Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 207

Question Number 198025    Answers: 1   Comments: 1

Question Number 198023    Answers: 1   Comments: 0

Question Number 198022    Answers: 1   Comments: 0

Five letters are selected from

$$\:\:\mathrm{Five}\:\mathrm{letters}\:\mathrm{are}\:\mathrm{selected}\:\mathrm{from} \\ $$

Question Number 198018    Answers: 1   Comments: 0

Question Number 198014    Answers: 1   Comments: 0

Question Number 198013    Answers: 1   Comments: 0

Question Number 198001    Answers: 0   Comments: 2

∫(e)^((x)^(lnx) ) dx=?

$$\int\left({e}\right)^{\left({x}\right)^{{lnx}} } \:{dx}=? \\ $$

Question Number 197998    Answers: 3   Comments: 0

lim_(x→0) ((x−ln(x+(√(1+x^2 ))))/x^3 )=? with out L′Hospital rul

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}−{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{{x}^{\mathrm{3}} }=? \\ $$$${with}\:{out}\:{L}'{Hospital}\:{rul} \\ $$

Question Number 197985    Answers: 0   Comments: 5

lim_(n→∞) ( _( k) ^( n) ) p^k q^(n−k)

$$\underset{{n}\rightarrow\infty} {{lim}}\:\left(\underset{\:{k}} {\overset{\:\:{n}} {\:}}\:\right)\:{p}^{{k}} \:{q}^{{n}−{k}} \\ $$

Question Number 197982    Answers: 2   Comments: 0

Question Number 197980    Answers: 1   Comments: 4

Question Number 197972    Answers: 0   Comments: 0

Find L^(−1) { (1/(2^( s) (√( 2s+1)) )) }= ? inverse laplace transform...

$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:{Find}\: \\ $$$$\:\:\:\:\:\:\:\mathscr{L}\:^{−\mathrm{1}} \left\{\:\:\frac{\mathrm{1}}{\mathrm{2}^{\:{s}} \:\sqrt{\:\mathrm{2}{s}+\mathrm{1}}\:}\:\right\}=\:? \\ $$$$ \\ $$$$\:\:\:\:\:\:{inverse}\:\:{laplace}\:{transform}... \\ $$

Question Number 197970    Answers: 2   Comments: 0

Question Number 197967    Answers: 1   Comments: 0

Question Number 197961    Answers: 0   Comments: 4

A cylindrical container is designed to contain bees. At exactly 12:00pm, there are 2 bees in the container. At every 1 min, the total number of bees in the container is doubled. By 1.00pm, the container is full of bees. At what time is the container A. Half full of the bees B. Quarter full of the bees C. 1/8th full of the bees D. 1/16th full of the bees Note: you can assume any size of the cylindrical container, and all bees are of equal size. Show working

$$ \\ $$A cylindrical container is designed to contain bees. At exactly 12:00pm, there are 2 bees in the container. At every 1 min, the total number of bees in the container is doubled. By 1.00pm, the container is full of bees. At what time is the container A. Half full of the bees B. Quarter full of the bees C. 1/8th full of the bees D. 1/16th full of the bees Note: you can assume any size of the cylindrical container, and all bees are of equal size. Show working

Question Number 197960    Answers: 1   Comments: 0

determiner le total de nombres de 5 chiffres comprises entre 10000 et 50000 divisibles simultanement par 5 et 9 (sans utiliser les formules d arrangement et de combinaison)

$$\mathrm{determiner}\:\mathrm{le}\:\mathrm{total}\:\mathrm{de}\:\mathrm{nombres}\:\mathrm{de}\: \\ $$$$\mathrm{5}\:\mathrm{chiffres}\:\mathrm{comprises}\:\mathrm{entre}\:\mathrm{10000}\:\mathrm{et}\: \\ $$$$\mathrm{50000}\:\:\mathrm{divisibles}\:\mathrm{simultanement}\:\mathrm{par} \\ $$$$\mathrm{5}\:\mathrm{et}\:\mathrm{9}\:\:\: \\ $$$$\left(\mathrm{sans}\:\mathrm{utiliser}\:\mathrm{les}\:\mathrm{formules}\:\mathrm{d}\:\mathrm{arrangement}\right. \\ $$$$\left.\mathrm{et}\:\mathrm{de}\:\mathrm{combinaison}\right) \\ $$$$ \\ $$

Question Number 197951    Answers: 0   Comments: 0

Σ_(n=1 ) ^∞ (n/(n^4 +n^2 +1)) − Σ_(n=1) ^∞ (n^2 /(n^8 +n^4 +1)) = ?

$$\:\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{{n}}{{n}^{\mathrm{4}} +{n}^{\mathrm{2}} +\mathrm{1}}\:−\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{8}} +{n}^{\mathrm{4}} +\mathrm{1}}\:=\:? \\ $$

Question Number 197950    Answers: 0   Comments: 0

Let x,y,z>0 , x+y+z=3 Prove That : (1/( (√(x^2 +2x))))+(1/( (√(z^2 +2z))))+(√3)((1/(y+2))−(y/9))+((((√x)+(√y)+(√z)+24))^(1/3) /( (√3)))≥((17)/(3(√3)))

$${Let}\:{x},{y},{z}>\mathrm{0}\:,\:{x}+{y}+{z}=\mathrm{3}\:{Prove}\:{That}\:: \\ $$$$\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}}}+\frac{\mathrm{1}}{\:\sqrt{{z}^{\mathrm{2}} +\mathrm{2}{z}}}+\sqrt{\mathrm{3}}\left(\frac{\mathrm{1}}{{y}+\mathrm{2}}−\frac{{y}}{\mathrm{9}}\right)+\frac{\sqrt[{\mathrm{3}}]{\sqrt{{x}}+\sqrt{{y}}+\sqrt{{z}}+\mathrm{24}}}{\:\sqrt{\mathrm{3}}}\geqslant\frac{\mathrm{17}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$

Question Number 197947    Answers: 1   Comments: 0

calculate… L = lim _(n→∞) (( (1+(1/2) )(1+(1/3))… (1+(1/n))))^(1/n) = ?

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{calculate}\ldots \\ $$$$\:\:\mathrm{L}\:=\:\mathrm{lim}\:_{\mathrm{n}\rightarrow\infty} \sqrt[{{n}}]{\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\right)\ldots\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)}\:=\:?\:\:\:\:\:\:\:\: \\ $$$$\:\: \\ $$

Question Number 197944    Answers: 1   Comments: 0

tan(π/(12))=((sinα−sin(π/(12)))/(cosα+cos(π/(12)))) α=?

$${tan}\frac{\pi}{\mathrm{12}}=\frac{{sin}\alpha−{sin}\frac{\pi}{\mathrm{12}}}{{cos}\alpha+{cos}\frac{\pi}{\mathrm{12}}} \\ $$$$\alpha=? \\ $$

Question Number 197937    Answers: 1   Comments: 0

(√3) sin^2 θ∙tanβ+cos^2 β=?

$$\sqrt{\mathrm{3}}\:{sin}^{\mathrm{2}} \theta\centerdot{tan}\beta+{cos}^{\mathrm{2}} \beta=? \\ $$

Question Number 197935    Answers: 1   Comments: 0

Show that Σ_(n=1) ^∞ (((n!)^2 )/((2n)!)) =(1/3)+((2π(√3))/(27))

$$\mathrm{Show}\:\mathrm{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}\right)!}\:=\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{27}} \\ $$

Question Number 197922    Answers: 0   Comments: 1

Question Number 197920    Answers: 2   Comments: 1

Question Number 197919    Answers: 1   Comments: 0

I_m = ∫_0 ^1 (((⌊2^m x⌋)/3^m ) Σ_(n=m+1) ^∞ ((⌊2^n x⌋)/3^n ))dx then find the value of I = Σ_(m=1) ^∞ I_m = ?

$$\:\:\:\:\:\:\mathrm{I}_{{m}} \:\:\:\:\:=\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\lfloor\mathrm{2}^{{m}} {x}\rfloor}{\mathrm{3}^{{m}} }\:\underset{{n}={m}+\mathrm{1}} {\overset{\infty} {\sum}}\frac{\lfloor\mathrm{2}^{{n}} {x}\rfloor}{\mathrm{3}^{{n}} }\right){dx} \\ $$$$\:\:\:\:\:\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\mathrm{I}\:=\:\:\:\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{I}_{{m}} \:\:=\:\:?\: \\ $$

Question Number 197914    Answers: 1   Comments: 3

Determiner la surface hachuree (voir figure) BC=10cm ∡B=45° ∡C=30°

$$\boldsymbol{\mathrm{Determiner}}\:\boldsymbol{\mathrm{la}}\:\boldsymbol{\mathrm{surface}}\:\boldsymbol{\mathrm{hachuree}} \\ $$$$\left(\boldsymbol{\mathrm{voir}}\:\:\boldsymbol{\mathrm{figure}}\right) \\ $$$$\:\boldsymbol{\mathrm{BC}}=\mathrm{10}\boldsymbol{\mathrm{cm}}\:\:\:\:\:\measuredangle\boldsymbol{\mathrm{B}}=\mathrm{45}°\:\:\:\:\:\:\measuredangle\boldsymbol{\mathrm{C}}=\mathrm{30}° \\ $$

  Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207      Pg 208      Pg 209      Pg 210      Pg 211   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com