Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 205

Question Number 198470    Answers: 0   Comments: 0

Question Number 198465    Answers: 0   Comments: 1

The furier series approximation to the forcing function is given by f(t)=5[1+(4/π)((/)((sin120πt)/1)+((sin360πt)/2)+((sin600πt)/3) +.........)] The transfer function for this problem T(s)=((X(s))/(f(s)))=(1/(ms^2 +cs+k)) =(1/(0.001s+1)) 1. plot the amplitude spectrum 2.Obtain the expression for steady displacement X(t)

$${The}\:{furier}\:{series}\:{approximation}\:{to}\: \\ $$$${the}\:{forcing}\:{function}\:{is}\:{given}\:{by}\: \\ $$$${f}\left({t}\right)=\mathrm{5}\left[\mathrm{1}+\frac{\mathrm{4}}{\pi}\left(\frac{}{}\frac{{sin}\mathrm{120}\pi{t}}{\mathrm{1}}+\frac{{sin}\mathrm{360}\pi{t}}{\mathrm{2}}+\frac{{sin}\mathrm{600}\pi{t}}{\mathrm{3}}\right.\right. \\ $$$$\left.\:\left.\:\:\:\:\:+.........\right)\right] \\ $$$${The}\:{transfer}\:{function}\:{for}\:{this} \\ $$$${problem}\:\:{T}\left({s}\right)=\frac{{X}\left({s}\right)}{{f}\left({s}\right)}=\frac{\mathrm{1}}{{ms}^{\mathrm{2}} +{cs}+{k}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{0}.\mathrm{001}{s}+\mathrm{1}} \\ $$$$\mathrm{1}.\:{plot}\:{the}\:{amplitude}\:{spectrum}\: \\ $$$$\mathrm{2}.{Obtain}\:{the}\:{expression}\:{for}\:{steady}\: \\ $$$$\:\:\:\:\:\:\:\:{displacement}\:{X}\left({t}\right) \\ $$

Question Number 198460    Answers: 0   Comments: 0

In △ABC holds: Π (1 + (1/a) tan (A/2)) ≥ (1 + (1/(3R)))^3

$$\mathrm{In}\:\:\:\bigtriangleup\mathrm{ABC}\:\:\:\mathrm{holds}: \\ $$$$\Pi\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{a}}\:\mathrm{tan}\:\frac{\mathrm{A}}{\mathrm{2}}\right)\:\geqslant\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{3R}}\right)^{\mathrm{3}} \\ $$

Question Number 198451    Answers: 0   Comments: 0

Solve the EDP x(y−z)(∂U/∂x)+y(z−x)(∂U/∂y)=z(x−y)

$${Solve}\:{the}\:{EDP} \\ $$$${x}\left({y}−{z}\right)\frac{\partial{U}}{\partial{x}}+{y}\left({z}−{x}\right)\frac{\partial{U}}{\partial{y}}={z}\left({x}−{y}\right) \\ $$

Question Number 198449    Answers: 0   Comments: 2

Question Number 198447    Answers: 2   Comments: 5

Given function f(4567,321567)= 567+321=888. f(32156,12062)= 156+120=276 find the value of f(((20^(22) )/(21)) ).

$$\:\:\mathrm{Given}\:\mathrm{function}\: \\ $$$$\:\:\mathrm{f}\left(\mathrm{4567},\mathrm{321567}\right)=\:\mathrm{567}+\mathrm{321}=\mathrm{888}. \\ $$$$\:\:\mathrm{f}\left(\mathrm{32156},\mathrm{12062}\right)=\:\mathrm{156}+\mathrm{120}=\mathrm{276} \\ $$$$\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\:\:\:\:\mathrm{f}\left(\frac{\mathrm{20}^{\mathrm{22}} }{\mathrm{21}}\:\right). \\ $$

Question Number 198443    Answers: 1   Comments: 0

Proove Σ_(i=1) ^n Σ_(j=1) ^m (xi+yj)=mΣ_(i=1) ^n xi+nΣ_(j=1) ^m yj

$${Proove}\: \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{m}} {\sum}}\left({xi}+{yj}\right)={m}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{xi}+{n}\underset{{j}=\mathrm{1}} {\overset{{m}} {\sum}}{yj} \\ $$

Question Number 198439    Answers: 0   Comments: 4

Question Number 198435    Answers: 1   Comments: 0

Question Number 198434    Answers: 1   Comments: 1

Question Number 198431    Answers: 2   Comments: 0

f : R → R f (3x − 1) = x + 5 Find: f(x) = ?

$$\mathrm{f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$$\mathrm{f}\:\left(\mathrm{3x}\:−\:\mathrm{1}\right)\:=\:\mathrm{x}\:+\:\mathrm{5} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:? \\ $$

Question Number 198428    Answers: 0   Comments: 0

Question Number 198427    Answers: 0   Comments: 0

Question Number 198423    Answers: 2   Comments: 0

show that ((1+sin∅)/(cos∅)) =((cos∅)/(1−sin∅)) Pls help

$$\mathrm{show}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}+\mathrm{sin}\varnothing}{\mathrm{cos}\varnothing}\:=\frac{\mathrm{cos}\varnothing}{\mathrm{1}−\mathrm{sin}\varnothing} \\ $$$$\mathrm{Pls}\:\mathrm{help} \\ $$$$ \\ $$

Question Number 198421    Answers: 1   Comments: 3

Question Number 198420    Answers: 1   Comments: 0

Question Number 198419    Answers: 0   Comments: 0

Please Help... ∫∫_S x^2 dydz+y^2 dzdx+2z(xy−x−y)dxdy where S is the surface of the cube. 0≤x≤1, 0≤y≤1, 0≤z≤1

$$\:\:{Please}\:{Help}... \\ $$$$\:\:\int\underset{{S}} {\int}{x}^{\mathrm{2}} {dydz}+{y}^{\mathrm{2}} {dzdx}+\mathrm{2}{z}\left({xy}−{x}−{y}\right){dxdy}\:{where} \\ $$$$\:\:\:{S}\:{is}\:{the}\:{surface}\:{of}\:{the}\:{cube}.\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1},\:\mathrm{0}\leqslant{y}\leqslant\mathrm{1}, \\ $$$$\:\:\:\:\mathrm{0}\leqslant{z}\leqslant\mathrm{1} \\ $$$$ \\ $$

Question Number 198418    Answers: 1   Comments: 0

20^(22) −1 = ... (mod 1000)

$$\:\mathrm{20}^{\mathrm{22}} −\mathrm{1}\:=\:...\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$ \\ $$

Question Number 198414    Answers: 0   Comments: 0

(3/8)(3h−p)^2 +3ph=(3h^2 −1) and (((3h−p)^3 )/(16))+p(3h^2 −1)=h^3 −h−c Find p and h in terms of 0<c<(2/(3(√3)))∙

$$\frac{\mathrm{3}}{\mathrm{8}}\left(\mathrm{3}{h}−{p}\right)^{\mathrm{2}} +\mathrm{3}{ph}=\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$${and} \\ $$$$\frac{\left(\mathrm{3}{h}−{p}\right)^{\mathrm{3}} }{\mathrm{16}}+{p}\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)={h}^{\mathrm{3}} −{h}−{c} \\ $$$${Find}\:\:{p}\:{and}\:{h}\:\:{in}\:{terms}\:{of}\:\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}\centerdot \\ $$

Question Number 198413    Answers: 1   Comments: 1

Question Number 198403    Answers: 1   Comments: 0

Question Number 198400    Answers: 3   Comments: 0

20^(11) −1 = ...(mod 1000)

$$\:\:\mathrm{20}^{\mathrm{11}} −\mathrm{1}\:=\:...\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$

Question Number 198395    Answers: 0   Comments: 4

Question Number 198391    Answers: 2   Comments: 1

Question Number 198426    Answers: 0   Comments: 0

Question Number 198380    Answers: 0   Comments: 2

  Pg 200      Pg 201      Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207      Pg 208      Pg 209   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com