Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 207
Question Number 195331 Answers: 1 Comments: 0
Question Number 195330 Answers: 0 Comments: 1
Question Number 195325 Answers: 2 Comments: 0
$${prove}\:{that} \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{{tan}\left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{1}}{{x}−\frac{\pi}{\mathrm{2}}}=\mathrm{1} \\ $$
Question Number 200302 Answers: 1 Comments: 0
Question Number 195320 Answers: 1 Comments: 0
$$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\:+\infty} {t}^{−\mathrm{2}{t}} {sin}^{\mathrm{2}{n}} {tdt} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{I}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}\pi} }\:\:\underset{\:\mathrm{0}} {\int}^{\:\pi} {e}^{−\mathrm{2}{t}} {sin}^{\mathrm{2}{n}} {t}\:{dt} \\ $$$$\mathrm{and}\:\:\mathrm{I}_{\mathrm{n}} \underset{\infty} {\:\:\backsim\:\:}\:\frac{\mathrm{1}}{\mathrm{2}{sh}\left(\pi\right)}\sqrt{\frac{\pi}{{n}}} \\ $$
Question Number 195342 Answers: 4 Comments: 0
$$\:\:\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that}\:\:\forall{n}\:\in\:\mathbb{N}^{\ast} \:,\:\mathrm{4}^{{n}} \left({n}!\right)^{\mathrm{3}} \:<\:\left({n}+\mathrm{1}\right)^{\mathrm{3}{n}} \:. \\ $$$$\mathrm{2}.\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{in}\:\mathbb{Z}^{\mathrm{2}} \:: \\ $$$$\:\:\:\:\:{a}./\:\:\mathrm{2}{x}^{\mathrm{3}} +{xy}−\mathrm{7}=\mathrm{0}\:, \\ $$$$\:\:\:\:\:{b}./\:\:{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{7}\right)\left({x}+\mathrm{8}\right)={y}^{\mathrm{2}} . \\ $$
Question Number 195341 Answers: 0 Comments: 0
Question Number 195315 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\Subset \\ $$
Question Number 195555 Answers: 1 Comments: 0
Question Number 195554 Answers: 0 Comments: 0
Question Number 195553 Answers: 1 Comments: 0
Question Number 195301 Answers: 1 Comments: 0
$$\begin{cases}{{x}^{\mathrm{2}} +{y}=\mathrm{11}}\\{{x}+{y}^{\mathrm{2}} =\mathrm{7}}\end{cases}\Rightarrow\:{x},{y}=? \\ $$
Question Number 195292 Answers: 1 Comments: 0
Question Number 195291 Answers: 1 Comments: 0
$$\:\:{it}\:{is}\:{given}\:{a},{b},{c}\:\in\:\mathbb{N}^{\ast} \:\:{and}\:\:{ab}<{c}\:.\:{Prove}\:{that}\:{a}+{b}\leqslant{c}. \\ $$
Question Number 195288 Answers: 0 Comments: 1
$${x},\:{y},\:{z}\in\mathbb{R}_{+} , \\ $$$${P}\:=\:\frac{{x}}{{x}\:+\:{y}}\:+\:\frac{{y}}{{y}\:+\:{z}}\:+\:\frac{{z}}{{z}\:+\:{x}}, \\ $$$${Q}\:=\:\frac{{y}}{{x}\:+\:{y}}\:+\:\frac{{z}}{{y}\:+\:{z}}\:+\:\frac{{x}}{{z}\:+\:{x}}, \\ $$$${Q}\:=\:\frac{{z}}{{x}\:+\:{y}}\:+\:\frac{{x}}{{y}\:+\:{z}}\:+\:\frac{{y}}{{z}\:+\:{x}}. \\ $$$${f}\left({x},\:{y},\:{z}\right)=\mathrm{max}\left\{{P},\:{Q},\:{R}\right\},\:\mathrm{find}\:{f}_{\mathrm{min}} . \\ $$
Question Number 195287 Answers: 2 Comments: 0
Question Number 200309 Answers: 2 Comments: 0
Question Number 195289 Answers: 1 Comments: 0
Question Number 195290 Answers: 1 Comments: 0
$$\:{A}\:{professor}\:{said}\:\:\mathrm{0}\mid\mathrm{0}\:{because}\:\mathrm{0}=\:\mathrm{0}×{a}+\mathrm{0}\:\:\:,\:{a}\in\:\mathbb{N}.\:{Can}\:{you}\:{prove}? \\ $$
Question Number 195322 Answers: 1 Comments: 0
Question Number 200300 Answers: 1 Comments: 0
Question Number 200299 Answers: 1 Comments: 0
Question Number 200298 Answers: 1 Comments: 1
Question Number 195273 Answers: 0 Comments: 1
Question Number 195454 Answers: 4 Comments: 1
Question Number 195453 Answers: 1 Comments: 1
$$\:\:\:\:\mathrm{lim}_{{x}\rightarrow+\infty\:\:} \:{x}\:{ln}\left(\frac{{e}^{{x}} +\:\mathrm{1}}{{e}^{{x}} −\mathrm{1}}\right)\:\:? \\ $$
Pg 202 Pg 203 Pg 204 Pg 205 Pg 206 Pg 207 Pg 208 Pg 209 Pg 210 Pg 211
Terms of Service
Privacy Policy
Contact: info@tinkutara.com