Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 204

Question Number 202093    Answers: 1   Comments: 2

Question Number 202086    Answers: 1   Comments: 0

There are two possible routes from Zindhi to Katifa. One route is through Zindhi/Chadler expressway which is 100km and the other is through Adfeti and Ngonu covering a distance of 80km. A motorist going through the expressway can travel 10km/h faster than the one going through Adfeti and Ngonu, and arrive Katifa 5 minutes earlier as well. What is the time spent on the journey to Katifa by the motorist travelling through the expressway.

$${There}\:{are}\:{two}\:{possible}\:{routes}\:{from} \\ $$$${Zindhi}\:{to}\:{Katifa}.\:{One}\:{route}\:{is}\:{through} \\ $$$${Zindhi}/{Chadler}\:{expressway}\:{which}\:{is} \\ $$$$\mathrm{100}{km}\:{and}\:{the}\:{other}\:{is}\:{through}\:{Adfeti}\:{and} \\ $$$${Ngonu}\:{covering}\:{a}\:{distance}\:{of}\:\mathrm{80}{km}.\:{A} \\ $$$${motorist}\:{going}\:{through}\:{the}\:{expressway} \\ $$$${can}\:{travel}\:\mathrm{10}{km}/{h}\:{faster}\:{than}\:{the}\:{one} \\ $$$${going}\:{through}\:{Adfeti}\:{and}\:{Ngonu},\:{and} \\ $$$${arrive}\:{Katifa}\:\mathrm{5}\:{minutes}\:{earlier}\:{as}\:{well}. \\ $$$${What}\:{is}\:{the}\:{time}\:{spent}\:{on}\:{the}\:{journey} \\ $$$${to}\:{Katifa}\:{by}\:{the}\:{motorist}\:{travelling} \\ $$$${through}\:{the}\:{expressway}. \\ $$

Question Number 202084    Answers: 0   Comments: 0

Question Number 202082    Answers: 2   Comments: 0

Question Number 202079    Answers: 1   Comments: 0

A man travelled from town A to B, a distance of 360km. He left A one hour later than he had planned so he decided to drive at 5km/h faster than his normal speed, in order to reach B on schedule. If he arrived B at exactly the scheduled time, find the normal speed.

$${A}\:{man}\:{travelled}\:{from}\:{town}\:{A}\:{to}\:{B},\:{a} \\ $$$${distance}\:{of}\:\mathrm{360}{km}.\:{He}\:{left}\:{A}\:{one}\:{hour} \\ $$$${later}\:{than}\:{he}\:{had}\:{planned}\:{so}\:{he}\:{decided} \\ $$$${to}\:{drive}\:{at}\:\mathrm{5}{km}/{h}\:{faster}\:{than}\:{his} \\ $$$${normal}\:{speed},\:{in}\:{order}\:{to}\:{reach}\:{B}\:{on} \\ $$$${schedule}.\:{If}\:{he}\:{arrived}\:{B}\:{at}\:{exactly}\:{the} \\ $$$${scheduled}\:{time},\:{find}\:{the}\:{normal}\:{speed}. \\ $$

Question Number 202058    Answers: 1   Comments: 1

Solve by computer programming a, b & c are Prime numbers. And they are in AP and d is common difference Example (a, b, c, d) = (3, 5, 7, 2) Just Next Set(a, b, c, d) = ?

$$\mathrm{Solve}\:\mathrm{by}\:\mathrm{computer}\:\mathrm{programming} \\ $$$${a},\:{b}\:\&\:{c}\:{are}\:{Prime}\:{numbers}.\:\mathrm{And}\:\mathrm{they} \\ $$$$\:\mathrm{are}\:\mathrm{in}\:\mathrm{AP}\:\mathrm{and}\:\mathrm{d}\:\mathrm{is}\:\mathrm{common}\:\mathrm{difference} \\ $$$$\mathrm{Example}\:\left(\mathrm{a},\:\mathrm{b},\:\mathrm{c},\:\mathrm{d}\right)\:=\:\left(\mathrm{3},\:\mathrm{5},\:\mathrm{7},\:\mathrm{2}\right) \\ $$$$\:\mathrm{Just}\:\mathrm{Next}\:\mathrm{Set}\left(\mathrm{a},\:\mathrm{b},\:\mathrm{c},\:\mathrm{d}\right)\:=\:? \\ $$

Question Number 202056    Answers: 0   Comments: 9

Question Number 202044    Answers: 2   Comments: 1

If a = 9999999998000000001 Find A = (((√a) + 1))^(1/9) → A = ?

$$\mathrm{If} \\ $$$$\mathrm{a}\:=\:\mathrm{9999999998000000001} \\ $$$$\mathrm{Find} \\ $$$$\mathrm{A}\:=\:\sqrt[{\mathrm{9}}]{\sqrt{\mathrm{a}}\:+\:\mathrm{1}}\:\:\:\rightarrow\:\:\:\mathrm{A}\:=\:? \\ $$

Question Number 202041    Answers: 1   Comments: 0

Simplify: (((√2) − sinα − cosα)/(sinα − cosα))

$$\mathrm{Simplify}:\:\:\:\frac{\sqrt{\mathrm{2}}\:−\:\mathrm{sin}\alpha\:−\:\mathrm{cos}\alpha}{\mathrm{sin}\alpha\:−\:\mathrm{cos}\alpha} \\ $$

Question Number 202034    Answers: 1   Comments: 0

Question Number 202039    Answers: 1   Comments: 0

Question Number 202037    Answers: 1   Comments: 0

A board has 2, 4, and 6 written on it. One repeatedly chooses values ​​(not necessarily different) for x, y, and z from the board, and writes xyz + xy + yz + zx + x + y + z if and only if those numbers are not already on the board and are also less than or equals 2013. The person repeats this process until no more numbers can be written. How many numbers will be written at the end of this process?

$$ \\ $$A board has 2, 4, and 6 written on it. One repeatedly chooses values ​​(not necessarily different) for x, y, and z from the board, and writes xyz + xy + yz + zx + x + y + z if and only if those numbers are not already on the board and are also less than or equals 2013. The person repeats this process until no more numbers can be written. How many numbers will be written at the end of this process?

Question Number 202035    Answers: 0   Comments: 0

Question Number 202019    Answers: 3   Comments: 0

If α and β are the roots of the ax^2 + 2bx + c = 0 and α + δ and β + δ are the roots of Ax^2 + 2Bx + C = 0 for some constant δ then prove that ((b^2 − ac)/a^2 ) = ((B^2 − AC)/A^2 ) .

$$\mathrm{If}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\: \\ $$$${ax}^{\mathrm{2}} \:+\:\mathrm{2}{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{and}\:\alpha\:+\:\delta\:\mathrm{and}\:\beta\:+\:\delta\:\mathrm{are} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{Ax}^{\mathrm{2}} \:+\:\mathrm{2}{Bx}\:+\:{C}\:=\:\mathrm{0}\:\mathrm{for}\:\mathrm{some}\: \\ $$$$\mathrm{constant}\:\delta\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{{b}^{\mathrm{2}} \:−\:{ac}}{{a}^{\mathrm{2}} }\:=\:\frac{{B}^{\mathrm{2}} \:−\:{AC}}{{A}^{\mathrm{2}} }\:. \\ $$

Question Number 202017    Answers: 3   Comments: 0

Question Number 202016    Answers: 1   Comments: 0

Question Number 202011    Answers: 0   Comments: 0

Question Number 202009    Answers: 0   Comments: 0

Question Number 202003    Answers: 0   Comments: 3

what is meant by ξ

$${what}\:{is}\:{meant}\:{by}\:\xi \\ $$

Question Number 202001    Answers: 1   Comments: 0

If a circle of radius r is inscribed in a triangl ABC. Express r in terms of a,b and c only

$${If}\:{a}\:{circle}\:{of}\:{radius}\:{r}\:{is}\:{inscribed}\:{in} \\ $$$${a}\:{triangl}\:{ABC}.\:{Express}\:{r}\:{in}\:{terms}\:{of} \\ $$$${a},{b}\:{and}\:{c}\:{only} \\ $$

Question Number 202000    Answers: 0   Comments: 0

Question Number 201995    Answers: 1   Comments: 0

Question Number 201994    Answers: 0   Comments: 0

Question Number 201991    Answers: 2   Comments: 0

Solve ((1/x) − (1/x^3 ))^(1/2) + ((1/x^2 ) − (1/x^3 ))^(1/2) = 1

$$\boldsymbol{\mathrm{Solve}} \\ $$$$\left(\frac{\mathrm{1}}{{x}}\:−\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:+\:\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:−\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:=\:\mathrm{1} \\ $$

Question Number 201989    Answers: 1   Comments: 0

Question Number 201952    Answers: 1   Comments: 0

(gof)_x =2x−1 (fog)_x ^(−1) =3x+2 (fof)_3 =?

$$\left({gof}\right)_{{x}} =\mathrm{2}{x}−\mathrm{1}\:\: \\ $$$$\left({fog}\right)_{{x}} ^{−\mathrm{1}} =\mathrm{3}{x}+\mathrm{2} \\ $$$$\left({fof}\right)_{\mathrm{3}} =? \\ $$

  Pg 199      Pg 200      Pg 201      Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207      Pg 208   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com