Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 203
Question Number 201629 Answers: 0 Comments: 3
Question Number 201627 Answers: 1 Comments: 0
Question Number 201657 Answers: 1 Comments: 0
$${if}\:\:{f}\left({x}\right)=\begin{cases}{\frac{\mathrm{sin}\:\left(\mathrm{1}+\left[{x}\right]\right)}{\left[{x}\right]}\:\:{for}\:\left[{x}\right]\neq\mathrm{0}}\\{\mathrm{0}\:\:{for}\:\left[{x}\right]=\mathrm{0}}\end{cases} \\ $$$${where}\:\left[{x}\right]\:{represents}\:{an}\:{integer}\:\boldsymbol{{x}}\:{greatest}\:\leqslant\:\boldsymbol{{x}} \\ $$$${Find}\:\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}{f}\left({x}\right). \\ $$
Question Number 201615 Answers: 1 Comments: 0
$$\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{R} \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}>\mathrm{0} \\ $$$$\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}}\:+\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}}\:+\:\frac{\mathrm{z}^{\mathrm{2}} }{\mathrm{c}}\:\geqslant\:\frac{\left(\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\right)^{\mathrm{2}} }{\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}} \\ $$
Question Number 201613 Answers: 2 Comments: 0
$$\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{R} \\ $$$$\begin{cases}{\mathrm{xy}\:+\:\mathrm{yz}\:+\:\mathrm{zx}\:=\:\mathrm{3}}\\{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{5}}\end{cases}\:\:\:\:\:\rightarrow\:\:\:\:\mathrm{max}\left(\boldsymbol{\mathrm{z}}\right)\:=\:? \\ $$
Question Number 201604 Answers: 2 Comments: 1
Question Number 201599 Answers: 1 Comments: 2
Question Number 201595 Answers: 3 Comments: 0
$$\left.\mathrm{1}\right)\:\:\mid\frac{\mathrm{3}+\mathrm{2}{x}}{\mathrm{3}{x}}\mid\:\leq\mathrm{1} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\mathrm{1}\leq\:\mid\:\frac{{x}−\mathrm{3}}{\mathrm{1}−\mathrm{2}{x}}\mid\leq\:\mathrm{2} \\ $$$$ \\ $$$$\left.\mathrm{3}\right)\:\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{35}}{{x}+\mathrm{2}}\:>\:\mathrm{0} \\ $$$$ \\ $$$$\left.\mathrm{4}\right)\:−\mathrm{1}\:\leq\:\frac{{x}+\mathrm{1}}{{x}−\mathrm{2}}\:\leq\mathrm{2} \\ $$
Question Number 201582 Answers: 0 Comments: 0
$$\mathrm{Solve}.... \\ $$$${y}''\left({t}\right)−\mathrm{sin}\left({t}\right){y}\left({t}\right)=\mathrm{0}\:,\: \\ $$$${y}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)=\mathrm{0}\:,\:{y}^{\left(\mathrm{1}\right)} \left(\mathrm{0}\right)=−\mathrm{1}\:,\:{y}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\boldsymbol{\mathcal{L}}\left\{{y}''\left({t}\right)−\mathrm{sin}\left({t}\right){y}\left({t}\right)\right\}=\mathrm{0} \\ $$$${s}^{\mathrm{2}} \boldsymbol{\mathrm{F}}\left({s}\right)−{sy}\left(\mathrm{0}\right)−{y}'\left(\mathrm{0}\right)−\boldsymbol{\mathcal{L}}\left\{\mathrm{sin}\left({t}\right){y}\left({t}\right)\right\}=\mathrm{0} \\ $$$$\mathrm{Holy}...×\mathrm{uck} \\ $$$$\mathrm{I}\:\mathrm{already}\:\mathrm{know}\:{y}''\left({t}\right)−{ty}\left({t}\right)=\mathrm{0}\:\:\:\mathrm{solution} \\ $$$$\mathrm{C}_{\mathrm{1}} \mathrm{Ai}\left({t}\right)+{C}_{\mathrm{2}} \mathrm{Bi}\left({t}\right) \\ $$$$\mathrm{But}\:\mathrm{I}\:\mathrm{Can}'\mathrm{t}\:\mathrm{Solve}\:{y}''\left({t}\right)−\mathrm{sin}\left({t}\right){y}\left({t}\right)=\mathrm{0}....\: \\ $$
Question Number 201581 Answers: 1 Comments: 0
Question Number 201573 Answers: 1 Comments: 0
Question Number 201562 Answers: 3 Comments: 0
Question Number 201561 Answers: 1 Comments: 0
Question Number 201553 Answers: 3 Comments: 0
Question Number 201548 Answers: 1 Comments: 0
Question Number 201547 Answers: 1 Comments: 0
Question Number 201546 Answers: 2 Comments: 4
$$\:\:\:\int\boldsymbol{{Sin}}\left(\boldsymbol{{Inx}}\right)\boldsymbol{{dx}} \\ $$
Question Number 201545 Answers: 0 Comments: 0
Question Number 201544 Answers: 2 Comments: 0
Question Number 201533 Answers: 2 Comments: 0
$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{Un}\:=\:{ln}\:\left({cos}\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\right) \\ $$$$\:\:\:\:{show}\:\:{that}\:{Un}\:\leqslant\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 201534 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)={tanx} \\ $$$${find}\:{f}^{\left({n}\right)} \left({x}\right)\:{with}\:{n}\:{integr} \\ $$$${natural} \\ $$
Question Number 201527 Answers: 1 Comments: 0
Question Number 201526 Answers: 1 Comments: 0
Question Number 201519 Answers: 3 Comments: 0
Question Number 201517 Answers: 1 Comments: 0
Question Number 201516 Answers: 1 Comments: 0
Pg 198 Pg 199 Pg 200 Pg 201 Pg 202 Pg 203 Pg 204 Pg 205 Pg 206 Pg 207
Terms of Service
Privacy Policy
Contact: info@tinkutara.com