Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 203
Question Number 201184 Answers: 1 Comments: 0
Question Number 201081 Answers: 4 Comments: 0
Question Number 201070 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Un}\:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}} \\ $$$$ \\ $$$${show}\:\:{that}\:{the}\:{sequence}\:{converges}\:{and} \\ $$$${determine}\:{the}\:{limit}\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 201065 Answers: 2 Comments: 1
Question Number 201047 Answers: 0 Comments: 0
Question Number 201044 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \left({x}−{y}\:\right)^{\mathrm{2}} {sin}^{\:\mathrm{2}} \:\left(\:{x}+{y}\:\right){dxdy}=? \\ $$
Question Number 201041 Answers: 1 Comments: 0
$$\mathrm{4}\left(\mathrm{33}\right)\mathrm{7} \\ $$$$\mathrm{4}\left(\mathrm{24}\right)\mathrm{6} \\ $$$$\mathrm{5}\left(\:?\:\right)\mathrm{4} \\ $$$$ \\ $$$$\left.{a}\left.\right)\left.\mathrm{9}\left.\:\:\:\:\:{b}\right)\mathrm{18}\:\:\:\:\:{c}\right)\mathrm{27}\:\:\:\:\:{d}\right)\mathrm{36} \\ $$
Question Number 201037 Answers: 1 Comments: 1
Question Number 201035 Answers: 2 Comments: 2
Question Number 201034 Answers: 0 Comments: 0
Question Number 201033 Answers: 4 Comments: 0
Question Number 201029 Answers: 0 Comments: 0
Question Number 201028 Answers: 0 Comments: 0
Question Number 201027 Answers: 1 Comments: 0
Question Number 201016 Answers: 0 Comments: 0
Question Number 201011 Answers: 0 Comments: 0
$$\boldsymbol{{Prove}}\:\boldsymbol{{that}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}\boldsymbol{{arctan}}\left(\frac{\boldsymbol{{t}}}{\boldsymbol{{x}}}\right)}{\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{\pi{t}}} −\mathrm{1}}\boldsymbol{{dt}}=\boldsymbol{{In}\Gamma}\left(\boldsymbol{{x}}\right)−\boldsymbol{{xIn}}\left(\boldsymbol{{x}}\right)+\boldsymbol{{x}}−\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{In}}\left(\frac{\mathrm{2}\boldsymbol{\pi}}{\boldsymbol{{x}}}\right) \\ $$$$\boldsymbol{{Michael}}\:\boldsymbol{{faraday}} \\ $$
Question Number 201008 Answers: 1 Comments: 0
Question Number 201004 Answers: 2 Comments: 0
Question Number 200984 Answers: 3 Comments: 0
Question Number 200980 Answers: 1 Comments: 0
Question Number 200979 Answers: 1 Comments: 0
Question Number 200978 Answers: 3 Comments: 0
Question Number 200968 Answers: 0 Comments: 0
Question Number 200971 Answers: 1 Comments: 0
Question Number 200976 Answers: 4 Comments: 0
Question Number 200973 Answers: 0 Comments: 0
Pg 198 Pg 199 Pg 200 Pg 201 Pg 202 Pg 203 Pg 204 Pg 205 Pg 206 Pg 207
Terms of Service
Privacy Policy
Contact: info@tinkutara.com