Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1974

Question Number 11384    Answers: 1   Comments: 0

Out of 5 accountants and 7 bankers, a committee consisting of 2 accountants and 3 bankers is to be formed. In how many ways can this be done if (a) Any acountant and any bankers must be included (b) One particular banker must be included (c) 2 accountant cannot be in the committee

$$\mathrm{Out}\:\mathrm{of}\:\mathrm{5}\:\mathrm{accountants}\:\mathrm{and}\:\mathrm{7}\:\mathrm{bankers},\:\mathrm{a}\:\mathrm{committee}\:\mathrm{consisting}\:\mathrm{of}\: \\ $$$$\mathrm{2}\:\mathrm{accountants}\:\mathrm{and}\:\mathrm{3}\:\mathrm{bankers}\:\mathrm{is}\:\mathrm{to}\:\mathrm{be}\:\mathrm{formed}.\:\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{this} \\ $$$$\mathrm{be}\:\mathrm{done}\:\mathrm{if} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Any}\:\mathrm{acountant}\:\mathrm{and}\:\mathrm{any}\:\mathrm{bankers}\:\mathrm{must}\:\mathrm{be}\:\mathrm{included} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{One}\:\mathrm{particular}\:\mathrm{banker}\:\mathrm{must}\:\mathrm{be}\:\mathrm{included} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{2}\:\mathrm{accountant}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{in}\:\mathrm{the}\:\mathrm{committee} \\ $$

Question Number 11383    Answers: 1   Comments: 0

There are six trains travelling between Abuja and Lagos and back. In how many ways can a man travel from abuja to Lagos by one train and return by a different train

$$\mathrm{There}\:\mathrm{are}\:\mathrm{six}\:\mathrm{trains}\:\mathrm{travelling}\:\mathrm{between}\:\mathrm{Abuja}\:\mathrm{and}\:\mathrm{Lagos}\:\mathrm{and}\:\mathrm{back}. \\ $$$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{a}\:\mathrm{man}\:\mathrm{travel}\:\mathrm{from}\:\mathrm{abuja}\:\mathrm{to}\:\mathrm{Lagos}\:\mathrm{by}\:\mathrm{one}\:\mathrm{train}\:\mathrm{and} \\ $$$$\mathrm{return}\:\mathrm{by}\:\mathrm{a}\:\mathrm{different}\:\mathrm{train} \\ $$

Question Number 11382    Answers: 0   Comments: 2

In how many ways can 24 different articles be divided into groups of 12, 8 and 4 articles respectively

$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{24}\:\mathrm{different}\:\mathrm{articles}\:\mathrm{be}\:\mathrm{divided}\:\mathrm{into}\:\mathrm{groups}\:\mathrm{of} \\ $$$$\mathrm{12},\:\mathrm{8}\:\mathrm{and}\:\mathrm{4}\:\mathrm{articles}\:\mathrm{respectively} \\ $$

Question Number 11373    Answers: 1   Comments: 0

Question Number 11372    Answers: 0   Comments: 0

If G_1 and G_2 are groups , and f : G_1 →G_2 is a group homomorphism , then prove that o(G_1 ) = o(G_2 ) .

$$\mathrm{If}\:\mathrm{G}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{G}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{groups}\:,\:\mathrm{and}\:\mathrm{f}\::\:\mathrm{G}_{\mathrm{1}} \:\rightarrow\mathrm{G}_{\mathrm{2}} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{group}\:\mathrm{homomorphism}\:,\:\mathrm{then}\:\mathrm{prove} \\ $$$$\mathrm{that}\:\mathrm{o}\left(\mathrm{G}_{\mathrm{1}} \right)\:=\:\mathrm{o}\left(\mathrm{G}_{\mathrm{2}} \right)\:. \\ $$

Question Number 11365    Answers: 0   Comments: 1

∅(n)=n−1 , n∈Z ,where ∅ is Eular phi function. True or false .And explain it .

$$\emptyset\left(\mathrm{n}\right)=\mathrm{n}−\mathrm{1}\:,\:\mathrm{n}\in\mathrm{Z}\:,\mathrm{where}\:\emptyset\:\mathrm{is}\:\mathrm{Eular}\:\mathrm{phi}\:\mathrm{function}. \\ $$$$\mathrm{True}\:\mathrm{or}\:\mathrm{false}\:.\mathrm{And}\:\mathrm{explain}\:\mathrm{it}\:. \\ $$

Question Number 11364    Answers: 1   Comments: 0

lim_(x→0) (((√(1 + tan x)) − (√(1 + sin x)))/x^3 )

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\sqrt{\mathrm{1}\:+\:\mathrm{tan}\:{x}}\:−\:\sqrt{\mathrm{1}\:+\:\mathrm{sin}\:{x}}}{{x}^{\mathrm{3}} } \\ $$

Question Number 11363    Answers: 0   Comments: 0

x∈Z f(x)=log_3 (((x−5)/(x−2)))⇒Σx=?

$$\mathrm{x}\in\mathrm{Z} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{log}_{\mathrm{3}} \left(\frac{\mathrm{x}−\mathrm{5}}{\mathrm{x}−\mathrm{2}}\right)\Rightarrow\Sigma\mathrm{x}=? \\ $$

Question Number 11356    Answers: 1   Comments: 0

Question Number 11355    Answers: 1   Comments: 0

z+3−2i=(1+i)×z^− ⇒∣z∣=?

$$\mathrm{z}+\mathrm{3}−\mathrm{2i}=\left(\mathrm{1}+\mathrm{i}\right)×\overset{−} {\mathrm{z}}\:\Rightarrow\mid\mathrm{z}\mid=? \\ $$

Question Number 11353    Answers: 0   Comments: 0

reduce the matrix below to echelon form and then to row canonical form A = [((2 4 2 −2 5 1)),((3 6 2 2 0 4)),((4 8 2 6 −5 7)) ]

$$\mathrm{reduce}\:\mathrm{the}\:\mathrm{matrix}\:\mathrm{below}\:\mathrm{to}\:\mathrm{echelon}\:\mathrm{form}\:\mathrm{and}\:\mathrm{then}\:\mathrm{to}\:\mathrm{row}\:\mathrm{canonical}\:\mathrm{form} \\ $$$$\mathrm{A}\:=\:\begin{bmatrix}{\mathrm{2}\:\:\mathrm{4}\:\:\mathrm{2}\:\:−\mathrm{2}\:\:\mathrm{5}\:\:\mathrm{1}}\\{\mathrm{3}\:\:\mathrm{6}\:\:\mathrm{2}\:\:\:\:\:\mathrm{2}\:\:\mathrm{0}\:\:\mathrm{4}}\\{\mathrm{4}\:\:\mathrm{8}\:\:\mathrm{2}\:\:\:\mathrm{6}\:\:−\mathrm{5}\:\mathrm{7}}\end{bmatrix} \\ $$

Question Number 11352    Answers: 1   Comments: 0

if, A = x^2 sin yi + z^2 cos yj − xy^2 k, find, dA

$$\mathrm{if},\:\:\mathrm{A}\:=\:\mathrm{x}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{yi}\:+\:\mathrm{z}^{\mathrm{2}} \:\mathrm{cos}\:\mathrm{yj}\:−\:\mathrm{xy}^{\mathrm{2}} \mathrm{k},\:\:\mathrm{find},\:\:\mathrm{dA}\:\: \\ $$

Question Number 11388    Answers: 0   Comments: 0

A cell supplies a current of 6 ameter through a 2 coil and a current of 0.2 ameter through 7 coil. Calculate the limits and the internal resistance of the cell

$$\mathrm{A}\:\mathrm{cell}\:\mathrm{supplies}\:\mathrm{a}\:\mathrm{current}\:\mathrm{of}\:\mathrm{6}\:\mathrm{ameter}\:\mathrm{through}\:\mathrm{a}\:\mathrm{2}\:\mathrm{coil}\:\mathrm{and}\:\mathrm{a}\:\mathrm{current}\:\mathrm{of}\:\mathrm{0}.\mathrm{2}\: \\ $$$$\mathrm{ameter}\:\mathrm{through}\:\mathrm{7}\:\mathrm{coil}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{and}\:\mathrm{the}\:\mathrm{internal}\:\mathrm{resistance} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{cell} \\ $$

Question Number 11351    Answers: 0   Comments: 0

Find the workdone in moving a paticle once around an ellipse C in the xy plane. if the ellipse has centre at the origin with semi major and semi minor axes 4 and 3 respectively.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{workdone}\:\mathrm{in}\:\mathrm{moving}\:\mathrm{a}\:\mathrm{paticle}\:\mathrm{once}\:\mathrm{around}\:\mathrm{an}\:\mathrm{ellipse}\:\mathrm{C}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{xy}\:\mathrm{plane}.\:\mathrm{if}\:\mathrm{the}\:\mathrm{ellipse}\:\mathrm{has}\:\mathrm{centre}\:\mathrm{at}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{with}\:\mathrm{semi}\:\mathrm{major}\:\mathrm{and}\:\mathrm{semi}\:\mathrm{minor}\:\mathrm{axes}\: \\ $$$$\mathrm{4}\:\mathrm{and}\:\mathrm{3}\:\mathrm{respectively}. \\ $$

Question Number 11344    Answers: 0   Comments: 1

n_c_n =((n!)/((n−n)!n!))

$${n}_{{c}_{{n}} } =\frac{{n}!}{\left({n}−{n}\right)!{n}!} \\ $$

Question Number 11343    Answers: 0   Comments: 1

n_c_n =((n1)/((n−n)))

$${n}_{\boldsymbol{\mathrm{c}}_{\boldsymbol{\mathrm{n}}} } =\frac{{n}\mathrm{1}}{\left({n}−{n}\right)} \\ $$

Question Number 11341    Answers: 0   Comments: 2

Question Number 11338    Answers: 2   Comments: 1

Question Number 11334    Answers: 1   Comments: 0

z+∣z∣=9−3i⇒Re(z)

$$\mathrm{z}+\mid\mathrm{z}\mid=\mathrm{9}−\mathrm{3i}\Rightarrow\mathrm{Re}\left(\mathrm{z}\right) \\ $$

Question Number 11332    Answers: 0   Comments: 0

Question Number 11327    Answers: 0   Comments: 0

pl show me typing and shape drawing app for mobile.

$$\mathrm{pl}\:\mathrm{show}\:\mathrm{me}\:\mathrm{typing}\:\mathrm{and}\:\mathrm{shape}\:\mathrm{drawing}\:\mathrm{app}\:\mathrm{for}\:\mathrm{mobile}. \\ $$

Question Number 11321    Answers: 2   Comments: 2

How many solution {x, y, z} that fulfilled x + y + z = 99 ? x,y,z ∈ N

$$\mathrm{How}\:\mathrm{many}\:\mathrm{solution}\:\left\{{x},\:{y},\:{z}\right\}\:\mathrm{that}\:\mathrm{fulfilled} \\ $$$${x}\:+\:{y}\:+\:{z}\:=\:\mathrm{99}\:? \\ $$$${x},{y},{z}\:\in\:\mathbb{N} \\ $$

Question Number 11309    Answers: 0   Comments: 4

ax^2 +by^2 +cz^2 =r^2 Point P=(a, b, c) Point Q=(l, m, n) Both points lie on the curve what is the shortest path from point P to Q, along the outside of the curve?

$${ax}^{\mathrm{2}} +{by}^{\mathrm{2}} +{cz}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\: \\ $$$$\mathrm{Point}\:{P}=\left({a},\:{b},\:{c}\right) \\ $$$$\mathrm{Point}\:{Q}=\left({l},\:{m},\:{n}\right) \\ $$$$\mathrm{Both}\:\mathrm{points}\:\mathrm{lie}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\: \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{path}\:\mathrm{from}\:\mathrm{point} \\ $$$${P}\:\mathrm{to}\:{Q},\:\mathrm{along}\:\mathrm{the}\:\mathrm{outside}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve}? \\ $$

Question Number 11315    Answers: 0   Comments: 6

Question Number 11303    Answers: 2   Comments: 0

Find the equation and radius of the circumference of the triangle formed by the three lines. 2y − 9x + 26 = 0 9y + 2x + 32 = 0 11y − 7x − 27 = 0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{and}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circumference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{formed} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{three}\:\mathrm{lines}. \\ $$$$\mathrm{2y}\:−\:\mathrm{9x}\:+\:\mathrm{26}\:=\:\mathrm{0} \\ $$$$\mathrm{9y}\:+\:\mathrm{2x}\:+\:\mathrm{32}\:=\:\mathrm{0} \\ $$$$\mathrm{11y}\:−\:\mathrm{7x}\:−\:\mathrm{27}\:=\:\mathrm{0} \\ $$

Question Number 11302    Answers: 2   Comments: 0

((sin10x−sin6x−sin2x)/(sin9x−sin7x−sinx))=?

$$\frac{\mathrm{sin10x}−\mathrm{sin6x}−\mathrm{sin2x}}{\mathrm{sin9x}−\mathrm{sin7x}−\mathrm{sinx}}=? \\ $$

  Pg 1969      Pg 1970      Pg 1971      Pg 1972      Pg 1973      Pg 1974      Pg 1975      Pg 1976      Pg 1977      Pg 1978   

Terms of Service

Privacy Policy

Contact: [email protected]