ) (√((e^(2x) +e^(−2x) )^3 ))))

$$\int_{\boldsymbol{{spillover}}} \:\:\:\:\:\:\frac{{dx}}{\:\sqrt{{e}^{\mathrm{5}{x}} }\:\sqrt{\left({e}^{\mathrm{2}{x}} +{e}^{−\mathrm{2}{x}} \right)^{\mathrm{3}} }} \\ $$

Question Number 195251    Answers: 0   Comments: 1

If x^([16(log _5 x)^3 −68log _5 x]) =5^(−16) then Find the the product of x

$${If}\:\:{x}^{\left[\mathrm{16}\left(\mathrm{log}\:_{\mathrm{5}} {x}\right)^{\mathrm{3}} −\mathrm{68log}\:_{\mathrm{5}} {x}\right]} =\mathrm{5}^{−\mathrm{16}} \: \\ $$$$\:{then}\:{Find}\:{the}\:{the}\:{product}\:{of}\:{x} \\ $$$$ \\ $$

Question Number 195248    Answers: 0   Comments: 3

Question Number 195232    Answers: 0   Comments: 0

a, b, c>0, a+b+c≥1. Find max Σ_(cyc) ((a−bc)/(a+bc)).

$${a},\:{b},\:{c}>\mathrm{0},\:\:{a}+{b}+{c}\geqslant\mathrm{1}.\:\mathrm{Find} \\ $$$$\mathrm{max}\:\underset{\mathrm{cyc}} {\sum}\:\frac{{a}−{bc}}{{a}+{bc}}. \\ $$

Question Number 195231    Answers: 1   Comments: 0

determinant ((( )))

$$\:\:\:\:\:\begin{array}{|c|}{\:\cancel{\underline{\underbrace{ }}}}\\\hline\end{array} \\ $$

Question Number 195229    Answers: 0   Comments: 9

below equestion is show elips and hypharabollah (x^2 /(cos3))+(y^2 /(sin3))=1

$${below}\:{equestion}\:{is}\:{show}\:\:{elips}\:{and} \\ $$$${hypharabollah} \\ $$$$\frac{{x}^{\mathrm{2}} }{{cos}\mathrm{3}}+\frac{{y}^{\mathrm{2}} }{{sin}\mathrm{3}}=\mathrm{1} \\ $$

Question Number 195227    Answers: 0   Comments: 0

α_1 ^3 [((Π_(i=2) ^n (x−α_i ))/(Π_(i=2) ^n (α_1 −α_i )))]+Σ_(j=2) ^n (α_j ^3 [((Π_(i=1) ^(j−1) (x−α_i )Π_(i=j+1) ^n (x−α_j ))/(Π_(i=1) ^(j−1) (α_j −α_i )Π_(i=j+1) ^n (α_j −α_i )))]+α_n ^3 [((Π_(i=1) ^(n−1) (x−α_i ))/(Π_(i=1) ^(n−1) (α_n −α_i )))]−x^3 =0 solve for x . [ where n≥5 ]

$$ \\ $$$$\alpha_{\mathrm{1}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{2}} {\overset{{n}} {\prod}}\left({x}−\alpha_{{i}} \right)}{\underset{{i}=\mathrm{2}} {\overset{{n}} {\prod}}\left(\alpha_{\mathrm{1}} −\alpha_{{i}} \right)}\right]+\underset{{j}=\mathrm{2}} {\overset{{n}} {\sum}}\left(\alpha_{{j}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{1}} {\overset{{j}−\mathrm{1}} {\prod}}\left({x}−\alpha_{{i}} \right)\underset{{i}={j}+\mathrm{1}} {\overset{{n}} {\prod}}\left({x}−\alpha_{{j}} \right)}{\underset{{i}=\mathrm{1}} {\overset{{j}−\mathrm{1}} {\prod}}\left(\alpha_{{j}} −\alpha_{{i}} \right)\underset{{i}={j}+\mathrm{1}} {\overset{{n}} {\prod}}\left(\alpha_{{j}} −\alpha_{{i}} \right)}\right]+\alpha_{{n}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left({x}−\alpha_{{i}} \right)}{\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\alpha_{{n}} −\alpha_{{i}} \right)}\right]−{x}^{\mathrm{3}} =\mathrm{0}\right. \\ $$$${solve}\:{for}\:{x}\:.\:\:\:\:\:\:\:\:\:\:\:\:\left[\:{where}\:{n}\geqslant\mathrm{5}\:\right] \\ $$

Question Number 195224    Answers: 2   Comments: 0

∫_1 ^e 0 dx = ??

$$\:\:\:\:\:\:\:\int_{\mathrm{1}} ^{\mathrm{e}} \mathrm{0}\:{dx}\:=\:?? \\ $$

Question Number 195208    Answers: 4   Comments: 0

Question Number 195202    Answers: 0   Comments: 0

Question Number 195203    Answers: 1   Comments: 0

Calculer ∫^( +∞) _( 0) (dt/((e^t −e^(−t) )^2 +a^2 ))

$$\mathrm{Calculer}\:\underset{\:\mathrm{0}} {\int}^{\:+\infty} \frac{\mathrm{dt}}{\left(\mathrm{e}^{\mathrm{t}} −\mathrm{e}^{−\mathrm{t}} \right)^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} } \\ $$

Question Number 195195    Answers: 1   Comments: 1

find the limit: _(x→a ) ^(lim) (x^(1/3) /x^(1/2) ) − (a^(1/3) /a^(1/2) )

$$\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{limit}: \\ $$$$\:\underset{\mathrm{x}\rightarrow\mathrm{a}\:} {\overset{\mathrm{lim}} {\:}}\:\:\:\frac{\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{2}}} }\:−\:\frac{\boldsymbol{\mathrm{a}}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\boldsymbol{\mathrm{a}}^{\frac{\mathrm{1}}{\mathrm{2}}} } \\ $$

Question Number 195194    Answers: 2   Comments: 0

Question Number 195192    Answers: 1   Comments: 0

lim_(x→∞) (sinx+(π/2))^x =?

$$ \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{sinx}+\frac{\pi}{\mathrm{2}}\right)^{\mathrm{x}} =? \\ $$

Question Number 195206    Answers: 1   Comments: 0

Question Number 195185    Answers: 0   Comments: 0

1/ Montrer que ∫^( +∞) _( 0) (((1−x^2 )^(2p−1) )/(1−x^(4p) ))dx=((2^(2p−3) /p))π[1+2Σ_(k=1) ^(p−1) cos^(2p−1) (((kπ)/(2p)))] 2/ En de^ duire ∫^( 1) _( 0) (((1−x^2 )^(2p−1) )/(1−x^(4p) ))dx

$$\mathrm{1}/\:\:\mathrm{Montrer}\:\mathrm{que}\:\underset{\:\mathrm{0}} {\int}^{\:+\infty} \:\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}{p}−\mathrm{1}} }{\mathrm{1}−{x}^{\mathrm{4}{p}} }{dx}=\left(\frac{\mathrm{2}^{\mathrm{2}{p}−\mathrm{3}} }{{p}}\right)\pi\left[\mathrm{1}+\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{{p}−\mathrm{1}} {\sum}}{cos}^{\mathrm{2}{p}−\mathrm{1}} \left(\frac{{k}\pi}{\mathrm{2}{p}}\right)\right] \\ $$$$\mathrm{2}/\:\:\:\:\mathrm{En}\:\mathrm{d}\acute {\mathrm{e}duire}\:\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}{p}−\mathrm{1}} }{\mathrm{1}−{x}^{\mathrm{4}{p}} }{dx} \\ $$

Question Number 195180    Answers: 1   Comments: 0

1. f(x)= { ((sinx , (π/2)<x≤2π)),((cosx , 0≤x≤(π/2))) :} then find the f^′ ((π/2)) =? 2. f(x)= { ((sinx , (π/2)<x≤2π)),((cosx , 0≤x≤(π/2))) :} then find the f′(2π) =?

$$ \\ $$$$\mathrm{1}.\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}^{'} \left(\frac{\pi}{\mathrm{2}}\right)\:=? \\ $$$$\mathrm{2}.\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}'\left(\mathrm{2}\pi\right)\:=? \\ $$$$ \\ $$

Question Number 195178    Answers: 2   Comments: 0

Question Number 195175    Answers: 1   Comments: 0

Question Number 195171    Answers: 0   Comments: 0

Question Number 195170    Answers: 2   Comments: 0

f(x)= { ((x^7 +2x+1 ;x≥2)),((x^2 +7x+4 ;x<1)) :} f^′ (1)=?

$${f}\left({x}\right)=\begin{cases}{{x}^{\mathrm{7}} +\mathrm{2}{x}+\mathrm{1}\:\:\:\:\:\:\:;{x}\geqslant\mathrm{2}}\\{{x}^{\mathrm{2}} +\mathrm{7}{x}+\mathrm{4}\:\:\:\:\:\:\:\:;{x}<\mathrm{1}}\end{cases} \\ $$$${f}^{'} \left(\mathrm{1}\right)=? \\ $$

  Pg 203      Pg 204      Pg 205      Pg 206      Pg 207      Pg 208      Pg 209      Pg 210      Pg 211      Pg 212   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com