Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 204

Question Number 200901    Answers: 0   Comments: 0

Question Number 200877    Answers: 0   Comments: 5

Question Number 200873    Answers: 1   Comments: 1

Question Number 200864    Answers: 1   Comments: 0

lim_(x→+∞) ((xE(x)+3)/( (√(x^2 +sin x))))

$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{xE}\left({x}\right)+\mathrm{3}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{sin}\:{x}}} \\ $$

Question Number 200863    Answers: 1   Comments: 0

Question Number 200862    Answers: 1   Comments: 0

Question Number 200861    Answers: 1   Comments: 0

Question Number 200860    Answers: 1   Comments: 0

when x∈[0,∞) (x+m)e^(2x) −x^2 ≥(x+m)ln(x+m) m∈?

$${when}\:{x}\in\left[\mathrm{0},\infty\right) \\ $$$$\left({x}+{m}\right){e}^{\mathrm{2}{x}} −{x}^{\mathrm{2}} \geqslant\left({x}+{m}\right){ln}\left({x}+{m}\right) \\ $$$${m}\in? \\ $$

Question Number 200859    Answers: 0   Comments: 1

(x)^(1/0) =?

$$\sqrt[{\mathrm{0}}]{{x}}=? \\ $$

Question Number 200930    Answers: 0   Comments: 1

If I_n =∫_0 ^1 (1−x^4 )^n dx and (I_n /I_(n−1) )=((λn)/(λn+1)) then find λ

$${If}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{4}} \right)^{{n}} {dx}\:\:{and}\:\:\frac{{I}_{{n}} }{{I}_{{n}−\mathrm{1}} }=\frac{\lambda{n}}{\lambda{n}+\mathrm{1}} \\ $$$${then}\:{find}\:\:\lambda \\ $$

Question Number 200856    Answers: 0   Comments: 1

Question Number 200844    Answers: 2   Comments: 2

Question Number 200840    Answers: 2   Comments: 0

lim_(x→a) ((x^n sin a−a^n sin x)/(x−a))

$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{x}^{{n}} \mathrm{sin}\:{a}−{a}^{{n}} \mathrm{sin}\:{x}}{{x}−{a}} \\ $$

Question Number 200836    Answers: 1   Comments: 4

Let abc ^(−) + bca ^(−) + cab ^(−) = defg ^(−) where a,b,...,g are decimal digits (may be equal to 0) Show that (i) dg ^(−) =a+b+c (ii) e=f=d+g

$$ \\ $$$$\mathcal{L}{et}\overline {\:{abc}\:}+\overline {\:{bca}\:}+\overline {\:{cab}\:}=\overline {\:{defg}\:} \\ $$$${where}\:{a},{b},...,{g}\:{are}\:{decimal}\:{digits} \\ $$$$\left({may}\:{be}\:{equal}\:{to}\:\mathrm{0}\right)\: \\ $$$${Show}\:{that} \\ $$$$\left({i}\right)\overline {\:{dg}\:}={a}+{b}+{c} \\ $$$$\left({ii}\right)\:{e}={f}={d}+{g} \\ $$

Question Number 200834    Answers: 1   Comments: 0

Show that abc ^(−) + bca ^(−) + cab ^(−) is divisible by 37

$${Show}\:{that}\:\:\:\overline {\:\:{abc}\:}+\overline {\:{bca}\:}+\overline {\:{cab}\:} \\ $$$${is}\:{divisible}\:{by}\:\mathrm{37} \\ $$

Question Number 200833    Answers: 0   Comments: 4

Advance question A phone mistakenly got locked with the pattern of 3 × 3 form, in how many attempts person can try before he can eventually get it right ? Thank you

$$\mathrm{Advance}\:\mathrm{question} \\ $$$$ \\ $$$$\mathrm{A}\:\mathrm{phone}\:\mathrm{mistakenly}\:\mathrm{got}\:\mathrm{locked}\:\mathrm{with}\:\mathrm{the}\: \\ $$$$\mathrm{pattern}\:\mathrm{of}\:\:\mathrm{3}\:×\:\mathrm{3}\:\mathrm{form},\:\mathrm{in}\:\mathrm{how}\:\mathrm{many}\:\mathrm{attempts} \\ $$$$\mathrm{person}\:\mathrm{can}\:\mathrm{try}\:\mathrm{before}\:\mathrm{he}\:\mathrm{can}\:\mathrm{eventually}\:\mathrm{get} \\ $$$$\mathrm{it}\:\mathrm{right}\:? \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you} \\ $$

Question Number 200831    Answers: 0   Comments: 1

Question Number 200823    Answers: 1   Comments: 0

cos20∙cos40+cos^2 80=?

$${cos}\mathrm{20}\centerdot{cos}\mathrm{40}+{cos}^{\mathrm{2}} \mathrm{80}=? \\ $$

Question Number 200821    Answers: 1   Comments: 0

Question Number 200816    Answers: 2   Comments: 3

Question Number 200802    Answers: 1   Comments: 0

Question Number 200801    Answers: 1   Comments: 0

Question Number 200797    Answers: 0   Comments: 0

Question Number 200795    Answers: 1   Comments: 0

lim_(x→sin1) ((1−x^2 )/(1+cosx))=?

$$\underset{{x}\rightarrow{sin}\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{cosx}}=? \\ $$

Question Number 200792    Answers: 1   Comments: 4

Question Number 200788    Answers: 1   Comments: 0

sinx + cosx = tgx x = ?

$$\mathrm{sin}\boldsymbol{\mathrm{x}}\:\:\:+\:\:\:\mathrm{cos}\boldsymbol{\mathrm{x}}\:\:\:=\:\:\:\mathrm{tg}\boldsymbol{\mathrm{x}} \\ $$$$\mathrm{x}\:=\:? \\ $$

  Pg 199      Pg 200      Pg 201      Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207      Pg 208   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com