Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 207

Question Number 200336    Answers: 1   Comments: 0

Question Number 200330    Answers: 4   Comments: 0

2^x − 3^x = (√(6^x − 9^x )) find: x = ?

$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:=\:\sqrt{\mathrm{6}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{9}^{\boldsymbol{\mathrm{x}}} } \\ $$$$\mathrm{find}:\:\:\:\mathrm{x}\:=\:? \\ $$

Question Number 200325    Answers: 1   Comments: 0

A point P is taken inside the rectangleC ABD. This point joins the four vertices ofh te rectangle. Knowing that PA is 15 cm. B P 24 cm and PC 20 cm find the distancef o point P from point D.

$$\mathrm{A}\:\mathrm{point}\:\mathrm{P}\:\mathrm{is}\:\mathrm{taken}\:\mathrm{inside}\:\mathrm{the}\:\mathrm{rectangleC} \\ $$$$\mathrm{ABD}.\:\mathrm{This}\:\mathrm{point}\:\mathrm{joins}\:\mathrm{the}\:\mathrm{four}\:\mathrm{vertices}\:\mathrm{ofh} \\ $$$$\mathrm{te}\:\mathrm{rectangle}.\:\:\mathrm{Knowing}\:\mathrm{that}\:\mathrm{PA}\:\mathrm{is}\:\mathrm{15}\:\mathrm{cm}.\:\mathrm{B} \\ $$$$\mathrm{P}\:\:\mathrm{24}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{PC}\:\:\mathrm{20}\:\mathrm{cm}\:\mathrm{find}\:\mathrm{the}\:\mathrm{distancef} \\ $$$$\mathrm{o}\:\mathrm{point}\:\mathrm{P}\:\mathrm{from}\:\mathrm{point}\:\mathrm{D}. \\ $$

Question Number 200321    Answers: 5   Comments: 0

for x,y,z ∈N, if 38x+40y+41z=520 find x+y+z=?

$${for}\:{x},{y},{z}\:\in{N},\:{if} \\ $$$$\mathrm{38}{x}+\mathrm{40}{y}+\mathrm{41}{z}=\mathrm{520} \\ $$$${find}\:{x}+{y}+{z}=? \\ $$

Question Number 200319    Answers: 4   Comments: 0

Question Number 200318    Answers: 2   Comments: 0

Question Number 200315    Answers: 0   Comments: 3

{ (( ab ^(−) ∙ b ^(−) + ba ^(−) ∙ a ^(−) = cde ^(−) )),(( ab ^(−) ∙ b ^(−) − ba ^(−) ∙ a ^(−) = f ^(−) )) :} a,b,c,d,e,f are all different and in some order consecutive also. Determine the remaining decimal digits.

$$\:\begin{cases}{\overline {\:{ab}\:}\centerdot\overline {\:{b}\:}+\overline {\:{ba}\:}\centerdot\overline {\:{a}\:}=\overline {\:{cde}\:}}\\{\overline {\:{ab}\:}\centerdot\overline {\:{b}\:}−\overline {\:{ba}\:}\centerdot\overline {\:{a}\:}=\overline {\:{f}\:}\:}\end{cases} \\ $$$${a},{b},{c},{d},{e},{f}\:{are}\:{all}\:{different}\:{and}\:{in} \\ $$$${some}\:{order}\:{consecutive}\:{also}. \\ $$$$\: \\ $$$$\mathcal{D}{etermine}\:{the}\:{remaining}\:{decimal} \\ $$$${digits}. \\ $$

Question Number 200275    Answers: 1   Comments: 0

Question Number 200270    Answers: 0   Comments: 2

Question Number 200268    Answers: 1   Comments: 0

Question Number 200265    Answers: 1   Comments: 0

Question Number 200262    Answers: 2   Comments: 0

Question Number 200257    Answers: 1   Comments: 0

Question Number 200256    Answers: 0   Comments: 0

Question Number 200254    Answers: 1   Comments: 0

calculate ... Ω = ∫_(∫_0 ^( (π/2)) ln(tan(x))dx) ^( ∫_0 ^( ∞) ((sin^2 (x))/x^2 ) dx) ln(sin(x))dx=?

$$ \\ $$$$\:\:\:\:\:\:{calculate}\:... \\ $$$$\:\:\Omega\:=\:\int_{\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\mathrm{ln}\left(\mathrm{tan}\left({x}\right)\right){dx}} ^{\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }\:{dx}} \mathrm{ln}\left(\mathrm{sin}\left({x}\right)\right){dx}=? \\ $$

Question Number 200253    Answers: 2   Comments: 0

Question Number 200251    Answers: 1   Comments: 0

Question Number 200250    Answers: 2   Comments: 0

Question Number 200249    Answers: 1   Comments: 1

Solve: find the distance of the point P(3,4) from the line y=−2x+3

$$\boldsymbol{{Solve}}:\:\:\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{distance}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{point}}\:\boldsymbol{{P}}\left(\mathrm{3},\mathrm{4}\right)\:\boldsymbol{{from}}\:\boldsymbol{{the}}\:\boldsymbol{{line}}\:\boldsymbol{{y}}=−\mathrm{2}\boldsymbol{{x}}+\mathrm{3} \\ $$

Question Number 200242    Answers: 3   Comments: 0

Question Number 200236    Answers: 1   Comments: 0

what is the smallest natural number which has at least 100 divisors?

$${what}\:{is}\:{the}\:{smallest}\:{natural}\:{number} \\ $$$${which}\:{has}\:{at}\:{least}\:\mathrm{100}\:{divisors}? \\ $$

Question Number 200224    Answers: 3   Comments: 0

Question Number 200205    Answers: 0   Comments: 1

Question Number 200204    Answers: 1   Comments: 7

Question Number 200240    Answers: 0   Comments: 0

the local minimum value of the function f(x,y) = x^2 +xy+y^2 −3x−3y+11

$$\mathrm{the}\:\mathrm{local}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$${f}\left({x},{y}\right)\:=\:{x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{3}{y}+\mathrm{11} \\ $$

Question Number 200200    Answers: 1   Comments: 0

Find four positive integers, each not exceeding 70000 and each having more than 100 divisors.

$${Find}\:{four}\:{positive}\:{integers}, \\ $$$$\:{each}\:{not}\:{exceeding}\:\mathrm{70000}\:{and}\: \\ $$$${each}\:{having}\:{more}\:{than}\:\mathrm{100} \\ $$$$\:{divisors}. \\ $$

  Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207      Pg 208      Pg 209      Pg 210      Pg 211   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com