Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 205
Question Number 201011 Answers: 0 Comments: 0
$$\boldsymbol{{Prove}}\:\boldsymbol{{that}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}\boldsymbol{{arctan}}\left(\frac{\boldsymbol{{t}}}{\boldsymbol{{x}}}\right)}{\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{\pi{t}}} β\mathrm{1}}\boldsymbol{{dt}}=\boldsymbol{{In}\Gamma}\left(\boldsymbol{{x}}\right)β\boldsymbol{{xIn}}\left(\boldsymbol{{x}}\right)+\boldsymbol{{x}}β\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{In}}\left(\frac{\mathrm{2}\boldsymbol{\pi}}{\boldsymbol{{x}}}\right) \\ $$$$\boldsymbol{{Michael}}\:\boldsymbol{{faraday}} \\ $$
Question Number 201008 Answers: 1 Comments: 0
Question Number 201004 Answers: 2 Comments: 0
Question Number 200984 Answers: 3 Comments: 0
Question Number 200980 Answers: 1 Comments: 0
Question Number 200979 Answers: 1 Comments: 0
Question Number 200978 Answers: 3 Comments: 0
Question Number 200968 Answers: 0 Comments: 0
Question Number 200971 Answers: 1 Comments: 0
Question Number 200976 Answers: 4 Comments: 0
Question Number 200973 Answers: 0 Comments: 0
Question Number 200972 Answers: 1 Comments: 0
Question Number 200970 Answers: 3 Comments: 0
Question Number 200964 Answers: 1 Comments: 0
Question Number 200961 Answers: 2 Comments: 0
$$\: \\ $$$$\:\:\:\:\:β{x}^{\mathrm{3}} +\mathrm{1}=\sqrt[{\mathrm{3}}]{β{x}+\mathrm{1}}\:\Rightarrow{x}=? \\ $$$$ \\ $$
Question Number 200960 Answers: 3 Comments: 0
Question Number 200958 Answers: 2 Comments: 0
Question Number 200954 Answers: 0 Comments: 1
Question Number 200937 Answers: 2 Comments: 0
Question Number 200936 Answers: 0 Comments: 1
Question Number 200934 Answers: 1 Comments: 0
Question Number 200933 Answers: 0 Comments: 0
$$ \\ $$$$\int\mathrm{coth}\:\left(\mathrm{ln}\:\left[\sqrt{\mathrm{tanh}\:\left(\mathrm{ln}\:\left(\sqrt{\mathrm{sec}^{β\mathrm{1}} \:\:\sqrt[{\mathrm{4}}]{{x}}\:\:}\right)\right)}\:\right]\right) \\ $$$$ \\ $$$$ \\ $$
Question Number 201000 Answers: 0 Comments: 0
$${find}\: \\ $$$$ \\ $$$$\left.\:\mathrm{1}\right)\left(\mathrm{0},\mathrm{2}\right)\:\cup\:\left\{\mathrm{3}\right\}\:\: \\ $$$$ \\ $$$$\left.\:\:\mathrm{2}\right)\left[\mathrm{0},\mathrm{2}\right]\:\cup\:\left\{\mathrm{3}\right\} \\ $$$$ \\ $$$$\left.\:\:\mathrm{3}\right)\:\left(β\mathrm{5},\mathrm{5}\right)\:\cup\:\left\{\mathrm{6}\right\} \\ $$$$\:\: \\ $$$$\left.\:\:\mathrm{4}\right)\:\left(β\mathrm{2}\:,\:\mathrm{2}\:\right)\:\cup\:\left[\mathrm{3},\mathrm{5}\right] \\ $$
Question Number 200942 Answers: 1 Comments: 0
Question Number 200929 Answers: 0 Comments: 2
$$\mathrm{A}\:\mathrm{ball}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{function}\:{z}={xy}\:\mathrm{at} \\ $$$$\mathrm{the}\:\mathrm{point}\:\left(\mathrm{1},\mathrm{2},\mathrm{2}\right).\:\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{in} \\ $$$$\mathrm{the}\:{xy}β\mathrm{plane}\:\mathrm{where}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{will} \\ $$$$\mathrm{touch}\:\mathrm{it}. \\ $$$$\mathrm{Calculus}\:\mathrm{2}\:\mathrm{problem}. \\ $$
Question Number 200925 Answers: 1 Comments: 0
Pg 200 Pg 201 Pg 202 Pg 203 Pg 204 Pg 205 Pg 206 Pg 207 Pg 208 Pg 209
Terms of Service
Privacy Policy
Contact: info@tinkutara.com