Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 203
Question Number 201545 Answers: 0 Comments: 0
Question Number 201544 Answers: 2 Comments: 0
Question Number 201533 Answers: 2 Comments: 0
$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{Un}\:=\:{ln}\:\left({cos}\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\right) \\ $$$$\:\:\:\:{show}\:\:{that}\:{Un}\:\leqslant\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 201534 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)={tanx} \\ $$$${find}\:{f}^{\left({n}\right)} \left({x}\right)\:{with}\:{n}\:{integr} \\ $$$${natural} \\ $$
Question Number 201527 Answers: 1 Comments: 0
Question Number 201526 Answers: 1 Comments: 0
Question Number 201519 Answers: 3 Comments: 0
Question Number 201517 Answers: 1 Comments: 0
Question Number 201516 Answers: 1 Comments: 0
Question Number 201515 Answers: 1 Comments: 0
Question Number 201555 Answers: 1 Comments: 0
Question Number 201557 Answers: 2 Comments: 0
$$\mathrm{5}\:\centerdot\:\underset{\:\mathrm{50}} {\underbrace{\mathrm{555}...\mathrm{5}}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{product}. \\ $$
Question Number 201510 Answers: 1 Comments: 0
Question Number 201509 Answers: 1 Comments: 0
Question Number 201502 Answers: 0 Comments: 3
$${A}\:{generation}\:{is}\:{about}\:{one}-{third}\:{of}\:{a} \\ $$$${lifetime}.{Approximately}\:{about}\:{how} \\ $$$${many}\:{generations}\:{have}\:{passed}\:{since} \\ $$$${the}\:{year}\:\mathrm{0}{AD}? \\ $$
Question Number 201514 Answers: 0 Comments: 0
Question Number 201495 Answers: 1 Comments: 1
$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\left({Un}\right)_{{n}\geqslant\mathrm{1}\:;} \:\:\:\:\frac{\mathrm{1}}{{nC}_{\mathrm{2}{n}} ^{{n}} \:} \\ $$$$ \\ $$$$\:\:\:\:{study}\:\:{convergence} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 201486 Answers: 0 Comments: 0
Question Number 201477 Answers: 1 Comments: 0
$$\mathrm{how}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\left(\mathrm{3d}_{\mathrm{3}} +\mathrm{4d}_{\mathrm{2}} +\mathrm{3d}_{\mathrm{1}} \right)^{\mathrm{2}} \leqslant\mathrm{5}\left(\mathrm{d}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{d}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{d}_{\mathrm{3}} ^{\mathrm{2}} +\left(\mathrm{d}_{\mathrm{2}} +\mathrm{d}_{\mathrm{1}} \right)^{\mathrm{2}} +\left(\mathrm{d}_{\mathrm{3}} +\mathrm{d}_{\mathrm{2}} \right)^{\mathrm{2}} +\left(\mathrm{d}_{\mathrm{1}} +\mathrm{d}_{\mathrm{2}} +\mathrm{d}_{\mathrm{3}} \right)^{\mathrm{2}} \right) \\ $$
Question Number 201475 Answers: 0 Comments: 5
Question Number 201473 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{Li}}_{\mathrm{3}} \left(−\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)}{\mathrm{1}+\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}} \\ $$
Question Number 201464 Answers: 2 Comments: 0
$$\mathrm{if}\:\:\:\mathrm{f}\left(\mathrm{2}\right)\:=\:\mathrm{3}\:\:\:\mathrm{and}\:\:\:\mathrm{f}\left(\mathrm{4}\right)\:=\:\mathrm{5} \\ $$$$\mathrm{find}\:\:\:\int_{\mathrm{2}} ^{\:\mathrm{4}} \:\mathrm{f}\left(\mathrm{x}\right)\:\centerdot\:\mathrm{f}\:^{'} \left(\mathrm{x}\right)\:\mathrm{dx}\:=\:? \\ $$
Question Number 201452 Answers: 2 Comments: 0
Question Number 201447 Answers: 0 Comments: 0
Question Number 201445 Answers: 0 Comments: 0
Question Number 201443 Answers: 1 Comments: 5
Pg 198 Pg 199 Pg 200 Pg 201 Pg 202 Pg 203 Pg 204 Pg 205 Pg 206 Pg 207
Terms of Service
Privacy Policy
Contact: info@tinkutara.com