Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 205

Question Number 201819    Answers: 0   Comments: 0

If xyz ∈R^+ , xyz=1 , prove that the following inequality holds: (x/(2x^5 +x+4))+(y/(2y^5 +y+4))+(z/(2z^5 +z+4))≥(3/7). Solution please with an advice to get better at inequalities and which book would you recommend. Thanks in advance!

$$\mathrm{If}\:{xyz}\:\in\mathbb{R}^{+} \:,\:{xyz}=\mathrm{1}\:,\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inequality}\:\mathrm{holds}: \\ $$$$\frac{{x}}{\mathrm{2}{x}^{\mathrm{5}} +{x}+\mathrm{4}}+\frac{{y}}{\mathrm{2}{y}^{\mathrm{5}} +{y}+\mathrm{4}}+\frac{{z}}{\mathrm{2}{z}^{\mathrm{5}} +{z}+\mathrm{4}}\geqslant\frac{\mathrm{3}}{\mathrm{7}}. \\ $$$$\boldsymbol{\mathrm{Solution}}\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{advice}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{get}}\:\boldsymbol{\mathrm{better}} \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{inequalities}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{book}}\:\boldsymbol{\mathrm{would}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{recommend}}. \\ $$$$\boldsymbol{\mathrm{Thanks}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{advance}}! \\ $$$$\: \\ $$

Question Number 201817    Answers: 1   Comments: 0

Question Number 201808    Answers: 1   Comments: 1

Question Number 201806    Answers: 1   Comments: 2

Question Number 201804    Answers: 0   Comments: 0

If xyz ∈R^+ , xyz=1 , prove that the following inequality holds: (x/(2x^5 +x+4))+(y/(2y^5 +y+4))+(z/(2z^5 +z+4))≥(3/7). Solution please with an advice to get better at inequalities and which book would you recommend. Thanks in advance!

$$\mathrm{If}\:{xyz}\:\in\mathbb{R}^{+} \:,\:{xyz}=\mathrm{1}\:,\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inequality}\:\mathrm{holds}: \\ $$$$\frac{{x}}{\mathrm{2}{x}^{\mathrm{5}} +{x}+\mathrm{4}}+\frac{{y}}{\mathrm{2}{y}^{\mathrm{5}} +{y}+\mathrm{4}}+\frac{{z}}{\mathrm{2}{z}^{\mathrm{5}} +{z}+\mathrm{4}}\geqslant\frac{\mathrm{3}}{\mathrm{7}}. \\ $$$$\boldsymbol{\mathrm{Solution}}\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{advice}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{get}}\:\boldsymbol{\mathrm{better}} \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{inequalities}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{book}}\:\boldsymbol{\mathrm{would}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{recommend}}. \\ $$$$\boldsymbol{\mathrm{Thanks}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{advance}}! \\ $$$$\: \\ $$

Question Number 201802    Answers: 0   Comments: 1

Solution of equations like this: ((f(x)))^(1/n) +((g(x)))^(1/n) =((h(x)))^(1/n) If the solution is not obvious we must get rid of the radicals. In the following cases this is easy: (√a)+(√b)=(√c) ⇒ a+2(√(ab))+b=c ⇒ 4ab=(c−a−b)^2 (a)^(1/3) +(b)^(1/3) =(c)^(1/3) ⇒ a+3((ab))^(1/3) ((a)^(1/3) +(b)^(1/3) )+b=c ⇒ a+3((abc))^(1/3) +b=c ⇒ 27abc=(c−a−b)^3 But how to solve for n≥4? I found this formula to get an equation without radicals: a^(1/n) +b^(1/n) =c^(1/n) ⇒ Π_(k=0) ^(n−1) (c−(a^(1/n) +b^(1/n) e^(i((2πk)/n)) )^n ) =0 For n=2, 3 we get above equations. For n=4: c^4 −4(a+b)c^3 +2(3a^2 −62ab+3b^2 )c^2 −4(a+b)(a^2 +30ab+b^2 )c+(a−b)^4 =0 ⇔ 8ab(17c^2 +14(a+b)c+a^2 +b^2 )=(c−a−b)^4 For n=5: 625abc(c^2 +3(a+b)c+a^2 −3ab+b^2 )=(c−a−b)^5 I hope this helps...

$$\mathrm{Solution}\:\mathrm{of}\:\mathrm{equations}\:\mathrm{like}\:\mathrm{this}: \\ $$$$\sqrt[{{n}}]{{f}\left({x}\right)}+\sqrt[{{n}}]{{g}\left({x}\right)}=\sqrt[{{n}}]{{h}\left({x}\right)} \\ $$$$\mathrm{If}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{not}\:\mathrm{obvious}\:\mathrm{we}\:\mathrm{must}\:\mathrm{get} \\ $$$$\mathrm{rid}\:\mathrm{of}\:\mathrm{the}\:\mathrm{radicals}.\:\mathrm{In}\:\mathrm{the}\:\mathrm{following}\:\mathrm{cases} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{easy}: \\ $$$$\sqrt{{a}}+\sqrt{{b}}=\sqrt{{c}} \\ $$$$\:\:\:\:\:\Rightarrow\:{a}+\mathrm{2}\sqrt{{ab}}+{b}={c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{4}{ab}=\left({c}−{a}−{b}\right)^{\mathrm{2}} \\ $$$$\sqrt[{\mathrm{3}}]{{a}}+\sqrt[{\mathrm{3}}]{{b}}=\sqrt[{\mathrm{3}}]{{c}} \\ $$$$\:\:\:\:\:\Rightarrow\:{a}+\mathrm{3}\sqrt[{\mathrm{3}}]{{ab}}\left(\sqrt[{\mathrm{3}}]{{a}}+\sqrt[{\mathrm{3}}]{{b}}\right)+{b}={c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\Rightarrow\:{a}+\mathrm{3}\sqrt[{\mathrm{3}}]{{abc}}+{b}={c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{27}{abc}=\left({c}−{a}−{b}\right)^{\mathrm{3}} \\ $$$$\mathrm{But}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{for}\:{n}\geqslant\mathrm{4}? \\ $$$$\mathrm{I}\:\mathrm{found}\:\mathrm{this}\:\mathrm{formula}\:\mathrm{to}\:\mathrm{get}\:\mathrm{an}\:\mathrm{equation} \\ $$$$\mathrm{without}\:\mathrm{radicals}: \\ $$$${a}^{\frac{\mathrm{1}}{{n}}} +{b}^{\frac{\mathrm{1}}{{n}}} ={c}^{\frac{\mathrm{1}}{{n}}} \\ $$$$\Rightarrow \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\:\left({c}−\left({a}^{\frac{\mathrm{1}}{{n}}} +{b}^{\frac{\mathrm{1}}{{n}}} \mathrm{e}^{\mathrm{i}\frac{\mathrm{2}\pi{k}}{{n}}} \right)^{{n}} \right)\:=\mathrm{0} \\ $$$$\mathrm{For}\:{n}=\mathrm{2},\:\mathrm{3}\:\mathrm{we}\:\mathrm{get}\:\mathrm{above}\:\mathrm{equations}. \\ $$$$\mathrm{For}\:{n}=\mathrm{4}: \\ $$$${c}^{\mathrm{4}} −\mathrm{4}\left({a}+{b}\right){c}^{\mathrm{3}} +\mathrm{2}\left(\mathrm{3}{a}^{\mathrm{2}} −\mathrm{62}{ab}+\mathrm{3}{b}^{\mathrm{2}} \right){c}^{\mathrm{2}} −\mathrm{4}\left({a}+{b}\right)\left({a}^{\mathrm{2}} +\mathrm{30}{ab}+{b}^{\mathrm{2}} \right){c}+\left({a}−{b}\right)^{\mathrm{4}} =\mathrm{0} \\ $$$$\Leftrightarrow \\ $$$$\mathrm{8}{ab}\left(\mathrm{17}{c}^{\mathrm{2}} +\mathrm{14}\left({a}+{b}\right){c}+{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)=\left({c}−{a}−{b}\right)^{\mathrm{4}} \\ $$$$\mathrm{For}\:{n}=\mathrm{5}: \\ $$$$\mathrm{625}{abc}\left({c}^{\mathrm{2}} +\mathrm{3}\left({a}+{b}\right){c}+{a}^{\mathrm{2}} −\mathrm{3}{ab}+{b}^{\mathrm{2}} \right)=\left({c}−{a}−{b}\right)^{\mathrm{5}} \\ $$$$\mathrm{I}\:\mathrm{hope}\:\mathrm{this}\:\mathrm{helps}... \\ $$

Question Number 201798    Answers: 1   Comments: 0

Find the differential of the function: y = (√(x^2 − 1))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}: \\ $$$$\boldsymbol{\mathrm{y}}\:=\:\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:−\:\mathrm{1}} \\ $$

Question Number 201796    Answers: 0   Comments: 2

x^4 −15x^2 −30x+104=0 for x∈R x=2, 4 I want to know the best way to arrive at these answers (without guessing). I found one new way. Shall post later.

$${x}^{\mathrm{4}} −\mathrm{15}{x}^{\mathrm{2}} −\mathrm{30}{x}+\mathrm{104}=\mathrm{0} \\ $$$${for}\:{x}\in\mathbb{R}\:\:\:\:\:{x}=\mathrm{2},\:\mathrm{4} \\ $$$${I}\:{want}\:{to}\:{know}\:{the}\:{best}\:{way}\:{to} \\ $$$${arrive}\:{at}\:{these}\:{answers}\:\left({without}\right. \\ $$$$\left.{guessing}\right).\:{I}\:{found}\:{one}\:{new}\:{way}. \\ $$$$\:{Shall}\:{post}\:{later}. \\ $$

Question Number 201793    Answers: 1   Comments: 0

Question Number 201790    Answers: 1   Comments: 1

Question Number 201764    Answers: 1   Comments: 0

1. y = tgx − ctgx → y^′ = ? 2. y = (1 + x^2 ) arctgx → y^′ = ? 3. y = cos^4 x → y^′ = ? 4. { ((x = 2t)),((y = 3t^2 − 5t)) :} → x^′ , y^′ = ?

$$\mathrm{1}.\:\mathrm{y}\:=\:\mathrm{tgx}\:−\:\mathrm{ctgx}\:\:\rightarrow\:\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{2}.\:\mathrm{y}\:=\:\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{arctgx}\:\rightarrow\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{3}.\:\mathrm{y}\:=\:\mathrm{cos}^{\mathrm{4}} \:\mathrm{x}\:\rightarrow\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{4}.\:\begin{cases}{\mathrm{x}\:=\:\mathrm{2t}}\\{\mathrm{y}\:=\:\mathrm{3t}^{\mathrm{2}} \:−\:\mathrm{5t}}\end{cases}\:\:\:\rightarrow\:\:\:\mathrm{x}^{'} \:,\:\mathrm{y}^{'} \:=\:? \\ $$

Question Number 201763    Answers: 5   Comments: 0

Find: 1. ∫ cos3x cosx dx = ? 2. ∫ 3^x sinx dx = ? 3. ∫_(0 ) ^( 1) x e^(−x) dx = ? 4. ∫_1 ^( e) ln^2 x dx = ?

$$\mathrm{Find}: \\ $$$$\mathrm{1}.\:\int\:\mathrm{cos3x}\:\mathrm{cosx}\:\mathrm{dx}\:=\:? \\ $$$$\mathrm{2}.\:\int\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:\mathrm{sinx}\:\mathrm{dx}\:=\:? \\ $$$$\mathrm{3}.\:\int_{\mathrm{0}\:} ^{\:\mathrm{1}} \:\mathrm{x}\:\mathrm{e}^{−\boldsymbol{\mathrm{x}}} \:\mathrm{dx}\:=\:? \\ $$$$\mathrm{4}.\:\int_{\mathrm{1}} ^{\:\boldsymbol{\mathrm{e}}} \:\mathrm{ln}^{\mathrm{2}} \:\mathrm{x}\:\mathrm{dx}\:=\:? \\ $$

Question Number 201762    Answers: 1   Comments: 0

Question Number 201956    Answers: 1   Comments: 1

Question Number 201727    Answers: 1   Comments: 0

∫_(π/6) ^(π/3) e^(sin x^(cos x^(tan x^(cot x^(sec x^(cosec x) ) ) ) ) ) dx

$$\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} {e}^{\mathrm{sin}\:{x}^{{c}\mathrm{os}\:{x}^{\mathrm{tan}\:{x}^{\mathrm{cot}\:{x}^{\mathrm{sec}\:{x}^{\mathrm{cosec}\:{x}} } } } } } {dx} \\ $$

Question Number 201729    Answers: 1   Comments: 10

The teacher can choose in 560 ways, provided that there are three students in each team. Knowing that five students do not want to participate, find the number of people willing to participate

The teacher can choose in 560 ways, provided that there are three students in each team. Knowing that five students do not want to participate, find the number of people willing to participate

Question Number 201724    Answers: 0   Comments: 0

lim_(x→0) ((e^x (x−2)+x+2)/x^3 ) solve it by not using taylor series or l′hopital rule.

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{x}} \left({x}−\mathrm{2}\right)+{x}+\mathrm{2}}{{x}^{\mathrm{3}} }\:{solve}\:{it}\:{by}\:{not}\:{using} \\ $$$${taylor}\:{series}\:{or}\:{l}'{hopital}\:{rule}. \\ $$

Question Number 201722    Answers: 5   Comments: 1

Question Number 201715    Answers: 0   Comments: 0

Use Cauchy Riemann to verify whether f(z)=(1/(z(z+1))) is analytic.

$${Use}\:{Cauchy}\:{Riemann}\:{to}\:{verify}\:{whether}\: \\ $$$${f}\left({z}\right)=\frac{\mathrm{1}}{{z}\left({z}+\mathrm{1}\right)}\:{is}\:{analytic}. \\ $$

Question Number 201728    Answers: 1   Comments: 0

cos^2 4x ∙ sin^2 4x = 0,25 for equation [0;90] how many roots are there in the piece?

$$\mathrm{cos}^{\mathrm{2}} \:\mathrm{4x}\:\centerdot\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{4x}\:=\:\mathrm{0},\mathrm{25}\:\mathrm{for}\:\mathrm{equation} \\ $$$$\left[\mathrm{0};\mathrm{90}\right]\:\mathrm{how}\:\mathrm{many}\:\mathrm{roots}\:\mathrm{are}\:\mathrm{there}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{piece}? \\ $$

Question Number 201712    Answers: 0   Comments: 2

Question Number 201707    Answers: 1   Comments: 0

Question Number 201702    Answers: 1   Comments: 1

Find: ∫_1 ^( 3) dx ∫_x ^( x^3 ) (x − y) dy

$$\mathrm{Find}: \\ $$$$\int_{\mathrm{1}} ^{\:\mathrm{3}} \:\mathrm{dx}\:\int_{\boldsymbol{\mathrm{x}}} ^{\:\boldsymbol{\mathrm{x}}^{\mathrm{3}} } \:\left(\mathrm{x}\:−\:\mathrm{y}\right)\:\mathrm{dy} \\ $$

Question Number 201693    Answers: 3   Comments: 0

Question Number 201689    Answers: 1   Comments: 0

Question Number 201683    Answers: 0   Comments: 1

Starting from substituting z=x+iy. Identify the maximal region within which f(z) is analytic f(z)=(1/(z(z+1))). Note. Do not start by just differentiating f(z). Start by doing a substitution of x and iy and then verify Cauchy Rieman theorem.

$${Starting}\:{from}\:{substituting}\:{z}={x}+{iy}.\:{Identify} \\ $$$${the}\:{maximal}\:{region}\:{within}\:{which}\:{f}\left({z}\right)\:{is}\:{analytic} \\ $$$${f}\left({z}\right)=\frac{\mathrm{1}}{{z}\left({z}+\mathrm{1}\right)}.\: \\ $$$$ \\ $$$${Note}.\:{Do}\:{not}\:{start}\:{by}\:{just}\:{differentiating}\:{f}\left({z}\right).\: \\ $$$${Start}\:{by}\:\:{doing}\:{a}\:{substitution}\:{of}\:{x}\:{and}\:{iy}\:{and}\: \\ $$$${then}\:{verify}\:{Cauchy}\:{Rieman}\:{theorem}. \\ $$$$ \\ $$

  Pg 200      Pg 201      Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207      Pg 208      Pg 209   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com