Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 204
Question Number 201491 Answers: 6 Comments: 1
$$\mathrm{1}.\:{x}^{\mathrm{2}} −\mathrm{1}+\sqrt[{\mathrm{3}}]{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} }=\mathrm{10}{x} \\ $$$$\mathrm{2}.\:\sqrt{{x}−\frac{\mathrm{1}}{{x}}}+\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}={x} \\ $$$$\mathrm{3}.\:\sqrt{\mathrm{2}{x}−\frac{\mathrm{8}}{{x}}}+\mathrm{2}\sqrt{\mathrm{1}−\frac{\mathrm{2}}{{x}}}\geqslant{x} \\ $$$$\mathrm{4}.\:\sqrt{{x}^{\mathrm{2}} +{x}}+\sqrt{{x}+\mathrm{2}}\geqslant\sqrt{\mathrm{3}\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)} \\ $$$$\mathrm{5}.\:\left(\sqrt{{x}+\mathrm{5}}−\sqrt{{x}−\mathrm{3}}\right)\left(\mathrm{1}+\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{15}}\right)\geqslant\mathrm{8} \\ $$$$\mathrm{6}.\:{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{1}=\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\mathrm{7}.\:\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{7}=\left({x}+\mathrm{5}\right)\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}} \\ $$
Question Number 201308 Answers: 1 Comments: 2
Question Number 201302 Answers: 1 Comments: 0
$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{−\mathrm{2}} \:=\:\mathrm{4}}\\{\mathrm{x}^{−\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{5}}\end{cases}\:\:\:\:\:\mathrm{find}:\:\:\frac{\mathrm{y}}{\mathrm{x}}\:=\:? \\ $$
Question Number 201298 Answers: 1 Comments: 2
Question Number 201293 Answers: 1 Comments: 0
Question Number 201292 Answers: 1 Comments: 0
Question Number 201291 Answers: 2 Comments: 0
Question Number 201290 Answers: 1 Comments: 0
Question Number 201289 Answers: 3 Comments: 1
Question Number 201286 Answers: 0 Comments: 1
Question Number 201282 Answers: 1 Comments: 0
Question Number 201281 Answers: 0 Comments: 0
Question Number 201267 Answers: 0 Comments: 1
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} +\left({x}−\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$
Question Number 201266 Answers: 2 Comments: 0
$${calculate}\:\int_{\mathrm{1}} ^{\infty} \frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }} \\ $$
Question Number 201263 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:{Q}:\:{the}\:{equation}\:,\:{sin}^{\:\mathrm{2}} \left({x}\right)−{sin}\left({mx}\right){cos}\:^{\mathrm{2}} \left({x}\right)=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:{has}\:\:{four}\:{distinct}\:{roots} \\ $$$$\:\:\:\:\:\:\:{in}\:\left(\:\mathrm{0}\:,\:\mathrm{2}\pi\:\right)\:\:{find}\:{the}\:{values} \\ $$$$\:\:\:\:\:\:\:\:{of}\:\:,\:\:\:{m}\:\:\:.\:\:\left({m}\:\in\:\mathbb{N}\:\right) \\ $$$$ \\ $$
Question Number 201258 Answers: 0 Comments: 0
Question Number 201257 Answers: 2 Comments: 0
$$\mathrm{Biggest}\:\mathrm{prime}\:\mathrm{factor}\:\mathrm{of}\:\left(\mathrm{3}^{\mathrm{14}} \:+\:\mathrm{3}^{\mathrm{13}} \:−\:\mathrm{12}\right)\:=\:? \\ $$
Question Number 201253 Answers: 2 Comments: 0
$${find}\:{the}\:{sum}\:{of}\:{n}\:{terms}\:{of}\:{the}\:{serice} \\ $$$${s}_{{n}} =\mathrm{5}+\mathrm{11}+\mathrm{19}+\mathrm{29}+\mathrm{41}+.......... \\ $$
Question Number 201241 Answers: 0 Comments: 0
Question Number 201237 Answers: 1 Comments: 3
$$ \\ $$$$\:\:\:\:{If}\:\:,\:\:\:{a}\:\mid\:\mathrm{5}{b}^{\:\mathrm{2}} −\mathrm{10}{b}\:+\mathrm{1}\: \\ $$$$\:\:\:\:\:\Rightarrow\:\:\:\left[\:{a}\:\:,\:\mathrm{5}{b}\:\right]_{\mathrm{lc}{m}} \:=\:\:?\: \\ $$$$ \\ $$$$ \\ $$
Question Number 201229 Answers: 1 Comments: 2
$$\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\boldsymbol{{Inx}}}}\boldsymbol{{dx}} \\ $$
Question Number 201228 Answers: 0 Comments: 0
$$\int\sqrt{\boldsymbol{{x}}+\sqrt{\boldsymbol{{x}}+\sqrt{\boldsymbol{{x}}}}}\:\boldsymbol{{dx}} \\ $$
Question Number 201227 Answers: 1 Comments: 0
$$\:\int\:\frac{\left(\boldsymbol{{x}}^{\mathrm{4}} +\boldsymbol{{x}}^{\mathrm{7}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} }{\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}} \\ $$
Question Number 201224 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\boldsymbol{{sinx}}}}\boldsymbol{{dx}} \\ $$
Question Number 201223 Answers: 1 Comments: 0
$$\int\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\boldsymbol{{x}}}}\:\boldsymbol{{dx}} \\ $$
Question Number 201222 Answers: 1 Comments: 0
$$\:\int\:\left(\boldsymbol{{x}}^{\mathrm{6}} +\boldsymbol{{x}}^{\mathrm{9}} \right)^{\frac{\mathrm{1}}{\mathrm{6}}} \boldsymbol{{dx}} \\ $$
Pg 199 Pg 200 Pg 201 Pg 202 Pg 203 Pg 204 Pg 205 Pg 206 Pg 207 Pg 208
Terms of Service
Privacy Policy
Contact: info@tinkutara.com