Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 203
Question Number 200923 Answers: 0 Comments: 0
Question Number 203714 Answers: 1 Comments: 0
$$\int\mathrm{2}{x}^{\mathrm{2}} \\ $$
Question Number 200918 Answers: 0 Comments: 0
Question Number 200919 Answers: 0 Comments: 0
Question Number 200915 Answers: 1 Comments: 0
Question Number 200904 Answers: 0 Comments: 0
Question Number 200903 Answers: 1 Comments: 0
Question Number 200902 Answers: 2 Comments: 0
Question Number 200895 Answers: 1 Comments: 0
Question Number 200894 Answers: 2 Comments: 0
Question Number 200886 Answers: 4 Comments: 0
$${resoudre}\:{dans}\:{R}\:: \\ $$$$ \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{3}+{x}}\:−\sqrt[{\mathrm{3}}]{\mathrm{3}−{x}}\:=\sqrt[{\mathrm{3}}]{\mathrm{9}−{x}^{\mathrm{2}} } \\ $$
Question Number 200885 Answers: 1 Comments: 1
$$\:\:\: \sqrt{\frac{\mathrm{32}^{\mathrm{4}} +\mathrm{41}^{\mathrm{4}} +\mathrm{73}^{\mathrm{4}} }{\mathrm{2}}}\: \\ $$
Question Number 200884 Answers: 0 Comments: 0
Question Number 200883 Answers: 0 Comments: 0
Question Number 200882 Answers: 0 Comments: 1
Question Number 200901 Answers: 0 Comments: 0
Question Number 200877 Answers: 0 Comments: 5
Question Number 200873 Answers: 1 Comments: 1
Question Number 200864 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{xE}\left({x}\right)+\mathrm{3}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{sin}\:{x}}} \\ $$
Question Number 200863 Answers: 1 Comments: 0
Question Number 200862 Answers: 1 Comments: 0
Question Number 200861 Answers: 1 Comments: 0
Question Number 200860 Answers: 1 Comments: 0
$${when}\:{x}\in\left[\mathrm{0},\infty\right) \\ $$$$\left({x}+{m}\right){e}^{\mathrm{2}{x}} −{x}^{\mathrm{2}} \geqslant\left({x}+{m}\right){ln}\left({x}+{m}\right) \\ $$$${m}\in? \\ $$
Question Number 200859 Answers: 0 Comments: 1
$$\sqrt[{\mathrm{0}}]{{x}}=? \\ $$
Question Number 200930 Answers: 0 Comments: 1
$${If}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{4}} \right)^{{n}} {dx}\:\:{and}\:\:\frac{{I}_{{n}} }{{I}_{{n}−\mathrm{1}} }=\frac{\lambda{n}}{\lambda{n}+\mathrm{1}} \\ $$$${then}\:{find}\:\:\lambda \\ $$
Question Number 200856 Answers: 0 Comments: 1
Pg 198 Pg 199 Pg 200 Pg 201 Pg 202 Pg 203 Pg 204 Pg 205 Pg 206 Pg 207
Terms of Service
Privacy Policy
Contact: info@tinkutara.com