Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1974

Question Number 10023    Answers: 2   Comments: 0

Question Number 10022    Answers: 0   Comments: 0

A rectangular building was constructed and its height was twice it frontage. The building was divided into parts by a partition that is 30 feet from the parallel to the front wall. If the near partition of the bulding is 3500 feet. Find the dimension of the building.

$$\mathrm{A}\:\mathrm{rectangular}\:\mathrm{building}\:\mathrm{was}\:\mathrm{constructed}\:\mathrm{and} \\ $$$$\mathrm{its}\:\mathrm{height}\:\mathrm{was}\:\mathrm{twice}\:\mathrm{it}\:\mathrm{frontage}.\:\mathrm{The}\:\mathrm{building} \\ $$$$\mathrm{was}\:\mathrm{divided}\:\mathrm{into}\:\mathrm{parts}\:\mathrm{by}\:\mathrm{a}\:\mathrm{partition}\:\mathrm{that}\:\mathrm{is} \\ $$$$\mathrm{30}\:\mathrm{feet}\:\mathrm{from}\:\mathrm{the}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{front}\:\mathrm{wall}.\:\mathrm{If} \\ $$$$\mathrm{the}\:\mathrm{near}\:\mathrm{partition}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bulding}\:\mathrm{is}\:\mathrm{3500}\:\mathrm{feet}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{dimension}\:\mathrm{of}\:\mathrm{the}\:\mathrm{building}. \\ $$

Question Number 10021    Answers: 0   Comments: 0

Using pascal triangle to solve: (0.0005)^9

$$\mathrm{Using}\:\mathrm{pascal}\:\mathrm{triangle}\:\mathrm{to}\:\mathrm{solve}:\:\left(\mathrm{0}.\mathrm{0005}\right)^{\mathrm{9}} \\ $$

Question Number 10016    Answers: 2   Comments: 1

Question Number 10012    Answers: 1   Comments: 0

x−y=4 ⇒((x^2 −y^2 +4x−4y)/(2x+2y+8))=?

$$\mathrm{x}−\mathrm{y}=\mathrm{4}\:\Rightarrow\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} +\mathrm{4x}−\mathrm{4y}}{\mathrm{2x}+\mathrm{2y}+\mathrm{8}}=? \\ $$

Question Number 10006    Answers: 1   Comments: 1

A triangle is divided into four triangles and three quadrilaterals by three straight line segments(for figure see comment below). ^• The sum of the perimeters of the three quadri- laterals is 25 cm. ^• The sum of the perimeters of the four triangles is 20 cm. ^• The perimeter of the whole triangle is 19 cm. ^• What is the sum of the lengths of the three straight line segments?

$$\mathrm{A}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{into}\:\mathrm{four}\:\mathrm{triangles} \\ $$$$\mathrm{and}\:\mathrm{three}\:\mathrm{quadrilaterals}\:\mathrm{by}\:\mathrm{three}\:\mathrm{straight} \\ $$$$\mathrm{line}\:\mathrm{segments}\left(\mathrm{for}\:\mathrm{figure}\:\mathrm{see}\:\mathrm{comment}\:\mathrm{below}\right). \\ $$$$ \\ $$$$\:^{\bullet} \mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{perimeters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{three}\:\mathrm{quadri}- \\ $$$$\mathrm{laterals}\:\mathrm{is}\:\mathrm{25}\:\mathrm{cm}. \\ $$$$\:^{\bullet} \mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{perimeters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{four}\:\mathrm{triangles} \\ $$$$\mathrm{is}\:\mathrm{20}\:\mathrm{cm}. \\ $$$$\:^{\bullet} \mathrm{The}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{whole}\:\mathrm{triangle}\:\:\mathrm{is}\:\mathrm{19}\:\mathrm{cm}. \\ $$$$\:^{\bullet} \mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{the}\:\mathrm{three} \\ $$$$\mathrm{straight}\:\mathrm{line}\:\mathrm{segments}? \\ $$

Question Number 10005    Answers: 1   Comments: 0

(x^(1/(16)) +1)(x^(1/8) +1)(x^(1/4) +1)(x^(1/2) +1)=?

$$\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{16}}} +\mathrm{1}\right)\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{8}}} +\mathrm{1}\right)\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{4}}} +\mathrm{1}\right)\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{1}\right)=? \\ $$

Question Number 10000    Answers: 0   Comments: 0

An analyst was hired to survey 20 students. He reported that 6 eat eba, 5 eat amala and 7 eat semovita. 9 eat eba or amala, 12 amala or semovita and 9 eba or semovita. 3 eat all the three food and 10 eat none. After a careful analysis of these findings, the analyst was fired. why ???

$$\mathrm{An}\:\mathrm{analyst}\:\mathrm{was}\:\mathrm{hired}\:\mathrm{to}\:\mathrm{survey}\:\mathrm{20}\:\mathrm{students}. \\ $$$$\mathrm{He}\:\mathrm{reported}\:\mathrm{that}\:\mathrm{6}\:\mathrm{eat}\:\mathrm{eba},\:\mathrm{5}\:\mathrm{eat}\:\mathrm{amala}\:\mathrm{and} \\ $$$$\mathrm{7}\:\mathrm{eat}\:\mathrm{semovita}.\:\mathrm{9}\:\mathrm{eat}\:\mathrm{eba}\:\mathrm{or}\:\mathrm{amala},\:\mathrm{12}\:\mathrm{amala} \\ $$$$\mathrm{or}\:\mathrm{semovita}\:\mathrm{and}\:\mathrm{9}\:\mathrm{eba}\:\mathrm{or}\:\mathrm{semovita}.\:\mathrm{3}\:\mathrm{eat}\:\mathrm{all} \\ $$$$\mathrm{the}\:\mathrm{three}\:\mathrm{food}\:\mathrm{and}\:\mathrm{10}\:\mathrm{eat}\:\mathrm{none}.\:\mathrm{After}\:\mathrm{a}\:\mathrm{careful} \\ $$$$\mathrm{analysis}\:\mathrm{of}\:\mathrm{these}\:\mathrm{findings},\:\mathrm{the}\:\mathrm{analyst}\:\mathrm{was}\:\mathrm{fired}. \\ $$$$\mathrm{why}\:??? \\ $$

Question Number 9989    Answers: 1   Comments: 0

x−(1/x)=3 ⇒x^3 −4x^2 +2x−3=?

$$\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}=\mathrm{3}\:\Rightarrow\mathrm{x}^{\mathrm{3}} −\mathrm{4x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{3}=? \\ $$

Question Number 9988    Answers: 2   Comments: 0

a,b∈Z^+ a^3 −b^3 =19 ⇒ a.b=?

$$\mathrm{a},\mathrm{b}\in\mathrm{Z}^{+} \\ $$$$\mathrm{a}^{\mathrm{3}} −\mathrm{b}^{\mathrm{3}} =\mathrm{19}\:\:\:\Rightarrow\:\mathrm{a}.\mathrm{b}=? \\ $$

Question Number 9987    Answers: 1   Comments: 0

x=199996 x^2 +8x=a10^b −c ⇒ a+b+c=?

$$\mathrm{x}=\mathrm{199996} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{8x}=\mathrm{a10}^{\mathrm{b}} −\mathrm{c} \\ $$$$\Rightarrow\:\mathrm{a}+\mathrm{b}+\mathrm{c}=? \\ $$

Question Number 9986    Answers: 1   Comments: 0

In ΔABC ,sinA:sinB:sinC=5:7:8. Find ∠ABC.

$${In}\:\Delta{ABC}\:,{sinA}:{sinB}:{sinC}=\mathrm{5}:\mathrm{7}:\mathrm{8}. \\ $$$${Find}\:\angle{ABC}. \\ $$

Question Number 9982    Answers: 2   Comments: 0

Question Number 9977    Answers: 1   Comments: 0

Question Number 9976    Answers: 1   Comments: 0

a^2 +b^2 +4a+6b+13=0 ⇒ a+b=?

$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{4a}+\mathrm{6b}+\mathrm{13}=\mathrm{0}\:\: \\ $$$$\Rightarrow\:\mathrm{a}+\mathrm{b}=? \\ $$

Question Number 9975    Answers: 0   Comments: 4

∫_( −2 ) ^( −1) ((1/x)) dx

$$\int_{\:−\mathrm{2}\:} ^{\:−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:\mathrm{dx} \\ $$

Question Number 9970    Answers: 1   Comments: 0

Question Number 9969    Answers: 0   Comments: 0

Calculate the viscosity of water flowing steadily between two parallel plane. The distance between the plane is 1.9km, the third plane has a constant viscosity of 20 cm/sec when a force square 300N/m^3 is applied.

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{viscosity}\:\mathrm{of}\:\mathrm{water}\:\mathrm{flowing}\:\mathrm{steadily} \\ $$$$\mathrm{between}\:\mathrm{two}\:\mathrm{parallel}\:\mathrm{plane}.\:\mathrm{The}\:\mathrm{distance}\: \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{1}.\mathrm{9km},\:\mathrm{the}\:\mathrm{third}\:\mathrm{plane} \\ $$$$\mathrm{has}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{viscosity}\:\mathrm{of}\:\mathrm{20}\:\mathrm{cm}/\mathrm{sec}\:\mathrm{when}\:\mathrm{a} \\ $$$$\mathrm{force}\:\mathrm{square}\:\mathrm{300N}/\mathrm{m}^{\mathrm{3}} \:\mathrm{is}\:\mathrm{applied}. \\ $$

Question Number 9962    Answers: 0   Comments: 2

a,b ∈Z^+ b^2 −a^2 =2b+7a+4 ⇒ a+b=?

$$\mathrm{a},\mathrm{b}\:\in\mathrm{Z}^{+} \\ $$$$\mathrm{b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} =\mathrm{2b}+\mathrm{7a}+\mathrm{4} \\ $$$$\Rightarrow\:\mathrm{a}+\mathrm{b}=? \\ $$

Question Number 9959    Answers: 1   Comments: 0

∣x^2 −25∣=4∣x−5∣ ⇒Σx=?

$$\mid\mathrm{x}^{\mathrm{2}} −\mathrm{25}\mid=\mathrm{4}\mid\mathrm{x}−\mathrm{5}\mid\:\:\:\Rightarrow\Sigma\mathrm{x}=? \\ $$

Question Number 9960    Answers: 1   Comments: 0

Question Number 9954    Answers: 1   Comments: 0

A sound wave of velocity 350 m/s is directed towards the surface of water . If the ratio of the wave length of sound in water to that in air is 425:100, calculate the velocity of the wave in water.

$$\mathrm{A}\:\mathrm{sound}\:\mathrm{wave}\:\mathrm{of}\:\mathrm{velocity}\:\mathrm{350}\:\mathrm{m}/\mathrm{s}\:\mathrm{is}\:\mathrm{directed} \\ $$$$\mathrm{towards}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{water}\:.\:\mathrm{If}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{wave}\:\mathrm{length}\:\mathrm{of}\:\mathrm{sound}\:\mathrm{in}\:\mathrm{water}\:\mathrm{to}\:\mathrm{that}\:\mathrm{in}\: \\ $$$$\mathrm{air}\:\mathrm{is}\:\mathrm{425}:\mathrm{100},\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{wave}\:\mathrm{in}\:\mathrm{water}. \\ $$

Question Number 9953    Answers: 1   Comments: 0

x−y =8 xy=7 ⇒ x^2 −y^2 =?

$$\mathrm{x}−\mathrm{y}\:=\mathrm{8} \\ $$$$\mathrm{xy}=\mathrm{7}\:\:\Rightarrow\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \:=? \\ $$

Question Number 9952    Answers: 0   Comments: 0

∫e^(xy^(2 ) ) dy _ help solve

$$\int{e}^{{xy}^{\mathrm{2}\:} } {dy}\:\:\:\:\:\:\:_{} {help}\:{solve} \\ $$

Question Number 9951    Answers: 1   Comments: 0

∫(√(tan x))dx

$$\int\sqrt{{tan}\:{x}}{dx} \\ $$

Question Number 9947    Answers: 1   Comments: 2

  Pg 1969      Pg 1970      Pg 1971      Pg 1972      Pg 1973      Pg 1974      Pg 1975      Pg 1976      Pg 1977      Pg 1978   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com