Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 203
Question Number 200102 Answers: 1 Comments: 0
Question Number 200092 Answers: 1 Comments: 1
Question Number 200087 Answers: 1 Comments: 2
$$\:\:\mathrm{if}\:\omega\:\neq\:\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{aand}\:\mathrm{z}\:\mathrm{is}\:\mathrm{a}\: \\ $$$$\mathrm{complex}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that}\:\mid{z}\mid\:=\:\mathrm{1}\:\mathrm{then} \\ $$$$\:\:\mid\frac{\mathrm{2}+\mathrm{3}\omega+\mathrm{4}{z}\omega^{\mathrm{2}} }{\mathrm{4}\omega+\mathrm{3}\omega^{\mathrm{2}} {z}+\mathrm{2}{z}}\mid=\:? \\ $$
Question Number 200085 Answers: 1 Comments: 2
$$\mathrm{perimetre}\:\mathrm{of}\:\:\mathrm{White}\:\mathrm{triangle}? \\ $$
Question Number 200105 Answers: 1 Comments: 2
Question Number 200075 Answers: 1 Comments: 0
Question Number 200066 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\frac{\mathrm{1}\:+\:\mathrm{x}}{\:\sqrt{\mathrm{3}}}\:=\:\mathrm{3}\:\:\:\mathrm{find}\:\:\:\mathrm{x}\:+\:\frac{\mathrm{1}}{\mathrm{x}}\:−\:\mathrm{1}\:=\:? \\ $$
Question Number 200051 Answers: 2 Comments: 2
$$ \\ $$$$\mathrm{There}\:\mathrm{are}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{to}\:\mathrm{arrange}\:\mathrm{3}\:\mathrm{red} \\ $$$$\:\mathrm{balls}\:\mathrm{and}\:\mathrm{9}\:\mathrm{black}\:\mathrm{balls}\:\mathrm{in}\:\mathrm{a}\:\mathrm{circle}\: \\ $$$$\mathrm{so}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{a}\:\mathrm{minimum}\:\mathrm{of}\:\mathrm{2} \\ $$$$\mathrm{black}\:\mathrm{balls}\:\mathrm{between}\:\mathrm{2}\:\mathrm{adjacent}\:\mathrm{red} \\ $$$$\mathrm{balls}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{180}×\mathrm{8}!\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{240}×\mathrm{7}!\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{364}×\mathrm{6}! \\ $$$$\:\left(\mathrm{d}\right)\:\mathrm{282}×\mathrm{4}!\:\:\:\:\left(\mathrm{e}\right)\:\mathrm{144}×\mathrm{5}!\: \\ $$
Question Number 200048 Answers: 0 Comments: 2
Question Number 200041 Answers: 3 Comments: 0
$${By}\:{strong}\:{induction}\:{prove}\:{that}\:{any} \\ $$$${natural}\:{number}\:{equal}\:{to}\:{or}\:{bigger}\:{than} \\ $$$$\mathrm{8}\:{can}\:{be}\:{written}\:{as}\:\mathrm{3}{a}+\mathrm{5}{b}\:{where}\:{a}\:{and}\:{b} \\ $$$${are}\:{non}−{negative}\:{integers}. \\ $$
Question Number 200040 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:{Q}:\:\:{If}\:\:,\:\:{tan}\left(\frac{\pi}{\mathrm{4}}\:−\alpha\:\right)=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\Rightarrow{Find}\:{the}\:{value}\:{of}\:,\:{tan}\left(\mathrm{4}\alpha\right)=? \\ $$$$ \\ $$
Question Number 200035 Answers: 1 Comments: 2
Question Number 200025 Answers: 3 Comments: 0
Question Number 200022 Answers: 0 Comments: 0
$$\mathrm{solve}\:\mathrm{the}\:\mathrm{associated}\:\mathrm{legendre}\:\mathrm{equation} \\ $$$$\lambda={l}\:\left({l}+\mathrm{1}\right)\eta^{\mathrm{2}} \:;{l}=\mathrm{0},\mathrm{1},\mathrm{2}...\:\:\:{and}\:{m}^{\mathrm{2}} \leqslant\:{l}\left({l}+\mathrm{1}\right)\: \\ $$$${which}\:{requires}\:−{l}\leqslant{m}\leqslant{l}\:\mathrm{using}\:\mathrm{power}\:\mathrm{series} \\ $$
Question Number 200019 Answers: 1 Comments: 0
Question Number 200013 Answers: 0 Comments: 3
Question Number 200012 Answers: 0 Comments: 0
Question Number 200053 Answers: 0 Comments: 1
Question Number 200061 Answers: 1 Comments: 0
$$\:\:\:\:\int_{−\infty} ^{+\infty} \frac{{x}\mathrm{sin}{x}\:}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{dx}\:\:=\:\:\:?? \\ $$
Question Number 200060 Answers: 2 Comments: 0
Question Number 200005 Answers: 3 Comments: 0
Question Number 200004 Answers: 1 Comments: 0
Question Number 199987 Answers: 1 Comments: 0
$$\:\boldsymbol{{Use}}\:\boldsymbol{{mathematical}}\:\boldsymbol{{induction}} \\ $$$$\:\boldsymbol{{to}}\:\boldsymbol{{prove}}\:\boldsymbol{{that}}\:\boldsymbol{{the}}\:\boldsymbol{{statement}} \\ $$$$\:\boldsymbol{\mathrm{a}}+\left(\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{d}}\right)+\left(\boldsymbol{\mathrm{a}}+\mathrm{2}\boldsymbol{\mathrm{d}}\right)+...+\left(\boldsymbol{\mathrm{a}}+\left(\boldsymbol{\mathrm{n}}−\mathrm{1}\right)\boldsymbol{\mathrm{d}}\right)=\frac{\boldsymbol{\mathrm{n}}}{\mathrm{2}}\left[\mathrm{2}\boldsymbol{\mathrm{a}}+\left(\boldsymbol{\mathrm{n}}−\mathrm{1}\right)\boldsymbol{\mathrm{d}}\right] \\ $$$$\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{true}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{all}}\:\boldsymbol{\mathrm{natural}}\:\boldsymbol{\mathrm{numbers}} \\ $$$$\boldsymbol{\mathrm{A}{ny}}\:\boldsymbol{{help}}\:\boldsymbol{{please}} \\ $$
Question Number 199986 Answers: 2 Comments: 0
$$ \\ $$How do I solve this please? Show that if the sides of a right triangle are in an arithmetic sequence, then their ratio is 3:4:5.
Question Number 199983 Answers: 1 Comments: 0
$$\:\:\:\mathrm{find}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{sin}\:\left(\frac{\pi\mathrm{x}}{\mathrm{5}+\mathrm{3x}}\right)\: \\ $$$$\:\:\mathrm{by}\:\mathrm{sequeeze}\:\mathrm{theorem} \\ $$
Question Number 199996 Answers: 0 Comments: 0
$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{first}\:\mathrm{order}\:\mathrm{energy}\:\mathrm{correction}\:\mathrm{for} \\ $$$$\mathrm{1}−\mathrm{dimensional}\:\mathrm{non}−\mathrm{degenerate}\:\mathrm{anharmonic} \\ $$$$\mathrm{oscillator}\:\mathrm{whose}\:\mathrm{harmiltonian}\:\mathrm{is}\:\mathscr{H}\underline{\mathscr{L}} \\ $$
Pg 198 Pg 199 Pg 200 Pg 201 Pg 202 Pg 203 Pg 204 Pg 205 Pg 206 Pg 207
Terms of Service
Privacy Policy
Contact: info@tinkutara.com