Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 206

Question Number 194304    Answers: 1   Comments: 0

Question Number 194301    Answers: 1   Comments: 0

Resolution de l exercice du 28.6.23 (envoye par universe ) Q194116

$$\boldsymbol{\mathrm{Resolution}}\:\boldsymbol{\mathrm{de}}\:\boldsymbol{\mathrm{l}}\:\boldsymbol{\mathrm{exercice}}\:\boldsymbol{\mathrm{du}}\:\mathrm{28}.\mathrm{6}.\mathrm{23} \\ $$$$\:\:\left({env}\mathrm{o}{ye}\:{par}\:{universe}\:\right) \\ $$$$\boldsymbol{{Q}}\mathrm{194116} \\ $$$$ \\ $$

Question Number 194297    Answers: 1   Comments: 0

Let a , b , c be real positive numbers & abc=1 prove that ((ab)/(a^5 +b^5 +ab))+((bc)/(b^5 +c^5 +bc))+((ac)/(a^5 +c^5 +ac))≤1

$${Let}\:{a}\:,\:{b}\:,\:{c}\:{be}\:\:{real}\:{positive}\:{numbers}\:\&\: \\ $$$${abc}=\mathrm{1}\: \\ $$$${prove}\:{that} \\ $$$$\frac{{ab}}{{a}^{\mathrm{5}} +{b}^{\mathrm{5}} +{ab}}+\frac{{bc}}{{b}^{\mathrm{5}} +{c}^{\mathrm{5}} +{bc}}+\frac{{ac}}{{a}^{\mathrm{5}} +{c}^{\mathrm{5}} +{ac}}\leqslant\mathrm{1} \\ $$

Question Number 194295    Answers: 1   Comments: 0

Question Number 194292    Answers: 0   Comments: 0

Question Number 194286    Answers: 2   Comments: 0

find lim_(x→0) ⌊ ((tan(x))/x)⌋

$$ \\ $$$$\:\:\boldsymbol{{find}}\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\:\lfloor\:\frac{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)}{\boldsymbol{{x}}}\rfloor \\ $$

Question Number 194282    Answers: 1   Comments: 0

f(f(x)) = ax + b 1. show that f(ax+b) = af(x) + b deduce f ′(ax + b) 2. Show that f ′(x) is a constant hence deduce f

$${f}\left({f}\left({x}\right)\right)\:=\:{ax}\:+\:{b} \\ $$$$\mathrm{1}.\:{show}\:{that}\:{f}\left({ax}+{b}\right)\:=\:{af}\left({x}\right)\:+\:{b} \\ $$$${deduce}\:{f}\:'\left({ax}\:+\:{b}\right) \\ $$$$\mathrm{2}.\:{Show}\:{that}\:{f}\:'\left({x}\right)\:{is}\:{a}\:{constant}\: \\ $$$${hence}\:{deduce}\:{f} \\ $$

Question Number 194279    Answers: 1   Comments: 0

$$\:\underbrace{ } \\ $$

Question Number 194278    Answers: 0   Comments: 0

Question Number 194270    Answers: 1   Comments: 1

Question Number 194257    Answers: 1   Comments: 2

Know x,y,z ∈ R^+ such that: 2x + 4y + 7z = 2xyz Find Min(x+y+z)¿

$${Know}\:{x},{y},{z}\:\in\:{R}^{+} \:{such}\:{that}: \\ $$$$\mathrm{2}{x}\:+\:\mathrm{4}{y}\:+\:\mathrm{7}{z}\:=\:\mathrm{2}{xyz} \\ $$$${Find}\:{Min}\left({x}+{y}+{z}\right)¿ \\ $$

Question Number 194256    Answers: 2   Comments: 0

lim_(x→0) ((((1+tan x)/(1−tan x)) −1)/x) =?

$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}+\mathrm{tan}\:\mathrm{x}}{\mathrm{1}−\mathrm{tan}\:\mathrm{x}}\:−\mathrm{1}}{\mathrm{x}}\:=? \\ $$

Question Number 194255    Answers: 0   Comments: 0

Find value m so that the function y=∣x^2 −2mx∣−6x covariaties on the interval (1;4)

$${Find}\:{value}\:{m}\:{so}\:{that}\:{the}\:{function}\: \\ $$$${y}=\mid{x}^{\mathrm{2}} −\mathrm{2}{mx}\mid−\mathrm{6}{x}\:{covariaties} \\ $$$$\:{on}\:{the}\:{interval}\:\left(\mathrm{1};\mathrm{4}\right) \\ $$

Question Number 194252    Answers: 2   Comments: 0

Find V = tan 9°−tan 27°−tan 63°+tan 81°

$$\:\:\mathrm{Find}\:\mathrm{V}\:=\:\mathrm{tan}\:\mathrm{9}°−\mathrm{tan}\:\mathrm{27}°−\mathrm{tan}\:\mathrm{63}°+\mathrm{tan}\:\mathrm{81}° \\ $$

Question Number 194250    Answers: 2   Comments: 0

find the value of a for which the limit lim_(x→0) ((sin (ax)−tan^(−1) (x)−x)/(x^3 +x^4 )) is finite and then evaluate the limit

$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{limit} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{ax}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)−\mathrm{x}}{\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{4}} }\:\mathrm{is}\:\mathrm{finite}\: \\ $$$$\:\mathrm{and}\:\mathrm{then}\:\mathrm{evaluate}\:\mathrm{the}\:\mathrm{limit}\: \\ $$

Question Number 194248    Answers: 0   Comments: 0

Gyanashram classes weekly test by−Bittu sir CHEMISTRY TEST Electrochemistry 1. 2. 3. 4. 5. 6. ? 7. 8. 9. 10. ? 5 1. ? 2. objective 1. 1f 2. 127 g cu 3 4. ? 5.

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Gyanashram}\:{classes} \\ $$$${weekly}\:{test}\:\:\:\:\:\:\:\:\:\:{by}−{Bittu}\:{sir}\:\: \\ $$$$\:\:\:\mathbb{CHEMISTRY}\:\:\mathbb{TEST} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Electrochemistry} \\ $$$$\mathrm{1}.\: \: \: \: \: \: \: \: \\ $$$$\mathrm{2}.\:\: \: \: \: \: \\ $$$$\:\mathrm{3}. \: \: \: \: \\ $$$$\mathrm{4}.\: \: \: \: \\ $$$$\mathrm{5}. \: \: \: \: \: \\ $$$$\mathrm{6}. \: \: \: \: \: \: \: ? \\ $$$$\mathrm{7}. \: \: \: \\ $$$$\mathrm{8}. \: \: \: \: \: \: \: \: \: \\ $$$$\mathrm{9}. \: \: \: \: \: \\ $$$$\mathrm{10}. \: \: \: ? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}\:\: \: \: \\ $$$$\mathrm{1}.\: \: \: \: ?\: \: \: \: \: \: \\ $$$$ \: \: \: \: \: \\ $$$$\mathrm{2}. \: \: \: \: \: \: \: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{object}\mathrm{ive} \\ $$$$\mathrm{1}.\:\:\mathrm{1f}\:\: \: \: \: \: \: \\ $$$$\mathrm{2}. \: \: \:\mathrm{127}\:{g}\:{cu}\: \: \: \: \: \\ $$$$\: \: \: \: \\ $$$$\mathrm{3}\: \: \: \: \: \\ $$$$\:\mathrm{4}.\: \: \: \: \: \: ? \\ $$$$\mathrm{5}.\: \: \: \: \: \: \: \\ $$

Question Number 194241    Answers: 1   Comments: 0

Question Number 194240    Answers: 2   Comments: 0

Question Number 194238    Answers: 1   Comments: 0

Question Number 194237    Answers: 0   Comments: 1

how to evaluate 𝚺_(n=0) ^∞ (((−1)^n )/(k^n n!(zn+1)))

$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{evaluate}}\: \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{k}^{{n}} {n}!\left({zn}+\mathrm{1}\right)} \\ $$

Question Number 194236    Answers: 1   Comments: 0

Question Number 194226    Answers: 3   Comments: 0

If x^2 − 65x = 64(√x) then (√(x − (√x) )) = ?

$$ \\ $$$$\mathrm{If}\:{x}^{\mathrm{2}} \:−\:\mathrm{65}{x}\:=\:\mathrm{64}\sqrt{{x}}\:\mathrm{then}\:\sqrt{{x}\:−\:\sqrt{{x}}\:}\:=\:? \\ $$

Question Number 194219    Answers: 1   Comments: 0

Question Number 194218    Answers: 1   Comments: 2

Question Number 194216    Answers: 1   Comments: 0

Question Number 194211    Answers: 1   Comments: 0

(1/x^2 ) +(1/y^2 ) = (1/3) (d^2 y/dx^2 ) =?

$$\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=? \\ $$

  Pg 201      Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207      Pg 208      Pg 209      Pg 210   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com