Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 206

Question Number 191652    Answers: 1   Comments: 1

Question Number 191642    Answers: 0   Comments: 1

Comparer [OHDF] avec [ABHEF] (avec preuve) Sachant que: OH∣∣DF HE=EF OB=4OA CH=2BC et BC<OB.

$$\mathrm{Comparer}\:\left[\mathrm{OHDF}\right]\:\:\mathrm{avec}\:\left[\mathrm{ABHEF}\right] \\ $$$$\left({avec}\:{preuve}\right) \\ $$$$\:\:{Sa}\mathrm{c}{h}\mathrm{a}{nt}\:{que}: \\ $$$$\mathrm{OH}\mid\mid\mathrm{DF}\:\:\:\mathrm{HE}=\mathrm{EF}\:\:\:\mathrm{OB}=\mathrm{4OA} \\ $$$$\:\:\:\mathrm{CH}=\mathrm{2BC}\:\mathrm{et}\:\mathrm{BC}<\mathrm{OB}.\:\:\: \\ $$$$ \\ $$

Question Number 191640    Answers: 0   Comments: 1

x^3 −1 = (x−1) (x^2 +x+1) ⇒ x = 1 and x = ((−1±(√3) i)/2) ⇒ w = −(1/2) + (((√3)i )/2) and w^2 = −(1/2) − ((√3)/2) i ⇒ w^3 = 1 similarly x^3 + 1= 0 ⇒ x = −1 and x =−w^2 and x = −w

$${x}^{\mathrm{3}} −\mathrm{1}\:=\:\left({x}−\mathrm{1}\right)\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right) \\ $$$$\Rightarrow\:{x}\:=\:\mathrm{1}\:{and}\:{x}\:=\:\frac{−\mathrm{1}\pm\sqrt{\mathrm{3}}\:{i}}{\mathrm{2}} \\ $$$$\Rightarrow\:{w}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}{i}\:}{\mathrm{2}}\:{and}\:{w}^{\mathrm{2}} \:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:−\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{i} \\ $$$$\Rightarrow\:{w}^{\mathrm{3}} \:=\:\mathrm{1} \\ $$$${similarly}\:{x}^{\mathrm{3}} \:+\:\mathrm{1}=\:\mathrm{0} \\ $$$$\Rightarrow\:{x}\:=\:−\mathrm{1}\:{and}\:{x}\:=−{w}^{\mathrm{2}} \:{and}\:{x}\:=\:−{w} \\ $$

Question Number 191639    Answers: 1   Comments: 1

Une feuille de papier format A4 est plie n fois simultanement en longueur et largeur (total plie=2n) −Quel son les nouvelles dimensions de cette feuille la feuille a la fin . −quel seront ses dimensions apres 6 pliages −Quel seront les dimensions pour une feuille care de 30 cm plie 6 fois succrssivement en long et large

$$\mathrm{Une}\:\mathrm{feuille}\:\mathrm{de}\:\mathrm{papier}\:\mathrm{format}\:\boldsymbol{\mathrm{A}}\mathrm{4}\:\mathrm{est}\:\mathrm{plie} \\ $$$$\:\boldsymbol{\mathrm{n}}\:\mathrm{fois}\:\mathrm{simultanement}\:\mathrm{en}\:\mathrm{longueur}\:\mathrm{et} \\ $$$$\mathrm{largeur}\:\left(\mathrm{total}\:\mathrm{plie}=\mathrm{2n}\right) \\ $$$$−\mathrm{Quel}\:\mathrm{son}\:\mathrm{les}\:\mathrm{nouvelles}\:\mathrm{dimensions}\:\mathrm{de}\:\mathrm{cette}\:\mathrm{feuille} \\ $$$$\:\:\:\mathrm{la}\:\mathrm{feuille}\:\mathrm{a}\:\mathrm{la}\:\mathrm{fin}\:. \\ $$$$−\mathrm{quel}\:\mathrm{seront}\:\mathrm{ses}\:\mathrm{dimensions}\:\:\mathrm{apres}\: \\ $$$$\:\:\:\:\mathrm{6}\:\boldsymbol{\mathrm{pliages}} \\ $$$$−\mathrm{Quel}\:\mathrm{seront}\:\:\mathrm{les}\:\mathrm{dimensions}\:\mathrm{pour}\:\mathrm{une}\:\mathrm{feuille}\:\boldsymbol{\mathrm{care}}\:\mathrm{de}\:\mathrm{30}\:\boldsymbol{\mathrm{cm}}\: \\ $$$$\:\:\:\mathrm{plie}\:\mathrm{6}\:\boldsymbol{\mathrm{fois}}\:\:\mathrm{succrssivement}\:\mathrm{en}\:\mathrm{long}\:\:\mathrm{et}\:\mathrm{large} \\ $$$$ \\ $$

Question Number 191637    Answers: 0   Comments: 0

Question Number 191633    Answers: 0   Comments: 0

Question Number 191632    Answers: 0   Comments: 1

∫_0 ^∞ (√(tan θ)) dθ

$$\int_{\mathrm{0}} ^{\infty} \sqrt{\mathrm{tan}\:\theta}\:{d}\theta \\ $$

Question Number 191631    Answers: 1   Comments: 0

∫_0 ^∞ x^(1/2) e^(−x^2 ) dx

$$\int_{\mathrm{0}} ^{\infty} {x}^{\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{x}^{\mathrm{2}} } {dx} \\ $$

Question Number 191626    Answers: 3   Comments: 0

Question Number 191624    Answers: 1   Comments: 0

Question Number 191623    Answers: 2   Comments: 0

Question Number 191621    Answers: 2   Comments: 0

Question Number 191615    Answers: 1   Comments: 0

a + b + c = 0. Prove that, (a/(a^2 − bc)) + (b/(b^2 − ca)) + (c/(c^2 − ab)) = 0.

$${a}\:+\:{b}\:+\:{c}\:=\:\mathrm{0}.\:\mathrm{Prove}\:\mathrm{that}, \\ $$$$\frac{{a}}{{a}^{\mathrm{2}} \:−\:{bc}}\:+\:\frac{{b}}{{b}^{\mathrm{2}} \:−\:{ca}}\:+\:\frac{{c}}{{c}^{\mathrm{2}} \:−\:{ab}}\:=\:\mathrm{0}. \\ $$

Question Number 191614    Answers: 0   Comments: 1

((α^(100) +β^(100) )/(α^(100) −β^(100) )) = (((−w)^(100) +(−w^2 )^(100) )/((−w)^(100) −(−w^2 )^(100) )) = ((w^(100) +w^(200) )/(w^(100) −w^(200) )) = ((1+w^(100) )/(1−w^(100 ) )) = ((1+w)/(1−w)) = (2/(2w)) = (1/w) =

$$\frac{\alpha^{\mathrm{100}} +\beta^{\mathrm{100}} }{\alpha^{\mathrm{100}} −\beta^{\mathrm{100}} }\:=\: \\ $$$$\frac{\left(−{w}\right)^{\mathrm{100}} +\left(−{w}^{\mathrm{2}} \right)^{\mathrm{100}} }{\left(−{w}\right)^{\mathrm{100}} −\left(−{w}^{\mathrm{2}} \right)^{\mathrm{100}} } \\ $$$$=\:\frac{{w}^{\mathrm{100}} +{w}^{\mathrm{200}} }{{w}^{\mathrm{100}} −{w}^{\mathrm{200}} } \\ $$$$=\:\frac{\mathrm{1}+{w}^{\mathrm{100}} }{\mathrm{1}−{w}^{\mathrm{100}\:} } \\ $$$$=\:\frac{\mathrm{1}+{w}}{\mathrm{1}−{w}}\:=\:\frac{\mathrm{2}}{\mathrm{2}{w}}\:=\:\frac{\mathrm{1}}{{w}}\:=\: \\ $$

Question Number 191610    Answers: 1   Comments: 0

Q: if x+(1/x)=2cos(θ) prove it x^n +(1/x^n )=2cos(nθ)

$${Q}:\:{if}\:\:{x}+\frac{\mathrm{1}}{{x}}=\mathrm{2}{cos}\left(\theta\right)\:\:{prove}\:{it}\:\:{x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }=\mathrm{2}{cos}\left({n}\theta\right) \\ $$

Question Number 191589    Answers: 1   Comments: 1

a^x = bc, b^y = ca, c^z = ab. Prove that, (x/(1 + x)) + (y/(1 + y)) + (z/(1 + z)) = 2. (Without using log) a ≠ b ≠ c

$${a}^{{x}} \:=\:{bc},\:{b}^{{y}} \:=\:{ca},\:{c}^{{z}} \:=\:{ab}. \\ $$$$\mathrm{Prove}\:\mathrm{that},\:\frac{{x}}{\mathrm{1}\:+\:{x}}\:+\:\frac{{y}}{\mathrm{1}\:+\:{y}}\:+\:\frac{{z}}{\mathrm{1}\:+\:{z}}\:=\:\mathrm{2}. \\ $$$$\left(\mathrm{Without}\:\mathrm{using}\:\mathrm{log}\right) \\ $$$${a}\:\neq\:{b}\:\neq\:{c} \\ $$

Question Number 191651    Answers: 2   Comments: 1

Question Number 191582    Answers: 1   Comments: 0

f(x)=x^n . find A=f(1)+((f^′ (1))/1)+((f^(′′) (1))/2)+((f^(′′′) (1))/3)+...+((f^((n)) (1))/n)

$$\:\:{f}\left({x}\right)={x}^{{n}} \:.\:\:{find}\: \\ $$$$\:\:\:{A}={f}\left(\mathrm{1}\right)+\frac{{f}^{'} \left(\mathrm{1}\right)}{\mathrm{1}}+\frac{{f}^{''} \left(\mathrm{1}\right)}{\mathrm{2}}+\frac{{f}^{'''} \left(\mathrm{1}\right)}{\mathrm{3}}+...+\frac{{f}^{\left({n}\right)} \left(\mathrm{1}\right)}{{n}} \\ $$

Question Number 191579    Answers: 2   Comments: 0

f(x)=∣x∣ f^(−1) (x)=? solution?

$$\mathrm{f}\left(\mathrm{x}\right)=\mid\mathrm{x}\mid \\ $$$$\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)=? \\ $$$$\mathrm{solution}? \\ $$

Question Number 191577    Answers: 0   Comments: 0

Give A′B′//AB, B′C′//BC and A′C′//AC Prove that: △ABC∽△A′B′C′

$${Give}\:{A}'{B}'//{AB},\:{B}'{C}'//{BC}\:{and}\:{A}'{C}'//{AC} \\ $$$${Prove}\:{that}:\:\bigtriangleup{ABC}\backsim\bigtriangleup{A}'{B}'{C}' \\ $$

Question Number 191569    Answers: 0   Comments: 0

Question Number 191568    Answers: 0   Comments: 0

Σ_(n=1) ^∞ (((−1)^n (x+1)^n )/((n+1)ln(n+1)))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \left({x}+\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right){ln}\left({n}+\mathrm{1}\right)} \\ $$

Question Number 191567    Answers: 1   Comments: 0

Question Number 191555    Answers: 0   Comments: 1

Solve (√x) + y = 11 x + (√y) = 7

$$\mathrm{Solve} \\ $$$$\sqrt{{x}}\:+\:{y}\:=\:\mathrm{11} \\ $$$${x}\:+\:\sqrt{{y}}\:=\:\mathrm{7} \\ $$

Question Number 191553    Answers: 4   Comments: 1

If a^2 + a + 1 = 0 then find a^5 + a^4 + 1.

$$\mathrm{If}\:{a}^{\mathrm{2}} \:+\:{a}\:+\:\mathrm{1}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find}\:{a}^{\mathrm{5}} \:+\:{a}^{\mathrm{4}} \:+\:\mathrm{1}. \\ $$

Question Number 191552    Answers: 2   Comments: 0

If x^2 − 3x + 1 = 0 then find the value of (x^2 + x + (1/x) + (1/x^2 ))^2

$$\mathrm{If}\:{x}^{\mathrm{2}} \:−\:\mathrm{3}{x}\:+\:\mathrm{1}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\left({x}^{\mathrm{2}} \:+\:{x}\:+\:\frac{\mathrm{1}}{{x}}\:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$

  Pg 201      Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207      Pg 208      Pg 209      Pg 210   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com