Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 2

Question Number 225786    Answers: 1   Comments: 0

Question Number 225758    Answers: 4   Comments: 1

Question Number 225756    Answers: 0   Comments: 3

Question Number 225740    Answers: 1   Comments: 0

Question Number 225730    Answers: 0   Comments: 0

Question Number 225726    Answers: 1   Comments: 1

Question Number 225716    Answers: 1   Comments: 4

Question Number 225698    Answers: 0   Comments: 0

Question Number 225713    Answers: 3   Comments: 1

Question Number 225700    Answers: 0   Comments: 3

Question Number 225703    Answers: 3   Comments: 0

Question Number 225691    Answers: 1   Comments: 0

((−1))^(1/i)

$$\sqrt[{{i}}]{−\mathrm{1}} \\ $$

Question Number 225676    Answers: 0   Comments: 0

Question Number 225666    Answers: 1   Comments: 2

Question Number 225664    Answers: 0   Comments: 0

If a(x)=1 and W_(n=−1) ^(Qw_(fr.) ((1/(x−1))×x)) a′′(ust^n x)=0; What value of Tk(x^2 )? (This is nonstandartmath exercise)

$${If}\:{a}\left({x}\right)=\mathrm{1}\:{and}\:\underset{{n}=−\mathrm{1}} {\overset{{Qw}_{{fr}.} \left(\frac{\mathrm{1}}{{x}−\mathrm{1}}×{x}\right)} {{W}}a}''\left({ust}^{{n}} {x}\right)=\mathrm{0}; \\ $$$${What}\:{value}\:{of}\:{Tk}\left({x}^{\mathrm{2}} \right)? \\ $$$$\left({This}\:{is}\:{nonstandartmath}\:{exercise}\right) \\ $$

Question Number 225661    Answers: 1   Comments: 5

Question Number 225658    Answers: 1   Comments: 0

Question Number 225657    Answers: 0   Comments: 0

Question Number 225656    Answers: 0   Comments: 0

Question Number 225652    Answers: 2   Comments: 0

∫_0 ^(π/2) e^(iπx) dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {e}^{{i}\pi{x}} \:{dx} \\ $$

Question Number 225651    Answers: 0   Comments: 0

Question Number 225629    Answers: 2   Comments: 0

Question Number 225625    Answers: 0   Comments: 4

quick short Q 2 things are mixed 1)both same volume 2)both same mass density⇒d_v and d_m d_v ? d_m [=,< or>]

$${quick}\:{short}\:{Q} \\ $$$$\mathrm{2}\:{things}\:{are}\:{mixed}\: \\ $$$$\left.\mathrm{1}\right){both}\:{same}\:{volume} \\ $$$$\left.\mathrm{2}\right){both}\:{same}\:{mass} \\ $$$${density}\Rightarrow{d}_{{v}} \:{and}\:{d}_{{m}} \\ $$$${d}_{{v}} \:?\:{d}_{{m}} \left[=,<\:{or}>\right] \\ $$

Question Number 225613    Answers: 7   Comments: 0

Question Number 225610    Answers: 0   Comments: 0

prove Gauss curvature K is intrinsic by showing K=(( determinant (((−(1/2)E_(vv) +F_(uv) −G_(uu) ),((1/2)E_u ),(F_u −(1/2)E_v )),(( F_v −(1/2)G_u ),( E),( F)),(( (1/2)G_v ),( F),( G)))− determinant ((( 0),((1/2)E_v ),((1/2)G_u )),(((1/2)E_v ),( E),( F)),(((1/2)G_v ),( F),( G))))/((EG−F^( 2) )^2 )) E,F,G is First Fundametal form of metric tensor.

$$\mathrm{prove} \\ $$$$\mathrm{Gauss}\:\mathrm{curvature}\:{K}\:\mathrm{is}\:\mathrm{intrinsic}\:\mathrm{by}\:\mathrm{showing} \\ $$$${K}=\frac{\begin{vmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}{E}_{{vv}} +{F}_{{uv}} −{G}_{{uu}} }&{\frac{\mathrm{1}}{\mathrm{2}}{E}_{{u}} }&{{F}_{{u}} −\frac{\mathrm{1}}{\mathrm{2}}{E}_{{v}} }\\{\:\:\:\:\:\:\:\:\:\:\:\:{F}_{{v}} −\frac{\mathrm{1}}{\mathrm{2}}{G}_{{u}} }&{\:\:\:{E}}&{\:\:\:\:\:\:{F}}\\{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}{G}_{{v}} }&{\:\:\:{F}}&{\:\:\:\:\:{G}}\end{vmatrix}−\begin{vmatrix}{\:\:\:\:\mathrm{0}}&{\frac{\mathrm{1}}{\mathrm{2}}{E}_{{v}} }&{\frac{\mathrm{1}}{\mathrm{2}}{G}_{{u}} }\\{\frac{\mathrm{1}}{\mathrm{2}}{E}_{{v}} }&{\:\:\:\:{E}}&{\:\:\:\:{F}}\\{\frac{\mathrm{1}}{\mathrm{2}}{G}_{{v}} }&{\:\:\:\:\:{F}}&{\:\:\:{G}}\end{vmatrix}}{\left({EG}−{F}^{\:\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${E},{F},{G}\:\mathrm{is}\:\mathrm{First}\:\mathrm{Fundametal}\:\mathrm{form}\:\mathrm{of}\:\mathrm{metric}\:\mathrm{tensor}. \\ $$

Question Number 225604    Answers: 3   Comments: 2

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com