Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 205
Question Number 200446 Answers: 1 Comments: 0
$${fund}\:\:\:\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(\mathrm{3}\:+\:\left(−\mathrm{1}\right)^{\boldsymbol{{n}}} \right)^{\boldsymbol{{n}}} }{{n}}\:{x}^{\boldsymbol{{n}}} \:=\:? \\ $$
Question Number 200444 Answers: 1 Comments: 0
Question Number 200438 Answers: 0 Comments: 1
$$\mathrm{Find}: \\ $$$$\sqrt{\mathrm{3}\:+\:\sqrt{\mathrm{6}\:+\:\sqrt{\mathrm{9}\:+\:...\:+\:\sqrt{\mathrm{96}\:+\:\sqrt{\mathrm{99}}}}}}\:=\:? \\ $$
Question Number 200432 Answers: 0 Comments: 2
Question Number 200428 Answers: 1 Comments: 0
Question Number 200424 Answers: 0 Comments: 4
Question Number 200423 Answers: 0 Comments: 0
Question Number 200420 Answers: 0 Comments: 6
Question Number 200417 Answers: 1 Comments: 0
$$\mathrm{find}:\:\:\:\Omega\:=\:\int_{\mathrm{1}} ^{\:\infty} \:\frac{\sqrt{\mathrm{x}}}{\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)}\:\mathrm{dx}\:=\:? \\ $$
Question Number 200415 Answers: 1 Comments: 0
Question Number 200413 Answers: 1 Comments: 1
Question Number 200412 Answers: 1 Comments: 0
$$\mathrm{If} \\ $$$$\sqrt{\left(\mathrm{x}-\mathrm{6}\right)^{\mathrm{2}} \:+\:\left(\mathrm{y}+\mathrm{1}\right)^{\mathrm{2}} }\:+\:\sqrt{\left(\mathrm{x}-\mathrm{9}\right)^{\mathrm{2}} \:+\:\left(\mathrm{y}+\mathrm{5}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{find}:\:\:\:\mathrm{minumum}\:=\:? \\ $$
Question Number 200395 Answers: 1 Comments: 0
Question Number 200388 Answers: 1 Comments: 0
$${find}\:{all}\:{values}\:{for}\:{k}\:{such}\:{that}\:{the}\:{eq}. \\ $$$${x}^{\mathrm{3}} −\mathrm{13}{x}+{k}=\mathrm{0}\:{has}\:{three}\:{integer}\:{roots}. \\ $$
Question Number 200403 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int\:\:\frac{\left(\boldsymbol{{x}}^{\mathrm{2}} \:+\:\:\mathrm{1}\right)\boldsymbol{{dx}}}{\boldsymbol{{x}}\left(\boldsymbol{{x}}−\mathrm{1}\right)\left(\boldsymbol{{x}}+\mathrm{1}\right)}\:=\:?? \\ $$$$ \\ $$
Question Number 200418 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{calculus}\:\:\left(\:\:\mathrm{I}\:\:\right)\:\: \\ $$$$\:\:\mathrm{I}{f}\:,\:\:\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\pi} \:\frac{\:{x}\:}{\mathrm{1}\:\:+\:\mathrm{sin}^{\mathrm{2}} \left({x}\right)}\:\mathrm{d}{x}\:=\:{a}\:\zeta\:\left(\:\mathrm{2}\:\right)\:\: \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\:\:\:{a}\:=\:?\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:{where}\:\:,\:\:\:\zeta\:\left({s}\:\right)\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\mathrm{1}}{{n}^{\:{s}} } \\ $$$$ \\ $$
Question Number 200379 Answers: 0 Comments: 1
Question Number 200377 Answers: 1 Comments: 1
Question Number 200366 Answers: 1 Comments: 1
Question Number 200357 Answers: 0 Comments: 4
Question Number 200356 Answers: 1 Comments: 1
Question Number 200353 Answers: 3 Comments: 0
$$\mathrm{If}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} +\mathrm{3px}^{\mathrm{2}} +\mathrm{3qx}+\mathrm{r}=\mathrm{0}\:\mathrm{are} \\ $$$$\mathrm{in}\:\mathrm{harmonic}\:\mathrm{progression},\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{2q}^{\mathrm{3}} =\mathrm{r}\left(\mathrm{3pq}−\mathrm{r}\right) \\ $$
Question Number 200351 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{x}^{\mathrm{3}} −\mathrm{12x}^{\mathrm{2}} −\mathrm{6x}−\mathrm{10}=\mathrm{0}\: \\ $$$$\mathrm{by}\:\mathrm{cardon}'\mathrm{s}\:\mathrm{method} \\ $$
Question Number 200350 Answers: 0 Comments: 1
Question Number 200336 Answers: 1 Comments: 0
Question Number 200330 Answers: 4 Comments: 0
$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:=\:\sqrt{\mathrm{6}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{9}^{\boldsymbol{\mathrm{x}}} } \\ $$$$\mathrm{find}:\:\:\:\mathrm{x}\:=\:? \\ $$
Pg 200 Pg 201 Pg 202 Pg 203 Pg 204 Pg 205 Pg 206 Pg 207 Pg 208 Pg 209
Terms of Service
Privacy Policy
Contact: info@tinkutara.com