Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 203

Question Number 201966    Answers: 2   Comments: 0

solve ((x^2 +3x+2))^(1/3) (((x+1))^(1/3) −((x+2))^(1/3) )= 1

$$ \\ $$$$\:\:\:\:\:\:\:{solve}\: \\ $$$$\:\: \\ $$$$\:\:\:\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}}\:\left(\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}\:−\sqrt[{\mathrm{3}}]{{x}+\mathrm{2}}\:\right)=\:\mathrm{1} \\ $$$$ \\ $$

Question Number 201965    Answers: 1   Comments: 0

m−h=2p p(m−h)=k−q mk−qh=(1/3) k−2q=1+ph Assume one find the rest! ✓

$${m}−{h}=\mathrm{2}{p} \\ $$$${p}\left({m}−{h}\right)={k}−{q} \\ $$$${mk}−{qh}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${k}−\mathrm{2}{q}=\mathrm{1}+{ph} \\ $$$${Assume}\:{one}\:{find}\:{the}\:{rest}! \\ $$$$\checkmark \\ $$

Question Number 201832    Answers: 1   Comments: 0

Question Number 201831    Answers: 0   Comments: 0

Question Number 201829    Answers: 2   Comments: 0

shortest distance from (−6,0)to x^2 −y^2 +16=0

$${shortest}\:{distance}\:{from}\:\left(−\mathrm{6},\mathrm{0}\right){to}\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} +\mathrm{16}=\mathrm{0} \\ $$

Question Number 201822    Answers: 0   Comments: 4

Do Not Use sin(θ)∼θ (θ is small Enough) θ^ +(g/ℓ)sin(θ)=0 y′′(t)+(g/ℓ) sin(y(t))=0 y′′(t)y′(t)+(g/ℓ)sin(y(t))y′(t)=0 y′(t)y′′(t)=(1/2)∙((d )/dt)(y′(t))^2 (g/ℓ)sin(y(t))y′(t)=−(g/ℓ)∙((d )/dt)cos(y(t)) ∴ ((d )/dt)[(1/2)(y′(t))^2 −(g/ℓ)cos(y(t))]=0 ∴(1/2)(y′(t))^2 −(g/ℓ)cos(y(t))=c_1 Const y′′(t)+(g/ℓ)sin(y(t))=0→(y′(t))^2 −((2g)/ℓ)cos(y(t))=c_1 and... I can′t Sove Diff Equa..

$$\mathrm{Do}\:\mathrm{Not}\:\mathrm{Use}\:\mathrm{sin}\left(\theta\right)\sim\theta\:\left(\theta\:\:\mathrm{is}\:\mathrm{small}\:\mathrm{Enough}\right) \\ $$$$\ddot {\theta}+\frac{\mathrm{g}}{\ell}\mathrm{sin}\left(\theta\right)=\mathrm{0} \\ $$$${y}''\left({t}\right)+\frac{\mathrm{g}}{\ell}\:\mathrm{sin}\left({y}\left({t}\right)\right)=\mathrm{0} \\ $$$${y}''\left({t}\right){y}'\left({t}\right)+\frac{\mathrm{g}}{\ell}\mathrm{sin}\left({y}\left({t}\right)\right){y}'\left({t}\right)=\mathrm{0} \\ $$$${y}'\left({t}\right){y}''\left({t}\right)=\frac{\mathrm{1}}{\mathrm{2}}\centerdot\frac{\mathrm{d}\:\:}{\mathrm{d}{t}}\left({y}'\left({t}\right)\right)^{\mathrm{2}} \\ $$$$\frac{\mathrm{g}}{\ell}\mathrm{sin}\left({y}\left({t}\right)\right){y}'\left({t}\right)=−\frac{\mathrm{g}}{\ell}\centerdot\frac{\mathrm{d}\:\:}{\mathrm{d}{t}}\mathrm{cos}\left({y}\left({t}\right)\right) \\ $$$$\therefore\:\frac{\mathrm{d}\:\:}{\mathrm{d}{t}}\left[\frac{\mathrm{1}}{\mathrm{2}}\left({y}'\left({t}\right)\right)^{\mathrm{2}} −\frac{\mathrm{g}}{\ell}\mathrm{cos}\left({y}\left({t}\right)\right)\right]=\mathrm{0} \\ $$$$\therefore\frac{\mathrm{1}}{\mathrm{2}}\left({y}'\left({t}\right)\right)^{\mathrm{2}} −\frac{\mathrm{g}}{\ell}\mathrm{cos}\left({y}\left({t}\right)\right)={c}_{\mathrm{1}} \:\:\boldsymbol{\mathrm{Const}} \\ $$$${y}''\left({t}\right)+\frac{\mathrm{g}}{\ell}\mathrm{sin}\left({y}\left({t}\right)\right)=\mathrm{0}\rightarrow\left({y}'\left({t}\right)\right)^{\mathrm{2}} −\frac{\mathrm{2g}}{\ell}\mathrm{cos}\left({y}\left({t}\right)\right)={c}_{\mathrm{1}} \\ $$$$\mathrm{and}...\:\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{Sove}\:\mathrm{Diff}\:\:\mathrm{Equa}.. \\ $$

Question Number 201820    Answers: 1   Comments: 0

((∣3x+1∣−∣x+2∣)/(3−∣2x∣)) ≥ 0 find the solution set.

$$\:\:\:\frac{\mid\mathrm{3x}+\mathrm{1}\mid−\mid\mathrm{x}+\mathrm{2}\mid}{\mathrm{3}−\mid\mathrm{2x}\mid}\:\geqslant\:\mathrm{0}\: \\ $$$$\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{set}. \\ $$

Question Number 201819    Answers: 0   Comments: 0

If xyz ∈R^+ , xyz=1 , prove that the following inequality holds: (x/(2x^5 +x+4))+(y/(2y^5 +y+4))+(z/(2z^5 +z+4))≥(3/7). Solution please with an advice to get better at inequalities and which book would you recommend. Thanks in advance!

$$\mathrm{If}\:{xyz}\:\in\mathbb{R}^{+} \:,\:{xyz}=\mathrm{1}\:,\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inequality}\:\mathrm{holds}: \\ $$$$\frac{{x}}{\mathrm{2}{x}^{\mathrm{5}} +{x}+\mathrm{4}}+\frac{{y}}{\mathrm{2}{y}^{\mathrm{5}} +{y}+\mathrm{4}}+\frac{{z}}{\mathrm{2}{z}^{\mathrm{5}} +{z}+\mathrm{4}}\geqslant\frac{\mathrm{3}}{\mathrm{7}}. \\ $$$$\boldsymbol{\mathrm{Solution}}\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{advice}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{get}}\:\boldsymbol{\mathrm{better}} \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{inequalities}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{book}}\:\boldsymbol{\mathrm{would}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{recommend}}. \\ $$$$\boldsymbol{\mathrm{Thanks}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{advance}}! \\ $$$$\: \\ $$

Question Number 201817    Answers: 1   Comments: 0

Question Number 201808    Answers: 1   Comments: 1

Question Number 201806    Answers: 1   Comments: 2

Question Number 201804    Answers: 0   Comments: 0

If xyz ∈R^+ , xyz=1 , prove that the following inequality holds: (x/(2x^5 +x+4))+(y/(2y^5 +y+4))+(z/(2z^5 +z+4))≥(3/7). Solution please with an advice to get better at inequalities and which book would you recommend. Thanks in advance!

$$\mathrm{If}\:{xyz}\:\in\mathbb{R}^{+} \:,\:{xyz}=\mathrm{1}\:,\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inequality}\:\mathrm{holds}: \\ $$$$\frac{{x}}{\mathrm{2}{x}^{\mathrm{5}} +{x}+\mathrm{4}}+\frac{{y}}{\mathrm{2}{y}^{\mathrm{5}} +{y}+\mathrm{4}}+\frac{{z}}{\mathrm{2}{z}^{\mathrm{5}} +{z}+\mathrm{4}}\geqslant\frac{\mathrm{3}}{\mathrm{7}}. \\ $$$$\boldsymbol{\mathrm{Solution}}\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{advice}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{get}}\:\boldsymbol{\mathrm{better}} \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{inequalities}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{book}}\:\boldsymbol{\mathrm{would}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{recommend}}. \\ $$$$\boldsymbol{\mathrm{Thanks}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{advance}}! \\ $$$$\: \\ $$

Question Number 201802    Answers: 0   Comments: 1

Solution of equations like this: ((f(x)))^(1/n) +((g(x)))^(1/n) =((h(x)))^(1/n) If the solution is not obvious we must get rid of the radicals. In the following cases this is easy: (√a)+(√b)=(√c) ⇒ a+2(√(ab))+b=c ⇒ 4ab=(c−a−b)^2 (a)^(1/3) +(b)^(1/3) =(c)^(1/3) ⇒ a+3((ab))^(1/3) ((a)^(1/3) +(b)^(1/3) )+b=c ⇒ a+3((abc))^(1/3) +b=c ⇒ 27abc=(c−a−b)^3 But how to solve for n≥4? I found this formula to get an equation without radicals: a^(1/n) +b^(1/n) =c^(1/n) ⇒ Π_(k=0) ^(n−1) (c−(a^(1/n) +b^(1/n) e^(i((2πk)/n)) )^n ) =0 For n=2, 3 we get above equations. For n=4: c^4 −4(a+b)c^3 +2(3a^2 −62ab+3b^2 )c^2 −4(a+b)(a^2 +30ab+b^2 )c+(a−b)^4 =0 ⇔ 8ab(17c^2 +14(a+b)c+a^2 +b^2 )=(c−a−b)^4 For n=5: 625abc(c^2 +3(a+b)c+a^2 −3ab+b^2 )=(c−a−b)^5 I hope this helps...

$$\mathrm{Solution}\:\mathrm{of}\:\mathrm{equations}\:\mathrm{like}\:\mathrm{this}: \\ $$$$\sqrt[{{n}}]{{f}\left({x}\right)}+\sqrt[{{n}}]{{g}\left({x}\right)}=\sqrt[{{n}}]{{h}\left({x}\right)} \\ $$$$\mathrm{If}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{not}\:\mathrm{obvious}\:\mathrm{we}\:\mathrm{must}\:\mathrm{get} \\ $$$$\mathrm{rid}\:\mathrm{of}\:\mathrm{the}\:\mathrm{radicals}.\:\mathrm{In}\:\mathrm{the}\:\mathrm{following}\:\mathrm{cases} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{easy}: \\ $$$$\sqrt{{a}}+\sqrt{{b}}=\sqrt{{c}} \\ $$$$\:\:\:\:\:\Rightarrow\:{a}+\mathrm{2}\sqrt{{ab}}+{b}={c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{4}{ab}=\left({c}−{a}−{b}\right)^{\mathrm{2}} \\ $$$$\sqrt[{\mathrm{3}}]{{a}}+\sqrt[{\mathrm{3}}]{{b}}=\sqrt[{\mathrm{3}}]{{c}} \\ $$$$\:\:\:\:\:\Rightarrow\:{a}+\mathrm{3}\sqrt[{\mathrm{3}}]{{ab}}\left(\sqrt[{\mathrm{3}}]{{a}}+\sqrt[{\mathrm{3}}]{{b}}\right)+{b}={c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\Rightarrow\:{a}+\mathrm{3}\sqrt[{\mathrm{3}}]{{abc}}+{b}={c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{27}{abc}=\left({c}−{a}−{b}\right)^{\mathrm{3}} \\ $$$$\mathrm{But}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{for}\:{n}\geqslant\mathrm{4}? \\ $$$$\mathrm{I}\:\mathrm{found}\:\mathrm{this}\:\mathrm{formula}\:\mathrm{to}\:\mathrm{get}\:\mathrm{an}\:\mathrm{equation} \\ $$$$\mathrm{without}\:\mathrm{radicals}: \\ $$$${a}^{\frac{\mathrm{1}}{{n}}} +{b}^{\frac{\mathrm{1}}{{n}}} ={c}^{\frac{\mathrm{1}}{{n}}} \\ $$$$\Rightarrow \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\:\left({c}−\left({a}^{\frac{\mathrm{1}}{{n}}} +{b}^{\frac{\mathrm{1}}{{n}}} \mathrm{e}^{\mathrm{i}\frac{\mathrm{2}\pi{k}}{{n}}} \right)^{{n}} \right)\:=\mathrm{0} \\ $$$$\mathrm{For}\:{n}=\mathrm{2},\:\mathrm{3}\:\mathrm{we}\:\mathrm{get}\:\mathrm{above}\:\mathrm{equations}. \\ $$$$\mathrm{For}\:{n}=\mathrm{4}: \\ $$$${c}^{\mathrm{4}} −\mathrm{4}\left({a}+{b}\right){c}^{\mathrm{3}} +\mathrm{2}\left(\mathrm{3}{a}^{\mathrm{2}} −\mathrm{62}{ab}+\mathrm{3}{b}^{\mathrm{2}} \right){c}^{\mathrm{2}} −\mathrm{4}\left({a}+{b}\right)\left({a}^{\mathrm{2}} +\mathrm{30}{ab}+{b}^{\mathrm{2}} \right){c}+\left({a}−{b}\right)^{\mathrm{4}} =\mathrm{0} \\ $$$$\Leftrightarrow \\ $$$$\mathrm{8}{ab}\left(\mathrm{17}{c}^{\mathrm{2}} +\mathrm{14}\left({a}+{b}\right){c}+{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)=\left({c}−{a}−{b}\right)^{\mathrm{4}} \\ $$$$\mathrm{For}\:{n}=\mathrm{5}: \\ $$$$\mathrm{625}{abc}\left({c}^{\mathrm{2}} +\mathrm{3}\left({a}+{b}\right){c}+{a}^{\mathrm{2}} −\mathrm{3}{ab}+{b}^{\mathrm{2}} \right)=\left({c}−{a}−{b}\right)^{\mathrm{5}} \\ $$$$\mathrm{I}\:\mathrm{hope}\:\mathrm{this}\:\mathrm{helps}... \\ $$

Question Number 201798    Answers: 1   Comments: 0

Find the differential of the function: y = (√(x^2 − 1))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}: \\ $$$$\boldsymbol{\mathrm{y}}\:=\:\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:−\:\mathrm{1}} \\ $$

Question Number 201796    Answers: 0   Comments: 2

x^4 −15x^2 −30x+104=0 for x∈R x=2, 4 I want to know the best way to arrive at these answers (without guessing). I found one new way. Shall post later.

$${x}^{\mathrm{4}} −\mathrm{15}{x}^{\mathrm{2}} −\mathrm{30}{x}+\mathrm{104}=\mathrm{0} \\ $$$${for}\:{x}\in\mathbb{R}\:\:\:\:\:{x}=\mathrm{2},\:\mathrm{4} \\ $$$${I}\:{want}\:{to}\:{know}\:{the}\:{best}\:{way}\:{to} \\ $$$${arrive}\:{at}\:{these}\:{answers}\:\left({without}\right. \\ $$$$\left.{guessing}\right).\:{I}\:{found}\:{one}\:{new}\:{way}. \\ $$$$\:{Shall}\:{post}\:{later}. \\ $$

Question Number 201793    Answers: 1   Comments: 0

Question Number 201790    Answers: 1   Comments: 1

Question Number 201764    Answers: 1   Comments: 0

1. y = tgx − ctgx → y^′ = ? 2. y = (1 + x^2 ) arctgx → y^′ = ? 3. y = cos^4 x → y^′ = ? 4. { ((x = 2t)),((y = 3t^2 − 5t)) :} → x^′ , y^′ = ?

$$\mathrm{1}.\:\mathrm{y}\:=\:\mathrm{tgx}\:−\:\mathrm{ctgx}\:\:\rightarrow\:\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{2}.\:\mathrm{y}\:=\:\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{arctgx}\:\rightarrow\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{3}.\:\mathrm{y}\:=\:\mathrm{cos}^{\mathrm{4}} \:\mathrm{x}\:\rightarrow\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{4}.\:\begin{cases}{\mathrm{x}\:=\:\mathrm{2t}}\\{\mathrm{y}\:=\:\mathrm{3t}^{\mathrm{2}} \:−\:\mathrm{5t}}\end{cases}\:\:\:\rightarrow\:\:\:\mathrm{x}^{'} \:,\:\mathrm{y}^{'} \:=\:? \\ $$

Question Number 201763    Answers: 5   Comments: 0

Find: 1. ∫ cos3x cosx dx = ? 2. ∫ 3^x sinx dx = ? 3. ∫_(0 ) ^( 1) x e^(−x) dx = ? 4. ∫_1 ^( e) ln^2 x dx = ?

$$\mathrm{Find}: \\ $$$$\mathrm{1}.\:\int\:\mathrm{cos3x}\:\mathrm{cosx}\:\mathrm{dx}\:=\:? \\ $$$$\mathrm{2}.\:\int\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:\mathrm{sinx}\:\mathrm{dx}\:=\:? \\ $$$$\mathrm{3}.\:\int_{\mathrm{0}\:} ^{\:\mathrm{1}} \:\mathrm{x}\:\mathrm{e}^{−\boldsymbol{\mathrm{x}}} \:\mathrm{dx}\:=\:? \\ $$$$\mathrm{4}.\:\int_{\mathrm{1}} ^{\:\boldsymbol{\mathrm{e}}} \:\mathrm{ln}^{\mathrm{2}} \:\mathrm{x}\:\mathrm{dx}\:=\:? \\ $$

Question Number 201762    Answers: 1   Comments: 0

Question Number 201956    Answers: 1   Comments: 1

Question Number 201727    Answers: 1   Comments: 0

∫_(π/6) ^(π/3) e^(sin x^(cos x^(tan x^(cot x^(sec x^(cosec x) ) ) ) ) ) dx

$$\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} {e}^{\mathrm{sin}\:{x}^{{c}\mathrm{os}\:{x}^{\mathrm{tan}\:{x}^{\mathrm{cot}\:{x}^{\mathrm{sec}\:{x}^{\mathrm{cosec}\:{x}} } } } } } {dx} \\ $$

Question Number 201729    Answers: 1   Comments: 10

The teacher can choose in 560 ways, provided that there are three students in each team. Knowing that five students do not want to participate, find the number of people willing to participate

The teacher can choose in 560 ways, provided that there are three students in each team. Knowing that five students do not want to participate, find the number of people willing to participate

Question Number 201724    Answers: 0   Comments: 0

lim_(x→0) ((e^x (x−2)+x+2)/x^3 ) solve it by not using taylor series or l′hopital rule.

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{x}} \left({x}−\mathrm{2}\right)+{x}+\mathrm{2}}{{x}^{\mathrm{3}} }\:{solve}\:{it}\:{by}\:{not}\:{using} \\ $$$${taylor}\:{series}\:{or}\:{l}'{hopital}\:{rule}. \\ $$

Question Number 201722    Answers: 5   Comments: 1

Question Number 201715    Answers: 0   Comments: 0

Use Cauchy Riemann to verify whether f(z)=(1/(z(z+1))) is analytic.

$${Use}\:{Cauchy}\:{Riemann}\:{to}\:{verify}\:{whether}\: \\ $$$${f}\left({z}\right)=\frac{\mathrm{1}}{{z}\left({z}+\mathrm{1}\right)}\:{is}\:{analytic}. \\ $$

  Pg 198      Pg 199      Pg 200      Pg 201      Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com