Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 207
Question Number 191549 Answers: 0 Comments: 0
Question Number 191546 Answers: 1 Comments: 0
$$\mathrm{If}\:{m}\:+\:\mathrm{1}\:=\:\sqrt{{n}}\:+\:\mathrm{3}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{m}^{\mathrm{3}} \:−\:\mathrm{6}{m}^{\mathrm{2}} \:+\:\mathrm{12}{m}\:−\mathrm{8}}{\:\sqrt{{n}}}\:−\:{n}\right) \\ $$
Question Number 191536 Answers: 2 Comments: 0
$$\mathrm{Factorize} \\ $$$$\frac{\mathrm{2}}{\mathrm{2}{x}\:−\:\mathrm{1}}\:−\mathrm{5}\:+\:\frac{\mathrm{3}}{\mathrm{3}{x}\:−\:\mathrm{1}} \\ $$
Question Number 191530 Answers: 0 Comments: 3
Question Number 191529 Answers: 2 Comments: 0
$$\mathrm{If}\:\frac{{x}\:−\:{y}}{{x}\sqrt{{y}}\:+\:{y}\sqrt{{x}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{{x}}}\:;\:\left({x}\:>\:\mathrm{0}\:\mathrm{and}\:{y}\:>\:\mathrm{0}\right)\:\mathrm{then} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{{x}}{{y}}\:. \\ $$
Question Number 191528 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:{find}\:\:{the}\:\:{value}\:\:{of}\:\:{the} \\ $$$$\:\:\:\:\:\:\:{following}\:\:{series}\:. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\Omega=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{cos}\left(\frac{{n}\pi}{\mathrm{4}}\:\right)}{{n}^{\:\mathrm{2}} }\:=? \\ $$
Question Number 191527 Answers: 2 Comments: 0
$${x}\:+\:{y}\:=\:\mathrm{1}\:\mathrm{and}\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:=\:\mathrm{2}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:{x}^{\mathrm{11}} \:+\:{y}^{\mathrm{11}} . \\ $$
Question Number 191525 Answers: 1 Comments: 0
$${Q}\::\:{Show}\:{that}\:{the}\:{numbers}\:\sqrt{\mathrm{3}\:}\:,\:\mathrm{2}\:\&\:\sqrt{\mathrm{8}}\:{cannot}\:{be}\:{terms}\:{of}\:{an}\:{arithmetic}\:{sequence}. \\ $$
Question Number 191519 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{\mathrm{1}+\:\mathrm{sin}\:{x}} \\ $$
Question Number 191518 Answers: 0 Comments: 1
Question Number 191602 Answers: 1 Comments: 1
Question Number 191597 Answers: 0 Comments: 0
$${Prove} \\ $$$$ \\ $$$$\mathrm{H}_{{x}} \:\rightarrow\:\mathrm{cot}\:\left(\:\mathrm{x}\:\right)\: \\ $$$$\mathrm{x}!\rightarrow\:\:\mathrm{sin}\:\left(\:\mathrm{x}\:\right) \\ $$
Question Number 191595 Answers: 1 Comments: 0
$${a}\:=\:\frac{{xy}}{{x}\:+\:{y}}\:,\:{b}\:=\:\frac{{xz}}{{x}\:+\:{z}}\:\mathrm{and}\:{c}\:=\:\frac{{yz}}{{y}\:+\:{z}}\:. \\ $$$$\mathrm{Represent}\:{x}\:\mathrm{in}\:{a},\:{b},\:{c}\:\mathrm{form}.\:\left[{x},\:{y},\:{z}\:\neq\:\mathrm{0}\right] \\ $$
Question Number 191611 Answers: 1 Comments: 0
$${if}\:{x}^{\mathrm{2}} −{x}+\mathrm{1}\:=\:\mathrm{0}\:{and}\:\alpha\:{and}\:\beta\:{are}\:{thd}\:{roots} \\ $$$${of}\:{this}\:{equation}\:{then}\:{evaluate}\:\frac{\alpha^{\mathrm{100}} +\beta^{\mathrm{100}} }{\alpha^{\mathrm{100}} −\beta^{\mathrm{100}} } \\ $$
Question Number 191512 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:{Q}:\:\:\:\:\:\:\:{the}\:{equation}\: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\lfloor\:\mathrm{cos}\left(\mathrm{4}{x}\:\right)\rfloor={m}.\mathrm{cos}\left(\mathrm{2}{x}\right) \\ $$$$\:\:\:{has}\:{no}\:\:{solution}\:.\:\:{x}\in\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\:\right) \\ $$$$\:\:\:\:{find}\:{the}\:{acceptable} \\ $$$$\:\:\:\:\:\:\:{real}\:{values}\:{for}\:\:\:\:''{m}''. \\ $$
Question Number 191510 Answers: 0 Comments: 3
$${now}\:{I}\:{can}\:{write}\:{in}\:{arabic} \\ $$$${language}\:{but}\:{I}\:{cant}\:{use}\: \\ $$$${it}\:{to}\:{wrie}\:{equations} \\ $$$${for}\:{example} \\ $$$${ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0} \\ $$$$\:+\:+\:=\:\:\cancel{\underline{\mathcal{W}}} \\ $$$$\:\cancel{\underline{\mathscr{G}}}\:\cancel{\underline{\underbrace{ }}} \\ $$
Question Number 191508 Answers: 0 Comments: 0
Question Number 191507 Answers: 1 Comments: 0
Question Number 191501 Answers: 1 Comments: 2
$$ \\ $$$$\:\:\:\:{find}\:{a}\:{solution}; \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{{e}}^{\boldsymbol{{x}}} \:=\:\boldsymbol{{ln}}\left(\boldsymbol{{x}}\right) \\ $$$$ \\ $$
Question Number 191499 Answers: 0 Comments: 6
$$\mathrm{x}\:+\:\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\:=\:\mathrm{0}.\mathrm{1614},\:\mathrm{find}\:\mathrm{x}?\mathrm{1II} \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:\mathrm{Lambert} \\ $$$$ \\ $$$$\mathrm{BOSSES},\:\mathrm{help}\:\mathrm{your}\:\mathrm{boy}! \\ $$
Question Number 191498 Answers: 0 Comments: 0
$$\mathrm{If}\:\mathrm{A}\left(\frac{\mathrm{2}{c}}{{a}}\:,\:\frac{{c}}{{b}}\right),\:\mathrm{B}\left(\frac{{c}}{{a}}\:,\:\mathrm{0}\right)\:\mathrm{and}\:\mathrm{C}\left(\frac{\mathrm{1}\:+\:{c}}{{a}}\:,\:\frac{\mathrm{1}}{{b}}\right) \\ $$$$\mathrm{are}\:\mathrm{three}\:\mathrm{points},\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that},\: \\ $$$$\mathrm{i}.\:\:\frac{\left(\mathrm{AB}\right)^{\mathrm{2}} \:+\:\left(\mathrm{BC}\right)^{\mathrm{2}} }{\left(\mathrm{CA}\right)^{\mathrm{2}} }\:=\:\frac{{c}^{\mathrm{2}} \:+\:\mathrm{1}}{\left({c}\:−\:\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{ii}.\:\left(\mathrm{AB}\right)^{\mathrm{2}} \:+\:\left(\mathrm{BC}\right)^{\mathrm{2}} \:−\:\left(\mathrm{AC}\right)^{\mathrm{2}} \:=\:\frac{\mathrm{2}{c}\left({a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} {b}^{\mathrm{2}} } \\ $$
Question Number 191486 Answers: 1 Comments: 0
$${a}\sqrt{{a}}\:+\:{b}\sqrt{{b}}\:=\:\mathrm{183}\:\mathrm{and}\:{b}\sqrt{{a}}\:+\:{a}\sqrt{{b}}\:=\:\mathrm{182} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{9}}{\mathrm{5}}\:\left({a}\:+\:{b}\right)\:? \\ $$
Question Number 191484 Answers: 2 Comments: 0
$$\left({x}\:+\:\sqrt{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\right)\left({y}\:+\:\sqrt{\mathrm{1}\:+\:{y}^{\mathrm{2}} }\right)\:=\:\mathrm{1} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\left({x}\:+\:{y}\right)^{\mathrm{2}} \:? \\ $$
Question Number 191474 Answers: 1 Comments: 1
$$\mathrm{If}\:\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{cos}\:\mathrm{2A}+\mathrm{cos}\:\mathrm{2B}+\mathrm{cos2C}+\mathrm{1}=−\mathrm{4cosAcos}\:\mathrm{Bcos}\:\mathrm{C} \\ $$$$ \\ $$
Question Number 191473 Answers: 0 Comments: 0
Question Number 191483 Answers: 0 Comments: 0
$$\mathrm{Compute}\:\mathrm{the}\:\mathrm{min}−\mathrm{max}\:\mathrm{polynomial} \\ $$$$\mathrm{q}_{\mathrm{1}} ^{\ast} \left(\mathrm{x}\right)\:\mathrm{to}\:\mathrm{e}^{\mathrm{x}} \:\mathrm{on}\:\mathrm{interval}\:\left[−\mathrm{1},\:\mathrm{1}\right]. \\ $$$$ \\ $$$$\mathrm{Anyone}?? \\ $$
Pg 202 Pg 203 Pg 204 Pg 205 Pg 206 Pg 207 Pg 208 Pg 209 Pg 210 Pg 211
Terms of Service
Privacy Policy
Contact: info@tinkutara.com