Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 206

Question Number 200684    Answers: 1   Comments: 0

∫_(−4π) ^(4π) ((∣x∣ sin^(2n) x)/(sin^(2n) x+cos^(2n) x))dx

$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{−\mathrm{4}\pi} ^{\mathrm{4}\pi} \:\:\:\frac{\mid{x}\mid\:\mathrm{sin}\:^{\mathrm{2}{n}} {x}}{\mathrm{sin}\:^{\mathrm{2}{n}} {x}+\mathrm{cos}\:^{\mathrm{2}{n}} {x}}{dx} \\ $$$$ \\ $$$$ \\ $$

Question Number 200677    Answers: 0   Comments: 1

∫(df/dx)×(dg/dx) ?

$$\int\frac{\mathrm{df}}{\mathrm{dx}}×\frac{\mathrm{dg}}{\mathrm{dx}}\:\:\:\:\:? \\ $$

Question Number 200657    Answers: 1   Comments: 0

Question Number 203716    Answers: 3   Comments: 0

Question Number 200646    Answers: 2   Comments: 0

Question Number 200636    Answers: 1   Comments: 5

1−Determiner la valeur de EF 2−Laire du triangle ADE

$$\mathrm{1}−\mathrm{Determiner}\:\mathrm{la}\:\mathrm{valeur}\:\mathrm{de}\:\:\boldsymbol{\mathrm{EF}} \\ $$$$\mathrm{2}−\mathrm{Laire}\:\mathrm{du}\:\mathrm{triangle}\:\:\boldsymbol{\mathrm{ADE}} \\ $$$$ \\ $$

Question Number 200632    Answers: 0   Comments: 1

help me derived the formular of motion

$$\boldsymbol{\mathrm{help}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{derived}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{formular}}\:\boldsymbol{\mathrm{of}} \\ $$$$\:\boldsymbol{\mathrm{motion}} \\ $$

Question Number 200627    Answers: 1   Comments: 0

Question Number 200622    Answers: 2   Comments: 0

Question Number 200619    Answers: 1   Comments: 0

Question Number 200618    Answers: 1   Comments: 1

Question Number 200617    Answers: 1   Comments: 0

Question Number 200606    Answers: 1   Comments: 0

Question Number 200605    Answers: 0   Comments: 4

Question Number 200604    Answers: 0   Comments: 2

Question Number 200603    Answers: 1   Comments: 0

Question Number 200602    Answers: 1   Comments: 0

Question Number 200601    Answers: 0   Comments: 6

Question Number 200596    Answers: 1   Comments: 0

Question Number 200589    Answers: 1   Comments: 0

Question Number 200586    Answers: 1   Comments: 0

Question Number 200579    Answers: 0   Comments: 1

Question Number 200575    Answers: 1   Comments: 0

Question Number 200574    Answers: 0   Comments: 6

sorry mr W

$${sorry}\:{mr}\:{W} \\ $$

Question Number 200570    Answers: 1   Comments: 0

Question Number 200569    Answers: 1   Comments: 0

  Pg 201      Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207      Pg 208      Pg 209      Pg 210   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com