Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 203

Question Number 202041    Answers: 1   Comments: 0

Simplify: (((√2) − sinα − cosα)/(sinα − cosα))

$$\mathrm{Simplify}:\:\:\:\frac{\sqrt{\mathrm{2}}\:−\:\mathrm{sin}\alpha\:−\:\mathrm{cos}\alpha}{\mathrm{sin}\alpha\:−\:\mathrm{cos}\alpha} \\ $$

Question Number 202034    Answers: 1   Comments: 0

Question Number 202039    Answers: 1   Comments: 0

Question Number 202037    Answers: 1   Comments: 0

A board has 2, 4, and 6 written on it. One repeatedly chooses values ​​(not necessarily different) for x, y, and z from the board, and writes xyz + xy + yz + zx + x + y + z if and only if those numbers are not already on the board and are also less than or equals 2013. The person repeats this process until no more numbers can be written. How many numbers will be written at the end of this process?

$$ \\ $$A board has 2, 4, and 6 written on it. One repeatedly chooses values ​​(not necessarily different) for x, y, and z from the board, and writes xyz + xy + yz + zx + x + y + z if and only if those numbers are not already on the board and are also less than or equals 2013. The person repeats this process until no more numbers can be written. How many numbers will be written at the end of this process?

Question Number 202035    Answers: 0   Comments: 0

Question Number 202019    Answers: 3   Comments: 0

If α and β are the roots of the ax^2 + 2bx + c = 0 and α + δ and β + δ are the roots of Ax^2 + 2Bx + C = 0 for some constant δ then prove that ((b^2 − ac)/a^2 ) = ((B^2 − AC)/A^2 ) .

$$\mathrm{If}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\: \\ $$$${ax}^{\mathrm{2}} \:+\:\mathrm{2}{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{and}\:\alpha\:+\:\delta\:\mathrm{and}\:\beta\:+\:\delta\:\mathrm{are} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{Ax}^{\mathrm{2}} \:+\:\mathrm{2}{Bx}\:+\:{C}\:=\:\mathrm{0}\:\mathrm{for}\:\mathrm{some}\: \\ $$$$\mathrm{constant}\:\delta\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{{b}^{\mathrm{2}} \:−\:{ac}}{{a}^{\mathrm{2}} }\:=\:\frac{{B}^{\mathrm{2}} \:−\:{AC}}{{A}^{\mathrm{2}} }\:. \\ $$

Question Number 202017    Answers: 3   Comments: 0

Question Number 202016    Answers: 1   Comments: 0

Question Number 202011    Answers: 0   Comments: 0

Question Number 202009    Answers: 0   Comments: 0

Question Number 202003    Answers: 0   Comments: 3

what is meant by ξ

$${what}\:{is}\:{meant}\:{by}\:\xi \\ $$

Question Number 202001    Answers: 1   Comments: 0

If a circle of radius r is inscribed in a triangl ABC. Express r in terms of a,b and c only

$${If}\:{a}\:{circle}\:{of}\:{radius}\:{r}\:{is}\:{inscribed}\:{in} \\ $$$${a}\:{triangl}\:{ABC}.\:{Express}\:{r}\:{in}\:{terms}\:{of} \\ $$$${a},{b}\:{and}\:{c}\:{only} \\ $$

Question Number 202000    Answers: 0   Comments: 0

Question Number 201995    Answers: 1   Comments: 0

Question Number 201994    Answers: 0   Comments: 0

Question Number 201991    Answers: 2   Comments: 0

Solve ((1/x) − (1/x^3 ))^(1/2) + ((1/x^2 ) − (1/x^3 ))^(1/2) = 1

$$\boldsymbol{\mathrm{Solve}} \\ $$$$\left(\frac{\mathrm{1}}{{x}}\:−\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:+\:\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:−\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:=\:\mathrm{1} \\ $$

Question Number 201989    Answers: 1   Comments: 0

Question Number 201952    Answers: 1   Comments: 0

(gof)_x =2x−1 (fog)_x ^(−1) =3x+2 (fof)_3 =?

$$\left({gof}\right)_{{x}} =\mathrm{2}{x}−\mathrm{1}\:\: \\ $$$$\left({fog}\right)_{{x}} ^{−\mathrm{1}} =\mathrm{3}{x}+\mathrm{2} \\ $$$$\left({fof}\right)_{\mathrm{3}} =? \\ $$

Question Number 201950    Answers: 0   Comments: 0

Question Number 201949    Answers: 1   Comments: 0

Question Number 201947    Answers: 1   Comments: 0

Question Number 201941    Answers: 2   Comments: 1

x^4 −((17)/(18))x^2 +((40)/3)x+((1625)/(144))=0 Find roots. (Two are real and two are complex)★

$${x}^{\mathrm{4}} −\frac{\mathrm{17}}{\mathrm{18}}{x}^{\mathrm{2}} +\frac{\mathrm{40}}{\mathrm{3}}{x}+\frac{\mathrm{1625}}{\mathrm{144}}=\mathrm{0} \\ $$$${Find}\:{roots}.\:\left({Two}\:{are}\:{real}\:{and}\:{two}\:\right. \\ $$$$\left.{are}\:{complex}\right)\bigstar \\ $$

Question Number 201940    Answers: 1   Comments: 0

tan^3 (xy^2 +y)=x find (dy/dx)

$$\boldsymbol{{tan}}^{\mathrm{3}} \left(\boldsymbol{{xy}}^{\mathrm{2}} +\boldsymbol{{y}}\right)=\boldsymbol{{x}}\:\:\boldsymbol{{find}}\:\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}} \\ $$

Question Number 201936    Answers: 0   Comments: 1

Question Number 201934    Answers: 0   Comments: 1

Question Number 201931    Answers: 1   Comments: 0

if (a−2)^2 = 4a find: 5a + 4 + ((16)/(5a + 4)) = ?

$$\mathrm{if}\:\:\:\left(\mathrm{a}−\mathrm{2}\right)^{\mathrm{2}} \:=\:\mathrm{4a} \\ $$$$\mathrm{find}:\:\:\:\mathrm{5a}\:+\:\mathrm{4}\:+\:\frac{\mathrm{16}}{\mathrm{5a}\:+\:\mathrm{4}}\:=\:? \\ $$

  Pg 198      Pg 199      Pg 200      Pg 201      Pg 202      Pg 203      Pg 204      Pg 205      Pg 206      Pg 207   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com