Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 206

Question Number 199728    Answers: 1   Comments: 0

Question Number 199723    Answers: 1   Comments: 0

Question Number 199721    Answers: 0   Comments: 0

Question Number 199719    Answers: 1   Comments: 0

Question Number 199718    Answers: 1   Comments: 0

{ ((cos x+cos y=(1/2))),((sin x+sin y=(1/4))),((sin 2x + sin 2y=−((27)/(20)))) :} sin (x+y) = ...

$$\:\begin{cases}{\mathrm{cos}\:\mathrm{x}+\mathrm{cos}\:\mathrm{y}=\frac{\mathrm{1}}{\mathrm{2}}}\\{\mathrm{sin}\:\mathrm{x}+\mathrm{sin}\:\mathrm{y}=\frac{\mathrm{1}}{\mathrm{4}}}\\{\mathrm{sin}\:\mathrm{2x}\:+\:\mathrm{sin}\:\mathrm{2y}=−\frac{\mathrm{27}}{\mathrm{20}}}\end{cases} \\ $$$$\:\:\:\mathrm{sin}\:\left(\mathrm{x}+\mathrm{y}\right)\:=\:... \\ $$

Question Number 199714    Answers: 0   Comments: 3

Statement Does the number of data have to be more than 100 in order to have a percentile value ?

$$\:{Statement}\: \\ $$$$\:{Does}\:{the}\:{number}\:{of}\:{data}\:{have} \\ $$$$\:{to}\:{be}\:{more}\:{than}\:\mathrm{100}\:{in}\:{order}\: \\ $$$$\:{to}\:{have}\:{a}\:{percentile}\:{value}\:? \\ $$

Question Number 199711    Answers: 3   Comments: 0

Question Number 199709    Answers: 1   Comments: 0

u_1 = 2 u_(n+1) = 3u_n + 2 u_n → n ¿

$${u}_{\mathrm{1}} \:=\:\mathrm{2}\: \\ $$$${u}_{{n}+\mathrm{1}} \:=\:\mathrm{3}{u}_{{n}} \:+\:\mathrm{2} \\ $$$${u}_{{n}} \:\rightarrow\:{n}\:¿ \\ $$

Question Number 199708    Answers: 0   Comments: 1

n^(20) +11^n =2023 (n∈N) n=¿

$${n}^{\mathrm{20}} +\mathrm{11}^{{n}} =\mathrm{2023}\:\left({n}\in{N}\right) \\ $$$${n}=¿ \\ $$

Question Number 199707    Answers: 1   Comments: 0

study the convergence Σ_(n≥o) ^ sin(π(√(4n^2 +2 ))

$${study}\:{the}\:{convergence} \\ $$$$\underset{{n}\geqslant{o}} {\overset{} {\sum}}{sin}\left(\pi\sqrt{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{2}\:\:\:\:}\right. \\ $$

Question Number 199706    Answers: 0   Comments: 0

Question Number 199705    Answers: 0   Comments: 0

Calculate the first order energy correction for the one dimentional non-degenerate an harmonic oscillator whose harmiltonian id written as; H^ =−(h^2 /(2m)) (d^2 /dx^2 ) +(1/2)kx^2 +(1/5)Υx^3 +(1/(12))βx^4

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{first}\:\mathrm{order}\:\mathrm{energy}\:\mathrm{correction}\: \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{one}\:\mathrm{dimentional}\:\mathrm{non}-\mathrm{degenerate} \\ $$$$\mathrm{an}\:\mathrm{harmonic}\:\mathrm{oscillator}\:\mathrm{whose}\:\mathrm{harmiltonian} \\ $$$$\mathrm{id}\:\mathrm{written}\:\mathrm{as}; \\ $$$$\hat {\mathrm{H}}=−\frac{\mathrm{h}^{\mathrm{2}} }{\mathrm{2}{m}}\:\frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{dx}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{kx}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{5}}\Upsilon\mathrm{x}^{\mathrm{3}} \:+\frac{\mathrm{1}}{\mathrm{12}}\beta\mathrm{x}^{\mathrm{4}} \\ $$

Question Number 199694    Answers: 1   Comments: 0

Question Number 199688    Answers: 4   Comments: 1

Question Number 199686    Answers: 0   Comments: 0

Can you help me..??? pls.... Evaluate ∫∫_( S) F^ ∙dS^ Parametric Surface S^ (u,v)=(2+sin(u))cos(v)e_1 ^ +(2+sin(u))sin(v)e_2 ^ +(cos(v)+u)e_3 ^ Vector Field F^ (x,y)=xe_1 ^ +ye_2 ^ +ze_3 ^

$${Can}\:{you}\:{help}\:{me}..???\:{pls}.... \\ $$$$\: \\ $$$$\: \\ $$$$\mathrm{Evaluate}\:\int\int_{\:\boldsymbol{\mathcal{S}}} \:\hat {\boldsymbol{\mathrm{F}}}\centerdot\mathrm{d}\hat {\boldsymbol{\mathrm{S}}} \\ $$$$\mathrm{Parametric}\:\mathrm{Surface} \\ $$$$\hat {\boldsymbol{\mathrm{S}}}\left({u},{v}\right)=\left(\mathrm{2}+\mathrm{sin}\left({u}\right)\right)\mathrm{cos}\left({v}\right)\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +\left(\mathrm{2}+\mathrm{sin}\left({u}\right)\right)\mathrm{sin}\left({v}\right)\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} +\left(\mathrm{cos}\left({v}\right)+{u}\right)\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} \\ $$$$\mathrm{Vector}\:\mathrm{Field}\:\hat {\boldsymbol{\mathrm{F}}}\left({x},{y}\right)={x}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +{y}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} +{z}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} \\ $$

Question Number 199672    Answers: 1   Comments: 0

Question Number 199671    Answers: 1   Comments: 0

Question Number 199669    Answers: 0   Comments: 0

Question Number 199666    Answers: 3   Comments: 0

Question Number 199662    Answers: 1   Comments: 0

A point moves on the curve of the function f(x)=(√(x^2 +5)) such that it′s x−coordinate increases at a rate of 3(√(10)) cm/s. Find the rate of change of it′s distance from the point (1,0) when x = 2

$$ \\ $$$$\mathrm{A}\:\mathrm{point}\:\mathrm{moves}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{5}}\:\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{it}'\mathrm{s}\:\mathrm{x}−\mathrm{coordinate}\:\mathrm{increases}\: \\ $$$$\mathrm{at}\:\mathrm{a}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{3}\sqrt{\mathrm{10}}\:\:\mathrm{cm}/\mathrm{s}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{change}\:\mathrm{of}\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{distance}\:\mathrm{from}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{1},\mathrm{0}\right) \\ $$$$\mathrm{when}\:\mathrm{x}\:=\:\mathrm{2} \\ $$

Question Number 199659    Answers: 1   Comments: 0

Question Number 199658    Answers: 1   Comments: 0

Question Number 199654    Answers: 1   Comments: 0

x^4 + 4x^3 − 8x + 1 − m = 0 has 4 real roots find m=?

$$\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{4x}^{\mathrm{3}} \:−\:\mathrm{8x}\:+\:\mathrm{1}\:−\:\mathrm{m}\:=\:\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{4}\:\mathrm{real}\:\mathrm{roots} \\ $$$$\mathrm{find}\:\:\mathrm{m}=? \\ $$

Question Number 199642    Answers: 1   Comments: 2

Question Number 199638    Answers: 0   Comments: 2

∫_0 ^1 ∫_0 ^1 cos(max(x^3 ,y^(3/2) ))dxdy=A old Quation By mr,univers x^3 =t,y^(3/2) =s A=(2/9)∫_0 ^1 ∫_0 ^1 cos(max(t,s))t^(−(2/3)) s^(−(1/3)) dtds ∫_0 ^1 ∫_0 ^1 cos(max(t,s))t^(−(2/3)) s^(−(1/3)) dtds=∫_0 ^1 t^(−(2/3)) ∫_t ^1 cos(s)s^(−(1/3)) dsdt_(=C) +∫_0 ^1 s^(−(1/3)) ∫_s ^1 cos(t)t^(−(2/3)) dtds_(=B) c=∫_0 ^1 t^(−(2/3)) ∫_t ^1 Σ_(n≥0) (((−1)^n )/(2n!)).s^(2n−(1/3)) dsdt=Σ_(n≥0) (((−1)^n )/(2n!))∫_0 ^1 t^(−(2/3)) ∫_t ^1 s^(2n−(1/3)) dsdt =Σ_(n≥0) (((−1)^n )/((2n)!))∫_0 ^1 ((1−t^(2n+(2/3)) )/(2n+(2/3))).t^(−(2/3)) dt =Σ_(n≥0) (((−1)^n )/((2n)!(2n+(2/3)))).(3−(1/(2n+1)))=3Σ_(n≥0) (((−1)^n )/((2n+1)!))=3sin(1) B=∫_0 ^1 s^(−(1/3)) ∫_s ^1 Σ_(n≥0) (((−1)^n )/((2n)!))t^(2n−(2/3)) dtds =Σ(((−1)^n )/((2n)!))∫_0 ^1 s^(−(1/3)) .(((1−s^(2n+(1/3)) )/(2n+(1/3))))ds =Σ_(n≥0) (((−1)^n )/((2n)!(2n+(1/3))))((3/2)−(1/(2n+1))) =(3/2)Σ_(n≥0) (((−1)^n )/((2n+1)!))=(3/2)sin(1) A=(2/9)(c+B)=(2/9)((3/2)sin(1)+3sin(1)) =sin(1) ∫_0 ^1 ∫_0 ^1 cos(Max(x^3 ,y^(3/2) ))dxdy=sin(1)

$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{cos}\left(\mathrm{max}\left(\mathrm{x}^{\mathrm{3}} ,\mathrm{y}^{\frac{\mathrm{3}}{\mathrm{2}}} \right)\right)\mathrm{dxdy}=\mathrm{A} \\ $$$$\mathrm{old}\:\mathrm{Quation}\:\mathrm{By}\:\mathrm{mr},\mathrm{univers} \\ $$$$\mathrm{x}^{\mathrm{3}} =\mathrm{t},\mathrm{y}^{\frac{\mathrm{3}}{\mathrm{2}}} =\mathrm{s} \\ $$$$\mathrm{A}=\frac{\mathrm{2}}{\mathrm{9}}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{cos}\left(\mathrm{max}\left(\mathrm{t},\mathrm{s}\right)\right)\mathrm{t}^{−\frac{\mathrm{2}}{\mathrm{3}}} \mathrm{s}^{−\frac{\mathrm{1}}{\mathrm{3}}} \mathrm{dtds} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{cos}\left(\mathrm{max}\left(\mathrm{t},\mathrm{s}\right)\right)\mathrm{t}^{−\frac{\mathrm{2}}{\mathrm{3}}} \mathrm{s}^{−\frac{\mathrm{1}}{\mathrm{3}}} \mathrm{dtds}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{t}^{−\frac{\mathrm{2}}{\mathrm{3}}} \int_{\mathrm{t}} ^{\mathrm{1}} \mathrm{cos}\left(\mathrm{s}\right)\mathrm{s}^{−\frac{\mathrm{1}}{\mathrm{3}}} \mathrm{dsdt}_{=\mathrm{C}} \\ $$$$+\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{s}^{−\frac{\mathrm{1}}{\mathrm{3}}} \int_{\mathrm{s}} ^{\mathrm{1}} \mathrm{cos}\left(\mathrm{t}\right)\mathrm{t}^{−\frac{\mathrm{2}}{\mathrm{3}}} \mathrm{dtds}_{=\mathrm{B}} \\ $$$$\mathrm{c}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{t}^{−\frac{\mathrm{2}}{\mathrm{3}}} \int_{\mathrm{t}} ^{\mathrm{1}} \underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}!}.\mathrm{s}^{\mathrm{2n}−\frac{\mathrm{1}}{\mathrm{3}}} \mathrm{dsdt}=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}!}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{t}^{−\frac{\mathrm{2}}{\mathrm{3}}} \int_{\boldsymbol{\mathrm{t}}} ^{\mathrm{1}} \mathrm{s}^{\mathrm{2n}−\frac{\mathrm{1}}{\mathrm{3}}} \boldsymbol{\mathrm{dsdt}} \\ $$$$=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}\right)!}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−\mathrm{t}^{\mathrm{2n}+\frac{\mathrm{2}}{\mathrm{3}}} }{\mathrm{2n}+\frac{\mathrm{2}}{\mathrm{3}}}.\mathrm{t}^{−\frac{\mathrm{2}}{\mathrm{3}}} \mathrm{dt} \\ $$$$=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}\right)!\left(\mathrm{2n}+\frac{\mathrm{2}}{\mathrm{3}}\right)}.\left(\mathrm{3}−\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}}\right)=\mathrm{3}\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}=\mathrm{3sin}\left(\mathrm{1}\right) \\ $$$$\mathrm{B}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{s}^{−\frac{\mathrm{1}}{\mathrm{3}}} \int_{\mathrm{s}} ^{\mathrm{1}} \underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}\right)!}\mathrm{t}^{\mathrm{2n}−\frac{\mathrm{2}}{\mathrm{3}}} \mathrm{dtds} \\ $$$$=\Sigma\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}\right)!}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{s}^{−\frac{\mathrm{1}}{\mathrm{3}}} .\left(\frac{\mathrm{1}−\mathrm{s}^{\mathrm{2n}+\frac{\mathrm{1}}{\mathrm{3}}} }{\mathrm{2n}+\frac{\mathrm{1}}{\mathrm{3}}}\right)\mathrm{ds} \\ $$$$=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}\right)!\left(\mathrm{2n}+\frac{\mathrm{1}}{\mathrm{3}}\right)}\left(\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}}\right) \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}=\frac{\mathrm{3}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{1}\right) \\ $$$$\mathrm{A}=\frac{\mathrm{2}}{\mathrm{9}}\left(\mathrm{c}+\mathrm{B}\right)=\frac{\mathrm{2}}{\mathrm{9}}\left(\frac{\mathrm{3}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{1}\right)+\mathrm{3sin}\left(\mathrm{1}\right)\right) \\ $$$$=\mathrm{sin}\left(\mathrm{1}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{cos}\left(\mathrm{Max}\left(\mathrm{x}^{\mathrm{3}} ,\mathrm{y}^{\frac{\mathrm{3}}{\mathrm{2}}} \right)\right)\mathrm{dxdy}=\mathrm{sin}\left(\mathrm{1}\right) \\ $$$$ \\ $$

Question Number 199632    Answers: 2   Comments: 0

In a swimming pool there are four pipes that fill it with water. When pipes 1, 2, 3 work, the pool fills in 12 minutes. When pipes 2, 3, 4 work, the pool fills in 15 minutes. When pipes 1 and 4 work, the pool fills in 20 minutes. Find how many minutes the pool fills if all four pipes work simultaneously.

In a swimming pool there are four pipes that fill it with water. When pipes 1, 2, 3 work, the pool fills in 12 minutes. When pipes 2, 3, 4 work, the pool fills in 15 minutes. When pipes 1 and 4 work, the pool fills in 20 minutes. Find how many minutes the pool fills if all four pipes work simultaneously.

  Pg 201      Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207      Pg 208      Pg 209      Pg 210   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com