Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1970

Question Number 10746    Answers: 1   Comments: 0

i)express the function f(θ)=sinθ + cosθ in the form rsin(θ+α), r>0 and 0≤θ≤≤(π/2) ii)hence find the maximum value of f and the smallest non−negative value of θ at which it occurs.

$$\left.{i}\right){express}\:{the}\:{function}\:{f}\left(\theta\right)={sin}\theta\:+\:{cos}\theta\:{in}\:{the}\:{form}\:{rsin}\left(\theta+\alpha\right),\:{r}>\mathrm{0}\:{and}\:\mathrm{0}\leqslant\theta\leqslant\leqslant\frac{\pi}{\mathrm{2}} \\ $$$$\left.{ii}\right){hence}\:{find}\:{the}\:{maximum}\:{value}\:{of}\:{f}\:{and} \\ $$$${the}\:{smallest}\:{non}−{negative}\:{value}\:{of}\:\theta\:{at}\:{which}\:{it}\:{occurs}. \\ $$

Question Number 10744    Answers: 1   Comments: 0

hence or otherwise,solve the equation ((cosec θ)/(cosec θ−sin θ))=(4/3) for 0≤θ≤2Π

$${hence}\:{or}\:{otherwise},{solve}\:{the}\:{equation}\:\frac{\mathrm{cosec}\:\theta}{\mathrm{cosec}\:\theta−\mathrm{sin}\:\theta}=\frac{\mathrm{4}}{\mathrm{3}}\:{for}\:\mathrm{0}\leqslant\theta\leqslant\mathrm{2}\Pi \\ $$

Question Number 10743    Answers: 1   Comments: 2

show that sec^2 θ=((cosec θ)/(cosec θ−sin ))

$${show}\:{that}\:\mathrm{sec}\:^{\mathrm{2}} \theta=\frac{\mathrm{cosec}\:\theta}{\mathrm{cosec}\:\theta−\mathrm{sin}\:} \\ $$

Question Number 10742    Answers: 2   Comments: 0

let the roots of the equation2x^3 −5x^2 +4x+6=0 be α,β and γ. i)state the values of α+β+γ, αβ+αγ+βγ and αβγ. ii)hence or otherwise determine an equation with integer coefficients which as roots (1/α^(2 ) ), (1/β^2 ) , and (1/γ^2 )

$${let}\:{the}\:{roots}\:{of}\:{the}\:{equation}\mathrm{2}{x}^{\mathrm{3}} −\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{6}=\mathrm{0} \\ $$$${be}\:\alpha,\beta\:{and}\:\gamma. \\ $$$$\left.{i}\right){state}\:{the}\:{values}\:{of}\:\alpha+\beta+\gamma,\:\alpha\beta+\alpha\gamma+\beta\gamma\:{and}\:\alpha\beta\gamma. \\ $$$$\left.{ii}\right){hence}\:{or}\:{otherwise}\:{determine}\:{an}\:{equation}\:{with}\:{integer}\:{coefficients}\:{which}\:{as}\:{roots}\:\frac{\mathrm{1}}{\alpha^{\mathrm{2}\:} },\:\frac{\mathrm{1}}{\beta^{\mathrm{2}} }\:,\:{and}\:\frac{\mathrm{1}}{\gamma^{\mathrm{2}} } \\ $$$$ \\ $$

Question Number 10741    Answers: 1   Comments: 0

a function f is defined by f(x)= ((x+3)/(x−1)), x not equal to 1.determine whether f is bijective,that is,both one to one and onto

$${a}\:{function}\:{f}\:{is}\:{defined}\:{by}\:{f}\left({x}\right)=\:\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}},\:{x}\:{not}\:{equal}\:{to}\:\mathrm{1}.{determine}\:{whether}\:{f}\:{is}\:{bijective},{that}\:{is},{both}\:{one}\:{to}\:{one}\:{and}\:{onto} \\ $$$$ \\ $$

Question Number 10736    Answers: 1   Comments: 0

A tennis ball is thrown vertically upward with an initial velocity of 50m/s, when the ball return to the point of projection it renounce with the velocity of (2/3) of the velocity. Calculate the heigth after renounce.

$$\mathrm{A}\:\mathrm{tennis}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{vertically}\:\mathrm{upward}\:\mathrm{with}\:\mathrm{an}\:\mathrm{initial}\:\mathrm{velocity}\:\mathrm{of} \\ $$$$\mathrm{50m}/\mathrm{s},\:\mathrm{when}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{return}\:\mathrm{to}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{projection}\:\mathrm{it}\:\mathrm{renounce}\: \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:\:\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{of}\:\mathrm{the}\:\mathrm{velocity}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{heigth}\:\mathrm{after}\:\mathrm{renounce}. \\ $$

Question Number 10734    Answers: 2   Comments: 0

f(x−1)+f(x+1)=2x^2 +6 ⇒f(x)=?

$${f}\left({x}−\mathrm{1}\right)+{f}\left({x}+\mathrm{1}\right)=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}\:\Rightarrow{f}\left({x}\right)=? \\ $$

Question Number 10728    Answers: 1   Comments: 0

A pipe closed at one end emits sound wave of frequency 440 Hz. (i) Determine the length of the air column (ii) Frequencies of the second harmonic and the third harmonic Velocity of sound is 330m/s Refractive index of glass is 1.50, that of air is 1.00, and that of water is 1.33

$$\mathrm{A}\:\mathrm{pipe}\:\mathrm{closed}\:\mathrm{at}\:\mathrm{one}\:\mathrm{end}\:\mathrm{emits}\:\mathrm{sound}\:\mathrm{wave}\:\mathrm{of}\:\mathrm{frequency}\:\mathrm{440}\:\mathrm{Hz}.\: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{air}\:\mathrm{column} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Frequencies}\:\mathrm{of}\:\mathrm{the}\:\mathrm{second}\:\mathrm{harmonic}\:\mathrm{and}\:\mathrm{the}\:\mathrm{third}\:\mathrm{harmonic} \\ $$$$\mathrm{Velocity}\:\mathrm{of}\:\mathrm{sound}\:\mathrm{is}\:\mathrm{330m}/\mathrm{s} \\ $$$$\mathrm{Refractive}\:\mathrm{index}\:\mathrm{of}\:\mathrm{glass}\:\mathrm{is}\:\mathrm{1}.\mathrm{50},\:\mathrm{that}\:\mathrm{of}\:\:\mathrm{air}\:\mathrm{is}\:\mathrm{1}.\mathrm{00},\: \\ $$$$\mathrm{and}\:\mathrm{that}\:\mathrm{of}\:\mathrm{water}\:\mathrm{is}\:\mathrm{1}.\mathrm{33} \\ $$

Question Number 10721    Answers: 1   Comments: 0

Q.1 x^2 −y^2 −i(2x+y)=2i Q.2 (2+3i)x^2 −(3−x)y=2x−3y

$${Q}.\mathrm{1}\:\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} −{i}\left(\mathrm{2}{x}+{y}\right)=\mathrm{2}{i} \\ $$$${Q}.\mathrm{2}\:\:\:\left(\mathrm{2}+\mathrm{3}{i}\right){x}^{\mathrm{2}} −\left(\mathrm{3}−{x}\right){y}=\mathrm{2}{x}−\mathrm{3}{y} \\ $$

Question Number 10714    Answers: 0   Comments: 0

Given the following information regarding the follwing distribution : n = 5, x^− = 10, y^− = 20, Σ(x − 4)^2 = 100, Σ(y − 10)^2 = 160, Σ(x − 4)(y − 10) = 80 (i) Find the two regression coefficient and (ii) Calculate correlation coefficient

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{following}\:\mathrm{information}\:\mathrm{regarding}\:\mathrm{the}\:\mathrm{follwing}\: \\ $$$$\mathrm{distribution}\::\:\: \\ $$$$\mathrm{n}\:=\:\mathrm{5},\:\:\:\:\overset{−} {\mathrm{x}}\:=\:\mathrm{10},\:\:\:\overset{−} {\mathrm{y}}\:=\:\mathrm{20},\:\:\:\Sigma\left(\mathrm{x}\:−\:\mathrm{4}\right)^{\mathrm{2}} \:=\:\mathrm{100},\:\:\Sigma\left(\mathrm{y}\:−\:\mathrm{10}\right)^{\mathrm{2}} \:=\:\mathrm{160}, \\ $$$$\Sigma\left(\mathrm{x}\:−\:\mathrm{4}\right)\left(\mathrm{y}\:−\:\mathrm{10}\right)\:=\:\mathrm{80} \\ $$$$\left(\mathrm{i}\right) \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{two}\:\mathrm{regression}\:\mathrm{coefficient}\:\mathrm{and} \\ $$$$\left(\mathrm{ii}\right) \\ $$$$\mathrm{Calculate}\:\mathrm{correlation}\:\mathrm{coefficient} \\ $$

Question Number 10713    Answers: 2   Comments: 0

y = 5sin(2000πt − 0.4x), calculate the wavelength

$$\mathrm{y}\:=\:\mathrm{5sin}\left(\mathrm{2000}\pi\mathrm{t}\:−\:\mathrm{0}.\mathrm{4x}\right),\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{wavelength} \\ $$

Question Number 10712    Answers: 2   Comments: 0

If y = x^x , find (dy/dx)

$$\mathrm{If}\:\mathrm{y}\:=\:\mathrm{x}^{\mathrm{x}} ,\:\:\mathrm{find}\:\:\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$

Question Number 10711    Answers: 1   Comments: 0

If y = x^x^x , find (dy/dx)

$$\mathrm{If}\:\mathrm{y}\:=\:\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \:,\:\:\mathrm{find}\:\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$

Question Number 10705    Answers: 0   Comments: 0

A pipe closed at one end emits sound waves of frequency 440Hz. Determine (i) The lenght of air column (ii) The frequencies of the first and second overtones.

$$\mathrm{A}\:\mathrm{pipe}\:\mathrm{closed}\:\mathrm{at}\:\mathrm{one}\:\mathrm{end}\:\mathrm{emits}\:\mathrm{sound}\:\mathrm{waves}\:\mathrm{of}\:\mathrm{frequency}\:\mathrm{440Hz}.\: \\ $$$$\mathrm{Determine}\:\left(\mathrm{i}\right)\:\mathrm{The}\:\mathrm{lenght}\:\mathrm{of}\:\mathrm{air}\:\mathrm{column}\:\: \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{The}\:\mathrm{frequencies}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{and}\:\mathrm{second}\:\mathrm{overtones}. \\ $$

Question Number 10704    Answers: 1   Comments: 0

If the bulk modulus for water is 2.28 × 10^9 Nm^(−2) , determine the time it takes for a sound to travel a distant of 110m in water of density 1000kgm^(−3) .

$$\mathrm{If}\:\mathrm{the}\:\mathrm{bulk}\:\mathrm{modulus}\:\mathrm{for}\:\mathrm{water}\:\mathrm{is}\:\mathrm{2}.\mathrm{28}\:×\:\mathrm{10}^{\mathrm{9}} \mathrm{Nm}^{−\mathrm{2}} \:,\:\mathrm{determine}\:\mathrm{the}\: \\ $$$$\mathrm{time}\:\mathrm{it}\:\mathrm{takes}\:\mathrm{for}\:\mathrm{a}\:\mathrm{sound}\:\mathrm{to}\:\mathrm{travel}\:\mathrm{a}\:\mathrm{distant}\:\mathrm{of}\:\mathrm{110m}\:\mathrm{in}\:\mathrm{water}\:\mathrm{of}\: \\ $$$$\mathrm{density}\:\mathrm{1000kgm}^{−\mathrm{3}} . \\ $$

Question Number 10696    Answers: 1   Comments: 0

given that tan2x=(1/4)and that angle x is acute, calculate,without using a calculator the value of these. (a) cos2x (b) sinx

$${given}\:{that}\:{tan}\mathrm{2}{x}=\frac{\mathrm{1}}{\mathrm{4}}{and}\:{that}\:{angle}\:{x}\:{is}\:{acute},\:{calculate},{without}\:{using}\:{a}\:{calculator}\:{the}\:{value}\:{of}\:{these}. \\ $$$$\left({a}\right)\:{cos}\mathrm{2}{x} \\ $$$$\left({b}\right)\:{sinx} \\ $$$$ \\ $$

Question Number 10695    Answers: 2   Comments: 0

prove that tanx−cotx=−2cot2x

$${prove}\:{that}\:{tanx}−{cotx}=−\mathrm{2}{cot}\mathrm{2}{x} \\ $$

Question Number 10694    Answers: 1   Comments: 0

Question Number 10693    Answers: 1   Comments: 0

f(x)=((5x−1)/4) , f(a)+f(b)=(9/2) ⇒a+b=?

$${f}\left({x}\right)=\frac{\mathrm{5}{x}−\mathrm{1}}{\mathrm{4}}\:\:,\:{f}\left({a}\right)+{f}\left({b}\right)=\frac{\mathrm{9}}{\mathrm{2}} \\ $$$$\Rightarrow{a}+{b}=? \\ $$

Question Number 10692    Answers: 1   Comments: 0

f(x+y)=f(x)×f(y) f(16)=8 ⇒f(64)

$${f}\left({x}+{y}\right)={f}\left({x}\right)×{f}\left({y}\right) \\ $$$${f}\left(\mathrm{16}\right)=\mathrm{8}\:\Rightarrow{f}\left(\mathrm{64}\right) \\ $$

Question Number 10690    Answers: 1   Comments: 0

Question Number 10687    Answers: 1   Comments: 0

Abbey and mary carry a uniform log of length 10m and weight 100N. Abbey is 1m from one end and mary is 2m from the other end. what weight does abbey and mary support.

$$\mathrm{Abbey}\:\mathrm{and}\:\mathrm{mary}\:\mathrm{carry}\:\mathrm{a}\:\mathrm{uniform}\:\mathrm{log}\:\mathrm{of}\:\mathrm{length}\:\mathrm{10m}\:\mathrm{and}\:\mathrm{weight}\:\mathrm{100N}. \\ $$$$\mathrm{Abbey}\:\mathrm{is}\:\mathrm{1m}\:\mathrm{from}\:\mathrm{one}\:\mathrm{end}\:\mathrm{and}\:\mathrm{mary}\:\mathrm{is}\:\mathrm{2m}\:\mathrm{from}\:\mathrm{the}\:\mathrm{other}\:\mathrm{end}.\:\mathrm{what} \\ $$$$\mathrm{weight}\:\mathrm{does}\:\mathrm{abbey}\:\mathrm{and}\:\mathrm{mary}\:\mathrm{support}. \\ $$

Question Number 10675    Answers: 1   Comments: 1

given that x,y∈R solve. (1) (x+2y)+i(2x−3y)=5−4i (2) (x+iy)×(7−5i)=9+4i

$${given}\:{that}\:{x},{y}\in{R}\:{solve}. \\ $$$$\left(\mathrm{1}\right)\:\left({x}+\mathrm{2}{y}\right)+{i}\left(\mathrm{2}{x}−\mathrm{3}{y}\right)=\mathrm{5}−\mathrm{4}{i} \\ $$$$\left(\mathrm{2}\right)\:\left({x}+{iy}\right)×\left(\mathrm{7}−\mathrm{5}{i}\right)=\mathrm{9}+\mathrm{4}{i} \\ $$

Question Number 10671    Answers: 2   Comments: 0

Σ_(n = 1) ^∞ 5((1/4))^(n − 1)

$$\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{5}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{n}\:−\:\mathrm{1}} \\ $$

Question Number 10670    Answers: 0   Comments: 0

Prove that: ζ(s)=Σ_(n=1) ^∞ n^(−s) =Π_(p∈P) ^∞ (1−p^(−s) )^(−1)

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\zeta\left({s}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}^{−{s}} =\underset{{p}\in\mathbb{P}} {\overset{\infty} {\prod}}\left(\mathrm{1}−{p}^{−{s}} \right)^{−\mathrm{1}} \\ $$

Question Number 10669    Answers: 0   Comments: 0

∫(√(a^2 −cos^2 x ))dx=? (a≥1)

$$\int\sqrt{{a}^{\mathrm{2}} −\mathrm{cos}^{\mathrm{2}} \:{x}\:}{dx}=?\:\:\:\left({a}\geqslant\mathrm{1}\right) \\ $$

  Pg 1965      Pg 1966      Pg 1967      Pg 1968      Pg 1969      Pg 1970      Pg 1971      Pg 1972      Pg 1973      Pg 1974   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com