| prove
Gauss curvature K is intrinsic by showing
K=(( determinant (((−(1/2)E_(vv) +F_(uv) −G_(uu) ),((1/2)E_u ),(F_u −(1/2)E_v )),(( F_v −(1/2)G_u ),( E),( F)),(( (1/2)G_v ),( F),( G)))− determinant ((( 0),((1/2)E_v ),((1/2)G_u )),(((1/2)E_v ),( E),( F)),(((1/2)G_v ),( F),( G))))/((EG−F^( 2) )^2 ))
E,F,G is First Fundametal form of metric tensor.
|