Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1970
Question Number 10868 Answers: 0 Comments: 0
Question Number 10867 Answers: 0 Comments: 0
$$\left(\mathrm{1}\right) \\ $$$$\mathrm{Show}\:\mathrm{that}\:: \\ $$$$\frac{\mathrm{x}^{\mathrm{2n}\:+\:\mathrm{1}} \:−\:\mathrm{y}^{\mathrm{2n}\:+\:\mathrm{1}} }{\mathrm{x}\:−\:\mathrm{y}}\:=\:\mathrm{x}^{\mathrm{2n}\:} +\:\mathrm{x}^{\mathrm{2n}\:−\:\mathrm{1}} \mathrm{y}\:+\:...\:+\:\mathrm{xy}^{\mathrm{2n}\:−\:\mathrm{1}} \:+\:\mathrm{y}^{\mathrm{2n}} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{Show}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}^{\mathrm{2n}} \:−\:\mathrm{y}^{\mathrm{2n}} }{\mathrm{x}\:−\:\mathrm{y}}\:=\:\mathrm{x}^{\mathrm{2n}\:\:−\:\mathrm{1}\:} +\:\mathrm{x}^{\mathrm{2n}\:−\:\mathrm{2}} \mathrm{y}\:+\:...\:+\:\mathrm{xy}^{\mathrm{2n}\:−\:\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2n}\:−\:\mathrm{1}} \\ $$
Question Number 10865 Answers: 0 Comments: 0
Question Number 10864 Answers: 1 Comments: 0
Question Number 10862 Answers: 2 Comments: 2
$$\mathrm{Given}\:\mathrm{that}:\:\:\hat {\mathrm{a}}\:=\:\mathrm{3i}\:+\:\mathrm{4j}\:+\:\mathrm{5k}\:\:\mathrm{and}\:\:\hat {\mathrm{b}}\:=\:\mathrm{2i}\:+\:\mathrm{2j}\:+\:\mathrm{3k}\:\:\mathrm{and}\:\:\:\hat {\mathrm{c}}\:=\:\mathrm{6i}\:−\:\mathrm{7j}\:−\:\mathrm{8k}. \\ $$$$\mathrm{find} \\ $$$$\mathrm{3}\hat {\mathrm{a}}\:+\:\mathrm{2}\hat {\mathrm{b}}\:−\:\mathrm{3}\hat {\mathrm{c}} \\ $$
Question Number 10856 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{that}\:\mathrm{fulfilled}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{below} \\ $$$$\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{x}}\right)^{{x}\:+\:\mathrm{1}} \:=\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2013}}\right)^{\mathrm{2013}} \\ $$
Question Number 10855 Answers: 1 Comments: 0
$$\frac{\mathrm{3}}{\mathrm{1}!+\mathrm{2}!+\mathrm{3}!}\:+\:\frac{\mathrm{4}}{\mathrm{2}!+\mathrm{3}!+\mathrm{4}!}\:+\:\frac{\mathrm{5}}{\mathrm{3}!+\mathrm{4}!+\mathrm{5}!}\:+\:...\:+\:\frac{\mathrm{2016}}{\mathrm{2014}!+\mathrm{2015}!+\mathrm{2016}!}\:=\:? \\ $$
Question Number 10854 Answers: 1 Comments: 0
$${f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$${f}\left({x}\:.\:{f}\left({x}\right)\:+\:{f}\left({y}\right)\right)\:=\:\left({f}\left({x}\right)\right)^{\mathrm{2}} \:+\:{y}\:\:\:\:\:\:\:\:\:\:{x},{y}\:\in\:\mathbb{R} \\ $$$$ \\ $$$${f}\left({x}\right)\:=\:?? \\ $$
Question Number 10853 Answers: 1 Comments: 0
$$\left({x}\:+\:{y}\right)^{{n}} \:=\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{x}^{{k}} {y}^{{n}−{k}} \\ $$$$\left({x}\:−\:{y}\right)^{{n}} \:=\:??????? \\ $$
Question Number 10849 Answers: 0 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:{f}\left({x}\right)\:=\:{f}\left({x}\:+\:\mathrm{1000}\right)\:\mathrm{for}\:\mathrm{every}\:{x}\:\in\:\mathbb{R} \\ $$$$\mathrm{If}\:\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\:{f}\left({x}\right)\:=\:\mathrm{30},\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\underset{\mathrm{3}} {\overset{\mathrm{5}} {\int}}\:{f}\left({x}\:+\:\mathrm{2016}\right)\:{dx}\:? \\ $$
Question Number 10846 Answers: 1 Comments: 0
$$\mathrm{Two}\:\mathrm{parallel}\:\mathrm{chords}\:\mathrm{of}\:\mathrm{length}\:\mathrm{24}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{10}\:\mathrm{cm}\:\mathrm{which}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{opposite} \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{are}\:\mathrm{17}\:\mathrm{cm}\:\mathrm{apart}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{whole}\:\mathrm{number}. \\ $$
Question Number 10837 Answers: 1 Comments: 0
$${given}\:{that}\:{sinA}=\frac{\mathrm{12}}{\mathrm{13}}{and}\:{sinB}=\frac{\mathrm{4}}{\mathrm{5}}, \\ $$$${where}\:{A}\:{and}\:{B}\:{are}\:{acute}\:{angles}, \\ $$$${find}\:{cos}\left({A}−{B}\right)\:{and}\:{sin}\left({A}+{B}\right) \\ $$$$ \\ $$
Question Number 10830 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{3}^{\mathrm{x}} \:−\:\mathrm{3}^{−\mathrm{x}} }{\mathrm{3}^{\mathrm{x}} \:+\:\mathrm{3}^{−\mathrm{x}} } \\ $$
Question Number 10825 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\: \\ $$$$\mathrm{sin}\left(\mathrm{x}\right)\:−\:\mathrm{sin}\left(\mathrm{y}\right)\:=\:\mathrm{sin}\left(\theta\right) \\ $$$$\mathrm{cos}\left(\mathrm{x}\right)\:+\:\mathrm{cos}\left(\mathrm{y}\right)\:=\:\mathrm{cos}\left(\theta\right) \\ $$$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\mathrm{cos}\left(\mathrm{x}\:+\:\mathrm{y}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 10820 Answers: 1 Comments: 0
Question Number 10836 Answers: 1 Comments: 0
$${solve}\:{cos}\mathrm{2}\theta−\mathrm{3}{cos}\theta=\mathrm{1} \\ $$$${for}\:{o}\leqslant\theta\leqslant\mathrm{2}\pi \\ $$
Question Number 10815 Answers: 0 Comments: 0
$${Evalute}\:\:\int\left({x}^{\mathrm{2}\:} \:\:+\:\mathrm{9}\right)^{\mathrm{9}} \:{dx}\:. \\ $$
Question Number 10807 Answers: 2 Comments: 2
Question Number 10795 Answers: 1 Comments: 1
$$\mathrm{by}\:\mathrm{use}\:\mathrm{sketching}\:\mathrm{determine}\:\mathrm{the}\:\mathrm{range} \\ $$$$\mathrm{or}\left(\mathrm{ranges}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{value}\:\mathrm{x}\:\mathrm{can}\:\mathrm{take}\:\mathrm{for} \\ $$$$\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inqualities} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{3x}^{\mathrm{2}} −\mathrm{19x}−\mathrm{6}\leqslant\mathrm{0} \\ $$$$\left(\mathrm{ii}\right)\mathrm{2x}^{\mathrm{2}} −\mathrm{5x}−\mathrm{3}\geqslant\mathrm{0} \\ $$
Question Number 10794 Answers: 0 Comments: 1
$$\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{or}\left(\mathrm{ranges}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{x}\:\mathrm{can}\:\mathrm{take}\:\mathrm{for}\:\mathrm{x}+\mathrm{6}>\mid\mathrm{2x}+\mathrm{3}\mid \\ $$
Question Number 10793 Answers: 1 Comments: 0
$$\mathrm{let}\:\:\mathrm{A}\:=\begin{vmatrix}{\mathrm{4}}&{\mathrm{4k}}&{\mathrm{k}}\\{\mathrm{0}}&{\mathrm{k}}&{\mathrm{4k}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{4}}\end{vmatrix}\:\mathrm{if}\:\mathrm{det}\left(\mathrm{A}^{\mathrm{2}} \right)=\mathrm{16} \\ $$$$\mathrm{then}\:\mid\mathrm{k}\mid\:\mathrm{is}? \\ $$
Question Number 10790 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{sin}\:{x}}\:{dx} \\ $$
Question Number 10789 Answers: 1 Comments: 0
$$\left(\mathrm{2}+\mathrm{3}{i}\right){x}^{\mathrm{2}} −\left(\mathrm{3}−\mathrm{2}{i}\right){y}=\mathrm{2}{x}−\mathrm{3}{y}+\mathrm{5}{i} \\ $$
Question Number 10788 Answers: 1 Comments: 0
$${factorise}\:{the}\:{expression}\:{sin}\mathrm{4}{x}−{sinx} \\ $$
Question Number 10787 Answers: 0 Comments: 2
Question Number 10829 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\int_{\:\mathrm{1}} ^{\:\mathrm{x}} \:\:\:\frac{\mathrm{e}^{\mathrm{t}^{\mathrm{2}} } \:\left(\mathrm{dt}\right)}{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{1}}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{1}\:\left(\mathrm{b}\right)\:\mathrm{0}\:\left(\mathrm{c}\right)\:\mathrm{e}/\mathrm{2}\:\left(\mathrm{d}\right)\:\mathrm{e} \\ $$
Pg 1965 Pg 1966 Pg 1967 Pg 1968 Pg 1969 Pg 1970 Pg 1971 Pg 1972 Pg 1973 Pg 1974
Terms of Service
Privacy Policy
Contact: info@tinkutara.com