Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 208
Question Number 199520 Answers: 1 Comments: 0
$${n}^{\mathrm{4}} +{an}^{\mathrm{3}} +{bn}^{\mathrm{2}} +{cn}+{d}={k}^{\mathrm{2}} \:\left({k}\in{N}\right) \\ $$$${a},{b},{c},{d}=¿ \\ $$
Question Number 199511 Answers: 1 Comments: 1
$$\int_{\mathrm{1}} ^{+{oo}} {ln}\left(\mathrm{1}+{lnx}\right)^{−{lnx}} \:{dx} \\ $$
Question Number 199510 Answers: 3 Comments: 0
Question Number 199509 Answers: 2 Comments: 2
Question Number 199498 Answers: 2 Comments: 1
Question Number 199486 Answers: 2 Comments: 0
$$\mathrm{Solve}:\:\:\:\mathrm{100}^{\boldsymbol{\mathrm{x}}} \:=\:\mathrm{200} \\ $$
Question Number 199482 Answers: 0 Comments: 3
$$\mathrm{can}\:\mathrm{someone}\:\mathrm{factor}\:\mathrm{this}\:\left(\mathrm{3x}^{\mathrm{3}} \mathrm{y}−\mathrm{7x}^{\mathrm{2}} +\mathrm{5xy}^{\mathrm{3}} −\mathrm{y}^{\mathrm{2}} \right) \\ $$
Question Number 199480 Answers: 0 Comments: 1
Question Number 199471 Answers: 1 Comments: 0
$${Find}\:{the}\:{integral} \\ $$$$\int_{−\mathrm{3}} ^{\mathrm{3}} \begin{cases}{{x}^{\mathrm{3}} −{x}}&{\left({x}\leq\mathrm{0}\right)}\\{{x}^{\mathrm{2}} }&{\left({x}\geq\mathrm{0}\right)}\end{cases}{dx} \\ $$
Question Number 199468 Answers: 1 Comments: 0
Question Number 199467 Answers: 1 Comments: 0
Question Number 199466 Answers: 1 Comments: 0
Question Number 199459 Answers: 2 Comments: 0
$$\:\:\mathrm{What}\:\mathrm{minimum}\:\mathrm{value}\: \\ $$$$\:\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{z}^{\mathrm{2}} \:\mathrm{when}\: \\ $$$$\:\:\mathrm{x}+\mathrm{2y}+\mathrm{4z}=\mathrm{21} \\ $$
Question Number 199458 Answers: 1 Comments: 0
$$\boldsymbol{{Solve}}:\:\boldsymbol{{log}}_{\mathrm{3}} \boldsymbol{{p}}\:+\:\boldsymbol{{log}}_{\boldsymbol{{r}}} \mathrm{8}\:=\mathrm{5} \\ $$$$\boldsymbol{{r}}+\boldsymbol{{p}}=\mathrm{11}.\:\:\boldsymbol{{find}}\:\boldsymbol{{r\&p}} \\ $$
Question Number 199451 Answers: 3 Comments: 0
$$\mathrm{Find}: \\ $$$$\mathrm{1}.\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{5}\boldsymbol{\mathrm{n}}}]{\frac{\mathrm{5n}\:−\:\mathrm{25}}{\mathrm{3n}\:+\:\mathrm{15}}} \\ $$$$\mathrm{2}.\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{1}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} \:−\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{1}}\:\right) \\ $$$$\mathrm{3}.\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{4x}^{\mathrm{3}} \:−\:\mathrm{1}}{\mathrm{sin}^{\mathrm{6}} \:\mathrm{2x}} \\ $$
Question Number 199481 Answers: 1 Comments: 0
$${Give}\:\bigtriangleup{ABC}\:{is}\:{acute}\:{triangle}. \\ $$$${M}\:\:{is}\:{a}\:{midpoint}\:{of}\:{BC} \\ $$$${Prove}\:{that}\:{AB}+{AC}>\mathrm{2}{AM} \\ $$
Question Number 199447 Answers: 1 Comments: 0
$${b}_{{n}} ={sin}\left({a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}\right)\Rightarrow\:{S}_{{n}} =? \\ $$
Question Number 199446 Answers: 0 Comments: 0
$$\mathrm{53bxnx} \\ $$
Question Number 199433 Answers: 1 Comments: 1
Question Number 199432 Answers: 2 Comments: 0
$${without}\:{using}\:{calculator}: \\ $$$${what}\:{is}\:{larger}?\:\mathrm{log}_{\mathrm{2}} \:\mathrm{3}\:{or}\:\mathrm{log}_{\mathrm{3}} \:\mathrm{5}? \\ $$
Question Number 199424 Answers: 1 Comments: 0
$$\:\:\:\boldsymbol{{x}} \\ $$
Question Number 199413 Answers: 2 Comments: 0
Question Number 199405 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{calculate}\:... \\ $$$$\:\:\mathrm{Q}:\:\:\:\:\:\:\mathrm{I}{f}\:\:,\:\:\:{f}\left({x}\right)\:=\mathrm{2}\:{e}^{{x}} \:−\mathrm{1}\:+\:\lfloor{e}^{{x}} +\:\frac{\mathrm{3}}{\mathrm{2}}\:+\lfloor{e}^{{x}} \rfloor\:\rfloor \\ $$$$\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\:{f}\:^{−\mathrm{1}} \:\left(\:\frac{\pi}{\mathrm{4}}\:\right)\:=? \\ $$$$\:\:\:\:\: \\ $$
Question Number 199399 Answers: 1 Comments: 0
$$\boldsymbol{{Solve}}:\:\boldsymbol{{log}}_{\mathrm{2}} \boldsymbol{{r}}+\boldsymbol{{log}}_{\mathrm{3}} \boldsymbol{{p}}=\mathrm{3} \\ $$$$\boldsymbol{{p}}+\boldsymbol{{r}}=\mathrm{11}\:\:\:\boldsymbol{{fund}}\:\boldsymbol{{p}}\:\boldsymbol{{and}}\:\boldsymbol{{r}}. \\ $$
Question Number 199393 Answers: 2 Comments: 0
Question Number 199392 Answers: 1 Comments: 0
Pg 203 Pg 204 Pg 205 Pg 206 Pg 207 Pg 208 Pg 209 Pg 210 Pg 211 Pg 212
Terms of Service
Privacy Policy
Contact: info@tinkutara.com