Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1970

Question Number 10906    Answers: 1   Comments: 1

Q . smallest positive x satisfying the equation sin3x+3cosx=2sin2x(sinx+cosx) , is

$${Q}\:.\:\:{smallest}\:{positive}\:{x}\:{satisfying}\:{the}\:{equation} \\ $$$${sin}\mathrm{3}{x}+\mathrm{3}{cosx}=\mathrm{2}{sin}\mathrm{2}{x}\left({sinx}+{cosx}\right)\:,\:{is} \\ $$

Question Number 10903    Answers: 0   Comments: 0

Question Number 10902    Answers: 2   Comments: 0

∫(√(1−x^2 ))dx=?

$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx}=? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 10900    Answers: 0   Comments: 1

Question Number 10899    Answers: 1   Comments: 0

Question Number 10898    Answers: 1   Comments: 0

Question Number 10887    Answers: 1   Comments: 0

Suppose that f(x) = (1/(x + 1)) and g(x) = (4/(x + 1)) . Find the domain of each of the composition (a) f o g (b) f o f

$$\mathrm{Suppose}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{x}\:+\:\mathrm{1}}\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{4}}{\mathrm{x}\:+\:\mathrm{1}}\:. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{composition}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{f}\:\mathrm{o}\:\mathrm{g}\:\:\:\left(\mathrm{b}\right)\:\:\mathrm{f}\:\mathrm{o}\:\mathrm{f} \\ $$

Question Number 10880    Answers: 1   Comments: 0

∫ (x + 3)(√((x + 4))) dx

$$\left.\int\:\left(\mathrm{x}\:+\:\mathrm{3}\right)\sqrt{\left(\mathrm{x}\:+\:\mathrm{4}\right.}\right)\:\mathrm{dx}\: \\ $$

Question Number 10876    Answers: 1   Comments: 0

∫_( 0) ^( 1) ∫_( x) ^( (√x)) (x + y^5 ) dy dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \int_{\:\mathrm{x}} ^{\:\sqrt{\mathrm{x}}} \:\left(\mathrm{x}\:+\:\mathrm{y}^{\mathrm{5}} \right)\:\mathrm{dy}\:\mathrm{dx} \\ $$

Question Number 10889    Answers: 0   Comments: 0

The solution of the Schanuel′s Conjecture will to decide if γ is transcendental or not? Tell me all consequences of the conjecture.

$$\mathrm{The}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{Schanuel}'\mathrm{s}\:\mathrm{Conjecture} \\ $$$$\mathrm{will}\:\mathrm{to}\:\mathrm{decide}\:\mathrm{if}\:\gamma\:\mathrm{is}\:\mathrm{transcendental}\:\mathrm{or}\:\mathrm{not}? \\ $$$$\mathrm{Tell}\:\mathrm{me}\:\mathrm{all}\:\mathrm{consequences}\:\mathrm{of}\:\mathrm{the}\:\mathrm{conjecture}. \\ $$

Question Number 10874    Answers: 1   Comments: 0

If f(x + 3) = 2x^2 − 3x + 5. find f(5)

$$\mathrm{If}\:\:\mathrm{f}\left(\mathrm{x}\:+\:\mathrm{3}\right)\:=\:\mathrm{2x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{5}.\:\mathrm{find}\:\:\:\mathrm{f}\left(\mathrm{5}\right) \\ $$

Question Number 10872    Answers: 1   Comments: 0

In a cultural gathering of 400 people, there are 270 men and 200 musicians. Of the latter, 80 are singers. 60 of the women are not musicians and 220 of the men are not singers. How many of the women are musicians but not singers. if there are 150 singers altogether and 40 men are both musicians and singers.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{cultural}\:\mathrm{gathering}\:\mathrm{of}\:\mathrm{400}\:\mathrm{people},\:\mathrm{there}\:\mathrm{are}\:\mathrm{270}\:\mathrm{men}\:\mathrm{and}\:\mathrm{200} \\ $$$$\mathrm{musicians}.\:\mathrm{Of}\:\mathrm{the}\:\mathrm{latter},\:\mathrm{80}\:\mathrm{are}\:\mathrm{singers}.\:\mathrm{60}\:\mathrm{of}\:\mathrm{the}\:\mathrm{women}\:\mathrm{are}\:\mathrm{not}\:\:\mathrm{musicians} \\ $$$$\mathrm{and}\:\mathrm{220}\:\mathrm{of}\:\mathrm{the}\:\mathrm{men}\:\mathrm{are}\:\mathrm{not}\:\mathrm{singers}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{of}\:\mathrm{the}\:\mathrm{women}\:\mathrm{are} \\ $$$$\mathrm{musicians}\:\mathrm{but}\:\mathrm{not}\:\mathrm{singers}.\:\mathrm{if}\:\mathrm{there}\:\mathrm{are}\:\mathrm{150}\:\mathrm{singers}\:\mathrm{altogether}\:\mathrm{and}\: \\ $$$$\mathrm{40}\:\mathrm{men}\:\mathrm{are}\:\mathrm{both}\:\mathrm{musicians}\:\mathrm{and}\:\mathrm{singers}. \\ $$

Question Number 10873    Answers: 1   Comments: 0

without using calculator or table, find the exact value of : sin[tan^(−1) ((1/2))]

$$\mathrm{without}\:\mathrm{using}\:\mathrm{calculator}\:\mathrm{or}\:\mathrm{table},\:\mathrm{find}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of}\:\:: \\ $$$$\mathrm{sin}\left[\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right] \\ $$

Question Number 10868    Answers: 0   Comments: 0

Question Number 10867    Answers: 0   Comments: 0

(1) Show that : ((x^(2n + 1) − y^(2n + 1) )/(x − y)) = x^(2n ) + x^(2n − 1) y + ... + xy^(2n − 1) + y^(2n) (2) Show that: ((x^(2n) − y^(2n) )/(x − y)) = x^(2n − 1 ) + x^(2n − 2) y + ... + xy^(2n − 2) + y^(2n − 1)

$$\left(\mathrm{1}\right) \\ $$$$\mathrm{Show}\:\mathrm{that}\:: \\ $$$$\frac{\mathrm{x}^{\mathrm{2n}\:+\:\mathrm{1}} \:−\:\mathrm{y}^{\mathrm{2n}\:+\:\mathrm{1}} }{\mathrm{x}\:−\:\mathrm{y}}\:=\:\mathrm{x}^{\mathrm{2n}\:} +\:\mathrm{x}^{\mathrm{2n}\:−\:\mathrm{1}} \mathrm{y}\:+\:...\:+\:\mathrm{xy}^{\mathrm{2n}\:−\:\mathrm{1}} \:+\:\mathrm{y}^{\mathrm{2n}} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{Show}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}^{\mathrm{2n}} \:−\:\mathrm{y}^{\mathrm{2n}} }{\mathrm{x}\:−\:\mathrm{y}}\:=\:\mathrm{x}^{\mathrm{2n}\:\:−\:\mathrm{1}\:} +\:\mathrm{x}^{\mathrm{2n}\:−\:\mathrm{2}} \mathrm{y}\:+\:...\:+\:\mathrm{xy}^{\mathrm{2n}\:−\:\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2n}\:−\:\mathrm{1}} \\ $$

Question Number 10865    Answers: 0   Comments: 0

Question Number 10864    Answers: 1   Comments: 0

Question Number 10862    Answers: 2   Comments: 2

Given that: a^ = 3i + 4j + 5k and b^ = 2i + 2j + 3k and c^ = 6i − 7j − 8k. find 3a^ + 2b^ − 3c^

$$\mathrm{Given}\:\mathrm{that}:\:\:\hat {\mathrm{a}}\:=\:\mathrm{3i}\:+\:\mathrm{4j}\:+\:\mathrm{5k}\:\:\mathrm{and}\:\:\hat {\mathrm{b}}\:=\:\mathrm{2i}\:+\:\mathrm{2j}\:+\:\mathrm{3k}\:\:\mathrm{and}\:\:\:\hat {\mathrm{c}}\:=\:\mathrm{6i}\:−\:\mathrm{7j}\:−\:\mathrm{8k}. \\ $$$$\mathrm{find} \\ $$$$\mathrm{3}\hat {\mathrm{a}}\:+\:\mathrm{2}\hat {\mathrm{b}}\:−\:\mathrm{3}\hat {\mathrm{c}} \\ $$

Question Number 10856    Answers: 1   Comments: 0

Find all the solution that fulfilled the equation below (1 + (1/x))^(x + 1) = (1 + (1/(2013)))^(2013)

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{that}\:\mathrm{fulfilled}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{below} \\ $$$$\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{x}}\right)^{{x}\:+\:\mathrm{1}} \:=\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2013}}\right)^{\mathrm{2013}} \\ $$

Question Number 10855    Answers: 1   Comments: 0

(3/(1!+2!+3!)) + (4/(2!+3!+4!)) + (5/(3!+4!+5!)) + ... + ((2016)/(2014!+2015!+2016!)) = ?

$$\frac{\mathrm{3}}{\mathrm{1}!+\mathrm{2}!+\mathrm{3}!}\:+\:\frac{\mathrm{4}}{\mathrm{2}!+\mathrm{3}!+\mathrm{4}!}\:+\:\frac{\mathrm{5}}{\mathrm{3}!+\mathrm{4}!+\mathrm{5}!}\:+\:...\:+\:\frac{\mathrm{2016}}{\mathrm{2014}!+\mathrm{2015}!+\mathrm{2016}!}\:=\:? \\ $$

Question Number 10854    Answers: 1   Comments: 0

f : R → R f(x . f(x) + f(y)) = (f(x))^2 + y x,y ∈ R f(x) = ??

$${f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$${f}\left({x}\:.\:{f}\left({x}\right)\:+\:{f}\left({y}\right)\right)\:=\:\left({f}\left({x}\right)\right)^{\mathrm{2}} \:+\:{y}\:\:\:\:\:\:\:\:\:\:{x},{y}\:\in\:\mathbb{R} \\ $$$$ \\ $$$${f}\left({x}\right)\:=\:?? \\ $$

Question Number 10853    Answers: 1   Comments: 0

(x + y)^n = Σ_(k=0) ^n ((n),(k) )x^k y^(n−k) (x − y)^n = ???????

$$\left({x}\:+\:{y}\right)^{{n}} \:=\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{x}^{{k}} {y}^{{n}−{k}} \\ $$$$\left({x}\:−\:{y}\right)^{{n}} \:=\:??????? \\ $$

Question Number 10849    Answers: 0   Comments: 0

Given that f(x) = f(x + 1000) for every x ∈ R If ∫_0 ^3 f(x) = 30,what is the value of ∫_3 ^5 f(x + 2016) dx ?

$$\mathrm{Given}\:\mathrm{that}\:{f}\left({x}\right)\:=\:{f}\left({x}\:+\:\mathrm{1000}\right)\:\mathrm{for}\:\mathrm{every}\:{x}\:\in\:\mathbb{R} \\ $$$$\mathrm{If}\:\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\:{f}\left({x}\right)\:=\:\mathrm{30},\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\underset{\mathrm{3}} {\overset{\mathrm{5}} {\int}}\:{f}\left({x}\:+\:\mathrm{2016}\right)\:{dx}\:? \\ $$

Question Number 10846    Answers: 1   Comments: 0

Two parallel chords of length 24 cm and 10 cm which lies on opposite sides of a circle are 17 cm apart. Calculate the radius of the circle to the nearest whole number.

$$\mathrm{Two}\:\mathrm{parallel}\:\mathrm{chords}\:\mathrm{of}\:\mathrm{length}\:\mathrm{24}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{10}\:\mathrm{cm}\:\mathrm{which}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{opposite} \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{are}\:\mathrm{17}\:\mathrm{cm}\:\mathrm{apart}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{whole}\:\mathrm{number}. \\ $$

Question Number 10837    Answers: 1   Comments: 0

given that sinA=((12)/(13))and sinB=(4/5), where A and B are acute angles, find cos(A−B) and sin(A+B)

$${given}\:{that}\:{sinA}=\frac{\mathrm{12}}{\mathrm{13}}{and}\:{sinB}=\frac{\mathrm{4}}{\mathrm{5}}, \\ $$$${where}\:{A}\:{and}\:{B}\:{are}\:{acute}\:{angles}, \\ $$$${find}\:{cos}\left({A}−{B}\right)\:{and}\:{sin}\left({A}+{B}\right) \\ $$$$ \\ $$

Question Number 10830    Answers: 2   Comments: 0

lim_(x→∞) ((3^x − 3^(−x) )/(3^x + 3^(−x) ))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{3}^{\mathrm{x}} \:−\:\mathrm{3}^{−\mathrm{x}} }{\mathrm{3}^{\mathrm{x}} \:+\:\mathrm{3}^{−\mathrm{x}} } \\ $$

  Pg 1965      Pg 1966      Pg 1967      Pg 1968      Pg 1969      Pg 1970      Pg 1971      Pg 1972      Pg 1973      Pg 1974   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com