Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 2

Question Number 225503    Answers: 2   Comments: 0

find x∈C for r∈R\{0} (−r)^x =r

$${find}\:{x}\in\mathbb{C}\:{for}\:{r}\in\mathbb{R}\backslash\left\{\mathrm{0}\right\} \\ $$$$\left(−{r}\right)^{{x}} ={r} \\ $$

Question Number 225497    Answers: 9   Comments: 0

Question Number 225490    Answers: 0   Comments: 19

Question Number 225488    Answers: 0   Comments: 0

Diffenrantial Geometry.....=∧= Christoffel symbol Γ_(σμν) first kind and Γ_(μν) ^( σ) second kind... and Chritoffel symbol satisfy Γ_(μν) ^( σ) =(1/2)g^(σl) Γ_(lμν) Γ_(ijk) {θ,ρ}∈{i,j,k} Γ_(θθθ) , Γ_(ρρρ) , Γ_(θθρ) Γ_(θρθ) , Γ_(ρθρ) , Γ_(ρθθ) Γ_(θρρ) , Γ_(ρρθ) Γ_(jk) ^i =(1/2)g^(il) Γ_(ljk) g_(μν) = ((( r^2 ),( 0)),(( 0),(r^2 sin^2 (θ))) ) (g_(μν) )^(−1) =g^(μν) g^(μν) = ((( (1/r^2 )),( 0)),(( 0),(1/(r^2 sin^2 (θ)))) ) g_(θθ) =r^2 , g_(θρ) =0 , g_(ρθ) =0 , g_(ρρ) =r^2 sin^2 (θ) ∂_θ g_(θθ) =0 , ∂_ρ g_(θθ) =0 , ∂_θ g_(θρ) =0 , ∂_ρ g_(θρ) =0 ∂_θ g_(ρθ) =0 , ∂_ρ g_(ρθ) =0 , ∂_θ g_(ρρ) =2r^2 sin(θ)cos(θ) , ∂_ρ g_(ρρ) =0 Γ_(abc) =(1/2)(∂_b ^ g_(ac) +∂_c g_(ab) −∂_a g_(bc) ) Γ_(θθθ) =(1/2)(∂_θ g_(θθ) +∂_θ g_(θθ) −∂_θ g_(θθ) )=0 Γ_(ρρρ) =(1/2)(∂_ρ g_(ρρ) +∂_ρ g_(ρρ) −∂_ρ g_(ρρ) )=0 Γ_(θρρ) =(1/2)(∂_ρ g_(θρ) +∂_ρ g_(θρ) −∂_θ g_(ρρ) )=−r^2 sin(θ)cos(θ) Γ_(ρθρ) =(1/2)(∂_θ g_(ρρ) +∂_ρ g_(ρθ) −∂_ρ g_(θρ) )=r^2 sin(θ)cos(θ) Γ_(ρθθ) =(1/2)(∂_θ g_(ρθ) +∂_θ g_(ρθ) −∂_ρ g_(θθ) )=0 Γ_(θρθ) =(1/2)(∂_ρ g_(θθ) +∂_θ g_(θρ) −∂_θ g_(ρθ) )=0 Γ_(θθρ) =(1/2)(∂_θ g_(θρ) +∂_ρ g_(θθ) −∂_θ g_(θρ) )=0 Γ_(ρρθ) =(1/2)(∂_ρ g_(ρθ) +∂_θ g_(ρρ) −∂_ρ g_(ρθ) )=r^2 sin(θ)cos(θ) Γ_(jk) ^i =g^(il) Γ_(ljk) g^(θθ) =(1/r^2 ) , g^(θρ) =0 , g^(ρθ) =0 , g^(ρρ) =(1/(r^2 sin^2 (θ))) Γ_(θθ) ^θ =g^(θl) Γ_(lθθ) = { ((g^(θθ) Γ_(θθθ) =0)),((g^(θρ) Γ_(ρθθ) =0)) :}, Γ_(ρθ) ^θ =g^(θl) Γ_(lρθ) = { ((g^(θθ) Γ_(θρθ) =0)),((g^(θρ) Γ_(ρρθ) =0)) :} , Γ_(θρ) ^θ =g^(θl) Γ_(lθρ) = { ((g^(θθ) Γ_(θθρ) =0)),((g^(θρ) Γ_(ρθρ) =0)) :} , Γ_(ρρ) ^θ =g^(θl) Γ_(lρρ) = { ((g^(θθ) Γ_(θρρ) =−sin(θ)cos(θ))),((g^(θρ) Γ_(ρρρ) =0)) :} Γ_(θθ) ^ρ =g^(ρl) Γ_(lθθ) = { ((g^(ρθ) Γ_(θθθ) =0)),((g^(ρρ) Γ_(ρθθ) =0)) :} , Γ_(ρθ) ^ρ =g^(ρl) Γ_(lρθ) = { ((g^(ρθ) Γ_(θρθ) =0)),((g^(ρρ) Γ_(ρρθ) =cot(θ))) :}, Γ_(θρ) ^ρ =g^(ρl) Γ_(lθρ) = { ((g^(ρθ) Γ_(θθρ) =0)),((g^(ρρ) Γ_(ρθρ) =cot(θ))) :} , Γ_(ρρ) ^ρ =g^(ρl) Γ_(lρρ) = { ((g^(ρθ) Γ_(θρρ) =0)),((g^(ρρ) Γ_(ρρρ) =0)) :} ∴Γ_(ρρ) ^θ =−sin(θ)cos(θ) Γ_(μν) ^( ρ) =Γ_(νμ) ^ρ Γ_(ρθ) ^ρ =Γ_(θρ) ^ρ =cot(θ) R_(jkl) ^i =∂_k Γ_(jl) ^k −∂_l Γ_(jk) ^i +Γ_(km) ^i Γ_(jl) ^m −Γ_(lm) ^i Γ_(jk) ^m R_(θθθ) ^θ , R_(θρθ) ^θ , R_(ρθθ) ^θ , R_(ρρθ) ^θ , R_(θρρ) ^θ , R_(ρρρ) ^θ , R_(ρθρ) ^θ , R_(θρρ) ^θ R_(θθθ) ^ρ , R_(θρθ) ^ρ , R_(ρθθ) ^ρ , R_(ρρθ) ^ρ , R_(θρρ) ^ρ , R_(ρρρ) ^ρ , R_(ρθρ) ^ρ , R_(θρρ) ^ρ and Riemann metric tensor have symmetries R_(abcd) =−R_(bacd) R_(abcd) =−R_(abdc) R_(abcd) =R_(cdab) Non-Zero Γ_(μν) ^( ρ) Γ_(ρρ) ^( θ) =−sin(θ)cos(θ) , Γ_(ρθ) ^( ρ) , Γ_(θρ) ^( ρ) =cot(θ) {i,j,k,ℓ}∈{θ,ρ} R_(ρθρ) ^θ =∂_θ Γ_(ρρ) ^θ −∂_ρ Γ_(ρθ) ^θ +Γ_(θm) ^( θ) Γ_(ρρ) ^m −Γ_(ρm) ^θ Γ_(ρθ) ^m =sin^2 (θ) R_(αρθρ) =g_(αμ) R_(ρθρ) ^μ R_(θρθρ) =g_(θμ) R_(ρθρ) ^μ = { ((g_(θθ) R_(ρθρ) ^θ =r^2 sin^2 (θ))),((g_(θρ) R_(ρθρ) ^ρ =0)) :} R_(θρθρ) =r^2 sin^2 (θ) ∴ R_(ρθρ) ^θ =sin^2 (θ) , R_(θρθρ) =r^2 sin^2 (θ) ∼2-dimensional Riemann Manifold∼ R_(abcd) =K(g_(ac) g_(bd) −g_(ad) g_(bc) ) R_(μν) ^(Ricci) =Kg_(μν) K is gaussian curvature aka K=((detII_p )/(det I_p ))=((LM−N^2 )/(EG−F^2 )) Q225479

$$\mathrm{Diffenrantial}\:\mathrm{Geometry}.....=\wedge= \\ $$$$\mathrm{Christoffel}\:\mathrm{symbol}\: \\ $$$$\Gamma_{\sigma\mu\nu} \:\mathrm{first}\:\mathrm{kind}\:\mathrm{and}\:\Gamma_{\mu\nu} ^{\:\sigma} \:\mathrm{second}\:\mathrm{kind}... \\ $$$$\mathrm{and}\:\mathrm{Chritoffel}\:\mathrm{symbol}\:\mathrm{satisfy} \\ $$$$\Gamma_{\mu\nu} ^{\:\sigma} =\frac{\mathrm{1}}{\mathrm{2}}{g}^{\sigma{l}} \Gamma_{{l}\mu\nu} \\ $$$$\Gamma_{{ijk}} \:\:\left\{\theta,\rho\right\}\in\left\{{i},{j},{k}\right\} \\ $$$$\Gamma_{\theta\theta\theta} \:,\:\Gamma_{\rho\rho\rho} \:,\:\Gamma_{\theta\theta\rho} \\ $$$$\Gamma_{\theta\rho\theta} \:,\:\Gamma_{\rho\theta\rho} \:,\:\Gamma_{\rho\theta\theta} \\ $$$$\Gamma_{\theta\rho\rho} \:,\:\Gamma_{\rho\rho\theta} \\ $$$$\Gamma_{{jk}} ^{{i}} =\frac{\mathrm{1}}{\mathrm{2}}{g}^{{il}} \Gamma_{{ljk}} \\ $$$${g}_{\mu\nu} =\begin{pmatrix}{\:{r}^{\mathrm{2}} }&{\:\:\:\:\:\:\mathrm{0}}\\{\:\mathrm{0}}&{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\end{pmatrix} \\ $$$$\left({g}_{\mu\nu} \right)^{−\mathrm{1}} ={g}^{\mu\nu} \\ $$$${g}^{\mu\nu} =\begin{pmatrix}{\:\frac{\mathrm{1}}{{r}^{\mathrm{2}} }}&{\:\:\:\:\:\:\:\:\mathrm{0}}\\{\:\mathrm{0}}&{\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}}\end{pmatrix} \\ $$$${g}_{\theta\theta} ={r}^{\mathrm{2}} ,\:{g}_{\theta\rho} =\mathrm{0}\:,\:{g}_{\rho\theta} =\mathrm{0}\:,\:{g}_{\rho\rho} ={r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right) \\ $$$$\partial_{\theta} {g}_{\theta\theta} =\mathrm{0}\:,\:\partial_{\rho} {g}_{\theta\theta} =\mathrm{0}\:,\:\partial_{\theta} {g}_{\theta\rho} =\mathrm{0}\:,\:\partial_{\rho} {g}_{\theta\rho} =\mathrm{0} \\ $$$$\partial_{\theta} {g}_{\rho\theta} =\mathrm{0}\:,\:\partial_{\rho} {g}_{\rho\theta} =\mathrm{0}\:,\:\partial_{\theta} {g}_{\rho\rho} =\mathrm{2}{r}^{\mathrm{2}} \mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right)\:,\:\partial_{\rho} {g}_{\rho\rho} =\mathrm{0} \\ $$$$\Gamma_{{abc}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{{b}} ^{\:} {g}_{{ac}} +\partial_{{c}} {g}_{{ab}} −\partial_{{a}} {g}_{{bc}} \right) \\ $$$$\Gamma_{\theta\theta\theta} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\theta} {g}_{\theta\theta} +\partial_{\theta} {g}_{\theta\theta} −\partial_{\theta} {g}_{\theta\theta} \right)=\mathrm{0} \\ $$$$\Gamma_{\rho\rho\rho} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\rho} {g}_{\rho\rho} +\partial_{\rho} {g}_{\rho\rho} −\partial_{\rho} {g}_{\rho\rho} \right)=\mathrm{0} \\ $$$$\Gamma_{\theta\rho\rho} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\rho} {g}_{\theta\rho} +\partial_{\rho} {g}_{\theta\rho} −\partial_{\theta} {g}_{\rho\rho} \right)=−{r}^{\mathrm{2}} \mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right) \\ $$$$\Gamma_{\rho\theta\rho} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\theta} {g}_{\rho\rho} +\partial_{\rho} {g}_{\rho\theta} −\partial_{\rho} {g}_{\theta\rho} \right)={r}^{\mathrm{2}} \mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right) \\ $$$$\Gamma_{\rho\theta\theta} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\theta} {g}_{\rho\theta} +\partial_{\theta} {g}_{\rho\theta} −\partial_{\rho} {g}_{\theta\theta} \right)=\mathrm{0} \\ $$$$\Gamma_{\theta\rho\theta} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\rho} {g}_{\theta\theta} +\partial_{\theta} {g}_{\theta\rho} −\partial_{\theta} {g}_{\rho\theta} \right)=\mathrm{0} \\ $$$$\Gamma_{\theta\theta\rho} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\theta} {g}_{\theta\rho} +\partial_{\rho} {g}_{\theta\theta} −\partial_{\theta} {g}_{\theta\rho} \right)=\mathrm{0} \\ $$$$\Gamma_{\rho\rho\theta} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\rho} {g}_{\rho\theta} +\partial_{\theta} {g}_{\rho\rho} −\partial_{\rho} {g}_{\rho\theta} \right)={r}^{\mathrm{2}} \mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right) \\ $$$$\Gamma_{{jk}} ^{{i}} ={g}^{{il}} \Gamma_{{ljk}} \\ $$$${g}^{\theta\theta} =\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\:,\:{g}^{\theta\rho} =\mathrm{0}\:,\:{g}^{\rho\theta} =\mathrm{0}\:,\:{g}^{\rho\rho} =\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)} \\ $$$$\Gamma_{\theta\theta} ^{\theta} ={g}^{\theta{l}} \Gamma_{{l}\theta\theta} =\begin{cases}{{g}^{\theta\theta} \Gamma_{\theta\theta\theta} =\mathrm{0}}\\{{g}^{\theta\rho} \Gamma_{\rho\theta\theta} =\mathrm{0}}\end{cases},\:\Gamma_{\rho\theta} ^{\theta} ={g}^{\theta{l}} \Gamma_{{l}\rho\theta} =\begin{cases}{{g}^{\theta\theta} \Gamma_{\theta\rho\theta} =\mathrm{0}}\\{{g}^{\theta\rho} \Gamma_{\rho\rho\theta} =\mathrm{0}}\end{cases}\:,\:\Gamma_{\theta\rho} ^{\theta} ={g}^{\theta{l}} \Gamma_{{l}\theta\rho} =\begin{cases}{{g}^{\theta\theta} \Gamma_{\theta\theta\rho} =\mathrm{0}}\\{{g}^{\theta\rho} \Gamma_{\rho\theta\rho} =\mathrm{0}}\end{cases}\:,\:\Gamma_{\rho\rho} ^{\theta} ={g}^{\theta{l}} \Gamma_{{l}\rho\rho} =\begin{cases}{{g}^{\theta\theta} \Gamma_{\theta\rho\rho} =−\mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right)}\\{{g}^{\theta\rho} \Gamma_{\rho\rho\rho} =\mathrm{0}}\end{cases} \\ $$$$\Gamma_{\theta\theta} ^{\rho} ={g}^{\rho{l}} \Gamma_{{l}\theta\theta} =\begin{cases}{{g}^{\rho\theta} \Gamma_{\theta\theta\theta} =\mathrm{0}}\\{{g}^{\rho\rho} \Gamma_{\rho\theta\theta} =\mathrm{0}}\end{cases}\:,\:\Gamma_{\rho\theta} ^{\rho} ={g}^{\rho{l}} \Gamma_{{l}\rho\theta} \:=\begin{cases}{{g}^{\rho\theta} \Gamma_{\theta\rho\theta} =\mathrm{0}}\\{{g}^{\rho\rho} \Gamma_{\rho\rho\theta} =\mathrm{cot}\left(\theta\right)}\end{cases},\:\Gamma_{\theta\rho} ^{\rho} ={g}^{\rho{l}} \Gamma_{{l}\theta\rho} =\begin{cases}{{g}^{\rho\theta} \Gamma_{\theta\theta\rho} =\mathrm{0}}\\{{g}^{\rho\rho} \Gamma_{\rho\theta\rho} =\mathrm{cot}\left(\theta\right)}\end{cases}\:,\:\Gamma_{\rho\rho} ^{\rho} ={g}^{\rho{l}} \Gamma_{{l}\rho\rho} =\begin{cases}{{g}^{\rho\theta} \Gamma_{\theta\rho\rho} =\mathrm{0}}\\{{g}^{\rho\rho} \Gamma_{\rho\rho\rho} =\mathrm{0}}\end{cases} \\ $$$$\therefore\Gamma_{\rho\rho} ^{\theta} =−\mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right) \\ $$$$\:\:\:\Gamma_{\mu\nu} ^{\:\rho} =\Gamma_{\nu\mu} ^{\rho} \\ $$$$\:\:\:\Gamma_{\rho\theta} ^{\rho} =\Gamma_{\theta\rho} ^{\rho} =\mathrm{cot}\left(\theta\right) \\ $$$$\:{R}_{{jkl}} ^{{i}} =\partial_{{k}} \Gamma_{{jl}} ^{{k}} −\partial_{{l}} \Gamma_{{jk}} ^{{i}} +\Gamma_{{km}} ^{{i}} \Gamma_{{jl}} ^{{m}} −\Gamma_{{lm}} ^{{i}} \Gamma_{{jk}} ^{{m}} \\ $$$${R}_{\theta\theta\theta} ^{\theta} \:,\:{R}_{\theta\rho\theta} ^{\theta} \:,\:{R}_{\rho\theta\theta} ^{\theta} \:,\:{R}_{\rho\rho\theta} ^{\theta} \:,\:{R}_{\theta\rho\rho} ^{\theta} \:,\:{R}_{\rho\rho\rho} ^{\theta} \:,\:{R}_{\rho\theta\rho} ^{\theta} \:,\:{R}_{\theta\rho\rho} ^{\theta} \\ $$$${R}_{\theta\theta\theta} ^{\rho} \:,\:{R}_{\theta\rho\theta} ^{\rho} \:,\:{R}_{\rho\theta\theta} ^{\rho} \:,\:{R}_{\rho\rho\theta} ^{\rho} \:,\:{R}_{\theta\rho\rho} ^{\rho} \:,\:{R}_{\rho\rho\rho} ^{\rho} \:,\:{R}_{\rho\theta\rho} ^{\rho} \:,\:{R}_{\theta\rho\rho} ^{\rho} \: \\ $$$$\mathrm{and}\:\mathrm{Riemann}\:\mathrm{metric}\:\mathrm{tensor}\:\mathrm{have}\:\mathrm{symmetries} \\ $$$${R}_{{abcd}} =−{R}_{{bacd}} \\ $$$${R}_{{abcd}} =−{R}_{{abdc}} \\ $$$${R}_{{abcd}} ={R}_{{cdab}} \\ $$$$\mathrm{Non}-\mathrm{Zero}\:\Gamma_{\mu\nu} ^{\:\rho} \: \\ $$$$\Gamma_{\rho\rho} ^{\:\theta} =−\mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\theta\right)\:,\:\Gamma_{\rho\theta} ^{\:\rho} \:,\:\Gamma_{\theta\rho} ^{\:\rho} =\mathrm{cot}\left(\theta\right) \\ $$$$\left\{{i},{j},{k},\ell\right\}\in\left\{\theta,\rho\right\} \\ $$$${R}_{\rho\theta\rho} ^{\theta} =\partial_{\theta} \Gamma_{\rho\rho} ^{\theta} −\partial_{\rho} \Gamma_{\rho\theta} ^{\theta} +\Gamma_{\theta{m}} ^{\:\theta} \Gamma_{\rho\rho} ^{{m}} −\Gamma_{\rho{m}} ^{\theta} \Gamma_{\rho\theta} ^{{m}} \\ $$$$=\mathrm{sin}^{\mathrm{2}} \left(\theta\right) \\ $$$${R}_{\alpha\rho\theta\rho} =\mathrm{g}_{\alpha\mu} {R}_{\rho\theta\rho} ^{\mu} \\ $$$${R}_{\theta\rho\theta\rho} =\mathrm{g}_{\theta\mu} {R}_{\rho\theta\rho} ^{\mu} =\begin{cases}{{g}_{\theta\theta} {R}_{\rho\theta\rho} ^{\theta} ={r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\\{{g}_{\theta\rho} {R}_{\rho\theta\rho} ^{\rho} =\mathrm{0}}\end{cases} \\ $$$${R}_{\theta\rho\theta\rho} ={r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right) \\ $$$$\therefore\:{R}_{\rho\theta\rho} ^{\theta} =\mathrm{sin}^{\mathrm{2}} \left(\theta\right)\:,\:{R}_{\theta\rho\theta\rho} ={r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right) \\ $$$$\sim\mathrm{2}-\mathrm{dimensional}\:\mathrm{Riemann}\:\mathrm{Manifold}\sim \\ $$$${R}_{{abcd}} ={K}\left({g}_{{ac}} {g}_{{bd}} −{g}_{{ad}} {g}_{{bc}} \right) \\ $$$${R}_{\mu\nu} ^{\mathrm{Ricci}} ={Kg}_{\mu\nu} \\ $$$${K}\:\mathrm{is}\:\mathrm{gaussian}\:\mathrm{curvature}\:\:\mathrm{aka}\:{K}=\frac{\mathrm{det}\mathbb{II}_{{p}} }{\mathrm{det}\:\mathbb{I}_{{p}} }=\frac{{LM}−{N}^{\mathrm{2}} }{{EG}−{F}^{\mathrm{2}} } \\ $$$${Q}\mathrm{225479} \\ $$

Question Number 225479    Answers: 1   Comments: 0

Let S;R^2 →R^3 Sphere Q1. Find metric tensor g_(μν) Q2. Find Riemann metric tensor R_(jkl) ^i Q.3 Find Ricci tensor R_(αβ) Q.4 Find Ricci Scalar R Christoffel symbol first kind Γ_(μνσ) =(1/2)(∂_ν ^ g_(μσ) +∂_σ g_(μν) −∂_μ g_(νσ) ) Christoffel symbol second kind Γ_(jk) ^i =g^(il) Γ_(ljk) =(1/2)g^(iσ) (∂_j ^ g_(lk) +∂_k g_(lj) −∂_l g_(jk) ) Riemann metric tensor R_(jkl) ^i =∂_k Γ_(jl) ^i −∂_l Γ_(jk) ^i +Γ_(km) ^i Γ_(jl) ^m −Γ_(lm) ^i Γ_(jk) ^m

$$\mathrm{Let}\:\mathcal{S};\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}^{\mathrm{3}} \:\mathrm{Sphere}\: \\ $$$${Q}\mathrm{1}.\:\mathrm{Find}\:\mathrm{metric}\:\mathrm{tensor}\:\mathrm{g}_{\mu\nu} \: \\ $$$${Q}\mathrm{2}.\:\mathrm{Find}\:\mathrm{Riemann}\:\mathrm{metric}\:\mathrm{tensor}\:{R}_{{jkl}} ^{{i}} \\ $$$${Q}.\mathrm{3}\:\:\mathrm{Find}\:\mathrm{Ricci}\:\mathrm{tensor}\:\mathrm{R}_{\alpha\beta} \\ $$$${Q}.\mathrm{4}\:\:\mathrm{Find}\:\mathrm{Ricci}\:\mathrm{Scalar}\:\mathcal{R} \\ $$$$\mathrm{Christoffel}\:\mathrm{symbol}\:\mathrm{first}\:\mathrm{kind}\: \\ $$$$\Gamma_{\mu\nu\sigma} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\nu} ^{\:} \mathrm{g}_{\mu\sigma} +\partial_{\sigma} \mathrm{g}_{\mu\nu} −\partial_{\mu} \mathrm{g}_{\nu\sigma} \right) \\ $$$$\mathrm{Christoffel}\:\mathrm{symbol}\:\mathrm{second}\:\mathrm{kind} \\ $$$$\Gamma_{{jk}} ^{{i}} =\mathrm{g}^{{il}} \Gamma_{{ljk}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{g}^{{i}\sigma} \left(\partial_{{j}} ^{\:} \mathrm{g}_{{lk}} +\partial_{{k}} \mathrm{g}_{{lj}} −\partial_{{l}} \mathrm{g}_{{jk}} \right) \\ $$$$\mathrm{Riemann}\:\mathrm{metric}\:\mathrm{tensor} \\ $$$${R}_{{jkl}} ^{{i}} =\partial_{{k}} \Gamma_{{jl}} ^{{i}} −\partial_{{l}} \Gamma_{{jk}} ^{{i}} +\Gamma_{{km}} ^{{i}} \Gamma_{{jl}} ^{{m}} −\Gamma_{{lm}} ^{{i}} \Gamma_{{jk}} ^{{m}} \\ $$

Question Number 225474    Answers: 1   Comments: 2

Question Number 225461    Answers: 1   Comments: 0

Which one is the oddest prime number?

$${Which}\:{one}\:{is}\:{the}\:{oddest}\:{prime}\:{number}? \\ $$

Question Number 225449    Answers: 2   Comments: 0

Question Number 225416    Answers: 1   Comments: 2

Question Number 225407    Answers: 4   Comments: 3

Question Number 225391    Answers: 0   Comments: 0

Σ_(n = 1) ^∞ (− 1)^(n − 1) ((H_n H_(2n) ^((2)) )/n) = ?

$$\:\:\:\:\:\:\:\underset{\mathrm{n}\:\:\:=\:\:\:\mathrm{1}} {\overset{\infty} {\sum}}\:\left(−\:\:\:\:\mathrm{1}\right)^{\mathrm{n}\:\:\:\:−\:\:\:\mathrm{1}} \:\frac{\mathrm{H}_{\mathrm{n}} \:\mathrm{H}_{\mathrm{2n}} ^{\left(\mathrm{2}\right)} }{\mathrm{n}}\:\:\:\:\:\:\:=\:\:\:\:\:? \\ $$

Question Number 225392    Answers: 2   Comments: 1

Question Number 225382    Answers: 1   Comments: 0

Been a while guys ∫_0 ^( 1) ((xln(1+x))/(1+x^2 ))dx

$$\mathrm{Been}\:\mathrm{a}\:\mathrm{while}\:\mathrm{guys} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{xln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 225365    Answers: 0   Comments: 1

who′s trying this scholars?

$$\mathrm{who}'\mathrm{s}\:\mathrm{trying}\:\mathrm{this}\:\mathrm{scholars}? \\ $$

Question Number 225397    Answers: 1   Comments: 1

Question Number 225356    Answers: 4   Comments: 1

Question Number 225354    Answers: 1   Comments: 1

Question Number 225338    Answers: 1   Comments: 1

Question Number 225330    Answers: 1   Comments: 0

if (fogoh)(x)=cos^2 (x+9) then f(x)=? , g(x)=? , h(x)=?

$${if}\:\:\left({fogoh}\right)\left({x}\right)={cos}^{\mathrm{2}} \left({x}+\mathrm{9}\right) \\ $$$${then}\:\:\:{f}\left({x}\right)=?\:,\:\:{g}\left({x}\right)=?\:\:,\:{h}\left({x}\right)=? \\ $$

Question Number 225323    Answers: 1   Comments: 0

Find: (((3 + 2 (5)^(1/4) )/(3 - 2 (5)^(1/4) )))^(1/4) . (((5)^(1/4) - 1)/( (5)^(1/4) + 1)) = ?

$$\mathrm{Find}:\:\:\:\left(\frac{\mathrm{3}\:+\:\mathrm{2}\:\sqrt[{\mathrm{4}}]{\mathrm{5}}}{\mathrm{3}\:-\:\mathrm{2}\:\sqrt[{\mathrm{4}}]{\mathrm{5}}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} .\:\:\:\frac{\sqrt[{\mathrm{4}}]{\mathrm{5}}\:-\:\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{\mathrm{5}}\:+\:\mathrm{1}}\:\:=\:? \\ $$

Question Number 225394    Answers: 1   Comments: 2

Question Number 225307    Answers: 1   Comments: 1

Question Number 225299    Answers: 0   Comments: 1

We have integrated artificial intelligence: - images are checked during upload and will be rejected if not related to science - daily processing of other posts A few senior users are exempted from these checks.

$$\mathrm{We}\:\mathrm{have}\:\mathrm{integrated}\:\mathrm{artificial} \\ $$$$\mathrm{intelligence}: \\ $$$$-\:\mathrm{images}\:\mathrm{are}\:\mathrm{checked}\:\mathrm{during}\:\mathrm{upload} \\ $$$$\:\:\:\mathrm{and}\:\mathrm{will}\:\mathrm{be}\:\mathrm{rejected}\:\mathrm{if}\:\mathrm{not}\:\mathrm{related} \\ $$$$\:\:\:\mathrm{to}\:\mathrm{science} \\ $$$$-\:\mathrm{daily}\:\mathrm{processing}\:\mathrm{of}\:\mathrm{other}\:\mathrm{posts} \\ $$$$\mathrm{A}\:\mathrm{few}\:\mathrm{senior}\:\mathrm{users}\:\mathrm{are}\:\mathrm{exempted}\:\mathrm{from} \\ $$$$\mathrm{these}\:\mathrm{checks}. \\ $$

Question Number 225303    Answers: 0   Comments: 0

Let S_n (x)=Σ_(r=1) ^n ((sin ((2r−3)2^(−(r+1)) x)cos ((10r+1)2^(−(r+1)) x)−sin( (6r−1)2^(−(r+1)) x)cos ((2r+5)2^(−(r+1)) x))/(2^(r−1) (sin (r2^(3−r) −x)sin (2^(2−r) −x)))) then find the value of lim_(m→∞) (((Σ_(n=0) ^m ∫_0 ^1 cos^(−1) (((cos (x))/(2^n (1+2S_n (x)cos (x)))))dx)/([(d/dx)(Σ_(n=0) ^m cos^(−1) (((cos (x))/(2^n (1+2S_n (x)cos (x)))))]_(x=0) )))

$${Let} \\ $$$${S}_{{n}} \left({x}\right)=\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{sin}\:\left(\left(\mathrm{2}{r}−\mathrm{3}\right)\mathrm{2}^{−\left({r}+\mathrm{1}\right)} {x}\right)\mathrm{cos}\:\left(\left(\mathrm{10}{r}+\mathrm{1}\right)\mathrm{2}^{−\left({r}+\mathrm{1}\right)} {x}\right)−\mathrm{sin}\left(\:\left(\mathrm{6}{r}−\mathrm{1}\right)\mathrm{2}^{−\left({r}+\mathrm{1}\right)} {x}\right)\mathrm{cos}\:\left(\left(\mathrm{2}{r}+\mathrm{5}\right)\mathrm{2}^{−\left({r}+\mathrm{1}\right)} {x}\right)}{\mathrm{2}^{{r}−\mathrm{1}} \left(\mathrm{sin}\:\left({r}\mathrm{2}^{\mathrm{3}−{r}} −{x}\right)\mathrm{sin}\:\left(\mathrm{2}^{\mathrm{2}−{r}} −{x}\right)\right)} \\ $$$${then}\:{find}\:{the}\:{value}\:{of} \\ $$$$\underset{{m}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\underset{{n}=\mathrm{0}} {\overset{{m}} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{cos}\:\left({x}\right)}{\mathrm{2}^{{n}} \left(\mathrm{1}+\mathrm{2}{S}_{{n}} \left({x}\right)\mathrm{cos}\:\left({x}\right)\right)}\right){dx}}{\left[\frac{{d}}{{dx}}\left(\underset{{n}=\mathrm{0}} {\overset{{m}} {\sum}}\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{cos}\:\left({x}\right)}{\mathrm{2}^{{n}} \left(\mathrm{1}+\mathrm{2}{S}_{{n}} \left({x}\right)\mathrm{cos}\:\left({x}\right)\right)}\right)\right]_{{x}=\mathrm{0}} \right.}\right) \\ $$

Question Number 225282    Answers: 2   Comments: 4

Q225146 here if the wedge and the ground had no friction it would start going → what is acc. at time t? μ=kx

$${Q}\mathrm{225146} \\ $$$${here}\:{if}\:{the}\:{wedge}\:{and}\:{the} \\ $$$${ground}\:\:{had}\:{no}\:{friction} \\ $$$${it}\:{would}\:{start}\:{going}\:\rightarrow \\ $$$${what}\:{is}\:{acc}.\:{at}\:{time}\:{t}? \\ $$$$\mu={kx} \\ $$

Question Number 225230    Answers: 1   Comments: 3

tg^4 10°+tg^4 50°+tg^4 70°=?

$$\:\:\:{tg}^{\mathrm{4}} \mathrm{10}°+{tg}^{\mathrm{4}} \mathrm{50}°+{tg}^{\mathrm{4}} \mathrm{70}°=? \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com