Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 206
Question Number 194304 Answers: 1 Comments: 0
Question Number 194301 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{Resolution}}\:\boldsymbol{\mathrm{de}}\:\boldsymbol{\mathrm{l}}\:\boldsymbol{\mathrm{exercice}}\:\boldsymbol{\mathrm{du}}\:\mathrm{28}.\mathrm{6}.\mathrm{23} \\ $$$$\:\:\left({env}\mathrm{o}{ye}\:{par}\:{universe}\:\right) \\ $$$$\boldsymbol{{Q}}\mathrm{194116} \\ $$$$ \\ $$
Question Number 194297 Answers: 1 Comments: 0
$${Let}\:{a}\:,\:{b}\:,\:{c}\:{be}\:\:{real}\:{positive}\:{numbers}\:\&\: \\ $$$${abc}=\mathrm{1}\: \\ $$$${prove}\:{that} \\ $$$$\frac{{ab}}{{a}^{\mathrm{5}} +{b}^{\mathrm{5}} +{ab}}+\frac{{bc}}{{b}^{\mathrm{5}} +{c}^{\mathrm{5}} +{bc}}+\frac{{ac}}{{a}^{\mathrm{5}} +{c}^{\mathrm{5}} +{ac}}\leqslant\mathrm{1} \\ $$
Question Number 194295 Answers: 1 Comments: 0
Question Number 194292 Answers: 0 Comments: 0
Question Number 194286 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\boldsymbol{{find}}\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\:\lfloor\:\frac{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)}{\boldsymbol{{x}}}\rfloor \\ $$
Question Number 194282 Answers: 1 Comments: 0
$${f}\left({f}\left({x}\right)\right)\:=\:{ax}\:+\:{b} \\ $$$$\mathrm{1}.\:{show}\:{that}\:{f}\left({ax}+{b}\right)\:=\:{af}\left({x}\right)\:+\:{b} \\ $$$${deduce}\:{f}\:'\left({ax}\:+\:{b}\right) \\ $$$$\mathrm{2}.\:{Show}\:{that}\:{f}\:'\left({x}\right)\:{is}\:{a}\:{constant}\: \\ $$$${hence}\:{deduce}\:{f} \\ $$
Question Number 194279 Answers: 1 Comments: 0
$$\:\underbrace{ } \\ $$
Question Number 194278 Answers: 0 Comments: 0
Question Number 194270 Answers: 1 Comments: 1
Question Number 194257 Answers: 1 Comments: 2
$${Know}\:{x},{y},{z}\:\in\:{R}^{+} \:{such}\:{that}: \\ $$$$\mathrm{2}{x}\:+\:\mathrm{4}{y}\:+\:\mathrm{7}{z}\:=\:\mathrm{2}{xyz} \\ $$$${Find}\:{Min}\left({x}+{y}+{z}\right)¿ \\ $$
Question Number 194256 Answers: 2 Comments: 0
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}+\mathrm{tan}\:\mathrm{x}}{\mathrm{1}−\mathrm{tan}\:\mathrm{x}}\:−\mathrm{1}}{\mathrm{x}}\:=? \\ $$
Question Number 194255 Answers: 0 Comments: 0
$${Find}\:{value}\:{m}\:{so}\:{that}\:{the}\:{function}\: \\ $$$${y}=\mid{x}^{\mathrm{2}} −\mathrm{2}{mx}\mid−\mathrm{6}{x}\:{covariaties} \\ $$$$\:{on}\:{the}\:{interval}\:\left(\mathrm{1};\mathrm{4}\right) \\ $$
Question Number 194252 Answers: 2 Comments: 0
$$\:\:\mathrm{Find}\:\mathrm{V}\:=\:\mathrm{tan}\:\mathrm{9}°−\mathrm{tan}\:\mathrm{27}°−\mathrm{tan}\:\mathrm{63}°+\mathrm{tan}\:\mathrm{81}° \\ $$
Question Number 194250 Answers: 2 Comments: 0
$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{limit} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{ax}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)−\mathrm{x}}{\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{4}} }\:\mathrm{is}\:\mathrm{finite}\: \\ $$$$\:\mathrm{and}\:\mathrm{then}\:\mathrm{evaluate}\:\mathrm{the}\:\mathrm{limit}\: \\ $$
Question Number 194248 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Gyanashram}\:{classes} \\ $$$${weekly}\:{test}\:\:\:\:\:\:\:\:\:\:{by}−{Bittu}\:{sir}\:\: \\ $$$$\:\:\:\mathbb{CHEMISTRY}\:\:\mathbb{TEST} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Electrochemistry} \\ $$$$\mathrm{1}.\: \: \: \: \: \: \: \: \\ $$$$\mathrm{2}.\:\: \: \: \: \: \\ $$$$\:\mathrm{3}. \: \: \: \: \\ $$$$\mathrm{4}.\: \: \: \: \\ $$$$\mathrm{5}. \: \: \: \: \: \\ $$$$\mathrm{6}. \: \: \: \: \: \: \: ? \\ $$$$\mathrm{7}. \: \: \: \\ $$$$\mathrm{8}. \: \: \: \: \: \: \: \: \: \\ $$$$\mathrm{9}. \: \: \: \: \: \\ $$$$\mathrm{10}. \: \: \: ? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}\:\: \: \: \\ $$$$\mathrm{1}.\: \: \: \: ?\: \: \: \: \: \: \\ $$$$ \: \: \: \: \: \\ $$$$\mathrm{2}. \: \: \: \: \: \: \: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{object}\mathrm{ive} \\ $$$$\mathrm{1}.\:\:\mathrm{1f}\:\: \: \: \: \: \: \\ $$$$\mathrm{2}. \: \: \:\mathrm{127}\:{g}\:{cu}\: \: \: \: \: \\ $$$$\: \: \: \: \\ $$$$\mathrm{3}\: \: \: \: \: \\ $$$$\:\mathrm{4}.\: \: \: \: \: \: ? \\ $$$$\mathrm{5}.\: \: \: \: \: \: \: \\ $$
Question Number 194241 Answers: 1 Comments: 0
Question Number 194240 Answers: 2 Comments: 0
Question Number 194238 Answers: 1 Comments: 0
Question Number 194237 Answers: 0 Comments: 1
$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{evaluate}}\: \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{k}^{{n}} {n}!\left({zn}+\mathrm{1}\right)} \\ $$
Question Number 194236 Answers: 1 Comments: 0
Question Number 194226 Answers: 3 Comments: 0
$$ \\ $$$$\mathrm{If}\:{x}^{\mathrm{2}} \:−\:\mathrm{65}{x}\:=\:\mathrm{64}\sqrt{{x}}\:\mathrm{then}\:\sqrt{{x}\:−\:\sqrt{{x}}\:}\:=\:? \\ $$
Question Number 194219 Answers: 1 Comments: 0
Question Number 194218 Answers: 1 Comments: 2
Question Number 194216 Answers: 1 Comments: 0
Question Number 194211 Answers: 1 Comments: 0
$$\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=? \\ $$
Pg 201 Pg 202 Pg 203 Pg 204 Pg 205 Pg 206 Pg 207 Pg 208 Pg 209 Pg 210
Terms of Service
Privacy Policy
Contact: info@tinkutara.com