Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1974

Question Number 9907    Answers: 1   Comments: 2

Question Number 9904    Answers: 0   Comments: 0

Let X denote the number of times heads occur in n tosses of a fair coin. If P (X=4), P (X=5) and P (X=6) are in AP ; the value of n is

$$\mathrm{Let}\:{X}\:\mathrm{denote}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{times}\:\mathrm{heads} \\ $$$$\mathrm{occur}\:\mathrm{in}\:{n}\:\mathrm{tosses}\:\mathrm{of}\:\mathrm{a}\:\mathrm{fair}\:\mathrm{coin}.\:\mathrm{If}\:{P}\:\left({X}=\mathrm{4}\right), \\ $$$${P}\:\left({X}=\mathrm{5}\right)\:\mathrm{and}\:{P}\:\left({X}=\mathrm{6}\right)\:\mathrm{are}\:\mathrm{in}\:{AP}\:;\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:{n}\:\mathrm{is} \\ $$

Question Number 9902    Answers: 1   Comments: 0

x+3y=6, 2x−3y=12

$${x}+\mathrm{3}{y}=\mathrm{6}, \\ $$$$\mathrm{2}{x}−\mathrm{3}{y}=\mathrm{12} \\ $$

Question Number 9908    Answers: 1   Comments: 1

Question Number 9896    Answers: 0   Comments: 0

l^(−1) {((5s^2 −21s+30)/((s−3)(s^2 +4)))} pls help solve this

$${l}^{−\mathrm{1}} \left\{\frac{\mathrm{5}{s}^{\mathrm{2}} −\mathrm{21}{s}+\mathrm{30}}{\left({s}−\mathrm{3}\right)\left({s}^{\mathrm{2}} +\mathrm{4}\right)}\right\}\:\:\:{pls}\:{help}\:{solve}\:{this} \\ $$

Question Number 9895    Answers: 0   Comments: 0

pls help me solve dis questiom it is laplace l^(−1) {((4s^2 −17s−24)/(5(s+3)(s−4)))}

$${pls}\:{help}\:{me}\:{solve}\:{dis}\:{questiom}\:{it}\:{is}\: \\ $$$${laplace} \\ $$$$ \\ $$$${l}^{−\mathrm{1}} \left\{\frac{\mathrm{4}{s}^{\mathrm{2}} −\mathrm{17}{s}−\mathrm{24}}{\mathrm{5}\left({s}+\mathrm{3}\right)\left({s}−\mathrm{4}\right)}\right\} \\ $$

Question Number 9894    Answers: 0   Comments: 0

pls help me solve dis questiom it is laplace l^(−1) {((4s^2 −17s−24)/(5(s+3)(s−4)))}

$${pls}\:{help}\:{me}\:{solve}\:{dis}\:{questiom}\:{it}\:{is}\: \\ $$$${laplace} \\ $$$$ \\ $$$${l}^{−\mathrm{1}} \left\{\frac{\mathrm{4}{s}^{\mathrm{2}} −\mathrm{17}{s}−\mathrm{24}}{\mathrm{5}\left({s}+\mathrm{3}\right)\left({s}−\mathrm{4}\right)}\right\} \\ $$

Question Number 9893    Answers: 0   Comments: 0

pls help me solve dis questiom it is laplace l^(−1) {((4s^2 −17s−24)/(5(s+3)(s−4)))}

$${pls}\:{help}\:{me}\:{solve}\:{dis}\:{questiom}\:{it}\:{is}\: \\ $$$${laplace} \\ $$$$ \\ $$$${l}^{−\mathrm{1}} \left\{\frac{\mathrm{4}{s}^{\mathrm{2}} −\mathrm{17}{s}−\mathrm{24}}{\mathrm{5}\left({s}+\mathrm{3}\right)\left({s}−\mathrm{4}\right)}\right\} \\ $$

Question Number 9890    Answers: 1   Comments: 0

(1−(1/(16)))(1−(1/(25)))(1−(1/(36)))...(1−(1/(3600)))=?

$$\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{16}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{25}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{36}}\right)...\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3600}}\right)=? \\ $$

Question Number 9884    Answers: 2   Comments: 0

(x^2 −2x+3)^2 + (3x^2 −6x−9) = 0 What is the value of x ?

$$\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} \:+\:\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{9}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}\:? \\ $$

Question Number 9883    Answers: 0   Comments: 0

(x^2 −2x+3)^2 + 7(x^2 −6x) + 19 = 0 What is the value of x ?

$$\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} \:+\:\mathrm{7}\left({x}^{\mathrm{2}} −\mathrm{6}{x}\right)\:+\:\mathrm{19}\:=\:\mathrm{0} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}\:? \\ $$

Question Number 9880    Answers: 2   Comments: 0

Question Number 9875    Answers: 1   Comments: 0

solve the value of x. 5logx=(x/4)

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}. \\ $$$$\mathrm{5logx}=\frac{\mathrm{x}}{\mathrm{4}} \\ $$

Question Number 9869    Answers: 0   Comments: 0

find the value of Σ_(n=1) ^(99) (n/(1+n^2 +n^4 )) a)0.46 and 0.47 b)0.47 and 0.48 c)0.48 and 0.49 d)0.49 and 0.50 kush

$${find}\:{the}\:{value}\:{of} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\:\:\frac{{n}}{\mathrm{1}+{n}^{\mathrm{2}} +{n}^{\mathrm{4}} } \\ $$$$\left.{a}\right)\mathrm{0}.\mathrm{46}\:{and}\:\mathrm{0}.\mathrm{47} \\ $$$$\left.{b}\right)\mathrm{0}.\mathrm{47}\:{and}\:\mathrm{0}.\mathrm{48} \\ $$$$\left.{c}\right)\mathrm{0}.\mathrm{48}\:{and}\:\mathrm{0}.\mathrm{49} \\ $$$$\left.{d}\right)\mathrm{0}.\mathrm{49}\:{and}\:\mathrm{0}.\mathrm{50} \\ $$$$\boldsymbol{{kush}} \\ $$

Question Number 9867    Answers: 0   Comments: 0

Question Number 9866    Answers: 0   Comments: 0

If I_n =∫_( 0) ^∞ e^(−x) x^(n−1) dx, then ∫_( 0) ^∞ e^(−λx) x^(n−1) dx =

$$\mathrm{If}\:{I}_{{n}} =\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:{e}^{−{x}} \:{x}^{{n}−\mathrm{1}} \:{dx},\:\mathrm{then}\:\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:{e}^{−\lambda{x}} \:{x}^{{n}−\mathrm{1}} {dx}\:= \\ $$

Question Number 9865    Answers: 0   Comments: 1

lim_(n→∞) [((1^m + 2^m + 3^m + ...+ n^m )/n^(m+1) )] =

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\frac{\mathrm{1}^{{m}} +\:\mathrm{2}^{{m}} +\:\mathrm{3}^{{m}} +\:...+\:{n}^{{m}} }{{n}^{{m}+\mathrm{1}} }\right]\:= \\ $$

Question Number 9864    Answers: 0   Comments: 0

If (1/(√a)) ∫_( 1) ^a ((3/2) (√x) +1− (1/(√x)))dx < 4, then a may take values :

$$\mathrm{If}\:\:\frac{\mathrm{1}}{\sqrt{{a}}}\:\underset{\:\mathrm{1}} {\overset{{a}} {\int}}\:\left(\frac{\mathrm{3}}{\mathrm{2}}\:\sqrt{{x}}\:+\mathrm{1}−\:\frac{\mathrm{1}}{\sqrt{{x}}}\right){dx}\:<\:\mathrm{4},\:\mathrm{then}\:\:{a} \\ $$$$\mathrm{may}\:\mathrm{take}\:\mathrm{values}\:: \\ $$

Question Number 9861    Answers: 1   Comments: 0

find λ value in λ^2 −4λ−13=0

$$\mathrm{find}\:\:\lambda\:\mathrm{value}\:\mathrm{in}\:\lambda^{\mathrm{2}} −\mathrm{4}\lambda−\mathrm{13}=\mathrm{0} \\ $$

Question Number 9860    Answers: 0   Comments: 0

Question Number 9859    Answers: 0   Comments: 0

Question Number 9858    Answers: 0   Comments: 0

Question Number 9863    Answers: 0   Comments: 0

the value of: ∫_0 ^(π/2) (1/(1+tan^3 x)) dx

$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}: \\ $$$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\mathrm{3}} {x}}\:{dx} \\ $$

Question Number 9847    Answers: 1   Comments: 3

Question Number 9844    Answers: 1   Comments: 0

Question Number 9839    Answers: 0   Comments: 1

  Pg 1969      Pg 1970      Pg 1971      Pg 1972      Pg 1973      Pg 1974      Pg 1975      Pg 1976      Pg 1977      Pg 1978   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com