Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1970

Question Number 10571    Answers: 0   Comments: 0

Question Number 10570    Answers: 0   Comments: 0

n(A)=12 n(B)=10 ⇒min(n(A−B−B^′ ))

$${n}\left({A}\right)=\mathrm{12} \\ $$$${n}\left({B}\right)=\mathrm{10} \\ $$$$\Rightarrow{min}\left({n}\left({A}−{B}−{B}^{'} \right)\right) \\ $$

Question Number 10566    Answers: 2   Comments: 0

Question Number 10564    Answers: 1   Comments: 0

Prove that: lim_(ε→0) ((−1+x^ε )/ε) = ln(x)

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\epsilon\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{1}+{x}^{\epsilon} }{\epsilon}\:=\:\mathrm{ln}\left({x}\right) \\ $$

Question Number 10563    Answers: 0   Comments: 0

can someone explain to me big K notation? (I don′t know the name) It is related to continuous fractions. e.g. x=b_0 +K_(i=1) ^∞ (a_i /b_i ) e^x =(x^0 /(0!))+(x^1 /(1!))+(x^2 /(2!))+... e^x =Σ_(i=0) ^∞ (x^i /(i!)) =1+(x/(1−((1x)/(2+x−((2x)/(3+x−((3x)/(...)))))))) How do you interperate this in big K notation?

$$\mathrm{can}\:\mathrm{someone}\:\mathrm{explain}\:\mathrm{to}\:\mathrm{me} \\ $$$$\mathrm{big}\:\mathrm{K}\:\mathrm{notation}?\:\left(\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{the}\:\mathrm{name}\right) \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{related}\:\mathrm{to}\:\mathrm{continuous}\:\mathrm{fractions}. \\ $$$$\mathrm{e}.\mathrm{g}.\:\:\:{x}={b}_{\mathrm{0}} +\underset{{i}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\mathrm{K}}}}\frac{{a}_{{i}} }{{b}_{{i}} } \\ $$$$\: \\ $$$${e}^{{x}} =\frac{{x}^{\mathrm{0}} }{\mathrm{0}!}+\frac{{x}^{\mathrm{1}} }{\mathrm{1}!}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+... \\ $$$${e}^{{x}} =\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{i}} }{{i}!} \\ $$$$\:\:\:\:\:=\mathrm{1}+\frac{{x}}{\mathrm{1}−\frac{\mathrm{1}{x}}{\mathrm{2}+{x}−\frac{\mathrm{2}{x}}{\mathrm{3}+{x}−\frac{\mathrm{3}{x}}{...}}}} \\ $$$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{interperate}\:\mathrm{this}\:\mathrm{in} \\ $$$$\mathrm{big}\:\mathrm{K}\:\mathrm{notation}? \\ $$

Question Number 10562    Answers: 0   Comments: 0

x= [(x_1 ),(x_2 ),(( ⋮)),(x_n ) ] y= [(y_1 ),(y_2 ),(( ⋮)),(y_n ) ] x, y ∈ R^n 1. Prove the length of the vector x, denoted ∣∣x∣∣, is equal to (√(x_1 ^2 +x_2 ^2 +...+x_n ^2 )) 2. Determine if ∣∣x−y∣∣=∣∣y−x∣∣

$$\boldsymbol{{x}}=\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\\{\:\vdots}\\{{x}_{{n}} }\end{bmatrix}\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{y}}=\begin{bmatrix}{{y}_{\mathrm{1}} }\\{{y}_{\mathrm{2}} }\\{\:\vdots}\\{{y}_{{n}} }\end{bmatrix}\:\:\:\:\:\:\:\:\boldsymbol{{x}},\:\boldsymbol{{y}}\:\in\:\mathbb{R}^{{n}} \\ $$$$\: \\ $$$$\mathrm{1}.\:\mathrm{Prove}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vector}\:\boldsymbol{{x}},\:\mathrm{denoted}\:\mid\mid\boldsymbol{{x}}\mid\mid, \\ $$$$\:\:\:\:\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\sqrt{{x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{2}} ^{\mathrm{2}} +...+{x}_{{n}} ^{\mathrm{2}} } \\ $$$$\mathrm{2}.\:\mathrm{Determine}\:\mathrm{if}\:\:\:\mid\mid\boldsymbol{{x}}−\boldsymbol{{y}}\mid\mid=\mid\mid\boldsymbol{{y}}−\boldsymbol{{x}}\mid\mid \\ $$

Question Number 10555    Answers: 0   Comments: 0

why Γ(x)=∫_0 ^1 [−ln(u)]^(x−1) du ? I don′t know how to prove this

$$\mathrm{why}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \left[−\mathrm{ln}\left(\mathrm{u}\right)\right]^{{x}−\mathrm{1}} {du}\:\:? \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{how}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{this} \\ $$

Question Number 10553    Answers: 0   Comments: 0

(D^2 +4)y=tan 2x D=d/dx

$$\left(\mathrm{D}^{\mathrm{2}} +\mathrm{4}\right)\mathrm{y}=\mathrm{tan}\:\mathrm{2x}\:\:\:\:\:\:\:\:\:\:\:\mathrm{D}=\mathrm{d}/\mathrm{dx} \\ $$

Question Number 11178    Answers: 0   Comments: 1

If the sum of p terms of an AP is q and the sum of q terms is p, then the sum of p+q terms will be

$$\mathrm{If}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:{p}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{AP}\:\mathrm{is}\:{q}\:\mathrm{and}\: \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:{q}\:\mathrm{terms}\:\mathrm{is}\:{p},\:\mathrm{then}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$${p}+{q}\:\:\mathrm{terms}\:\mathrm{will}\:\mathrm{be} \\ $$

Question Number 11172    Answers: 1   Comments: 0

Tangent to the curve (x+y)^3 =(x−y+2)^2 at (−1,1).

$$\mathrm{Tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve}\:\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{3}} =\left(\mathrm{x}−\mathrm{y}+\mathrm{2}\right)^{\mathrm{2}} \\ $$$$\mathrm{at}\:\left(−\mathrm{1},\mathrm{1}\right). \\ $$

Question Number 11183    Answers: 1   Comments: 0

Question Number 10547    Answers: 1   Comments: 0

A man can row a boat at 4 km/hr in still water. He rows the boat 2km upstream and 2km back to his starting place in 2 hours. How fast is the stream flowing ?

$$\mathrm{A}\:\mathrm{man}\:\mathrm{can}\:\mathrm{row}\:\mathrm{a}\:\mathrm{boat}\:\mathrm{at}\:\mathrm{4}\:\mathrm{km}/\mathrm{hr}\:\mathrm{in}\:\mathrm{still}\:\mathrm{water}. \\ $$$$\mathrm{He}\:\mathrm{rows}\:\mathrm{the}\:\mathrm{boat}\:\mathrm{2km}\:\mathrm{upstream}\:\mathrm{and}\:\mathrm{2km}\:\mathrm{back}\:\mathrm{to} \\ $$$$\mathrm{his}\:\mathrm{starting}\:\mathrm{place}\:\mathrm{in}\:\mathrm{2}\:\mathrm{hours}.\:\mathrm{How}\:\mathrm{fast}\:\mathrm{is}\:\mathrm{the}\:\mathrm{stream} \\ $$$$\mathrm{flowing}\:? \\ $$

Question Number 11206    Answers: 3   Comments: 0

Question Number 11204    Answers: 0   Comments: 0

Question Number 11203    Answers: 1   Comments: 0

f(x)=((x/(x+1))−(x/(x−1)))^(−1) =−(((x+1)(x−1))/(2x)) g(x)=−(1/2)x why is f(x)≈g(x)?

$${f}\left({x}\right)=\left(\frac{{x}}{{x}+\mathrm{1}}−\frac{{x}}{{x}−\mathrm{1}}\right)^{−\mathrm{1}} =−\frac{\left({x}+\mathrm{1}\right)\left({x}−\mathrm{1}\right)}{\mathrm{2}{x}} \\ $$$${g}\left({x}\right)=−\frac{\mathrm{1}}{\mathrm{2}}{x} \\ $$$$\: \\ $$$$\mathrm{why}\:\mathrm{is}\:{f}\left({x}\right)\approx{g}\left({x}\right)? \\ $$

Question Number 11196    Answers: 0   Comments: 2

Give an example each with justification,of a function defined by ]−1,1[ ,which is 1)one one but not onto. 2)onto but not one one.

$$\mathrm{Give}\:\mathrm{an}\:\mathrm{example}\:\mathrm{each}\:\mathrm{with}\:\mathrm{justification},\mathrm{of}\:\mathrm{a}\:\mathrm{function} \\ $$$$\left.\mathrm{defined}\:\mathrm{by}\:\right]−\mathrm{1},\mathrm{1}\left[\:,\mathrm{which}\:\mathrm{is}\right. \\ $$$$\left.\mathrm{1}\right)\mathrm{one}\:\mathrm{one}\:\mathrm{but}\:\mathrm{not}\:\mathrm{onto}. \\ $$$$\left.\mathrm{2}\right)\mathrm{onto}\:\mathrm{but}\:\mathrm{not}\:\mathrm{one}\:\mathrm{one}. \\ $$

Question Number 10544    Answers: 0   Comments: 1

The number of terms in the expansion of (1+2x+x^2 )^(20) when expanded in descending powers of x, is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\left(\mathrm{1}+\mathrm{2}{x}+{x}^{\mathrm{2}} \right)^{\mathrm{20}} \mathrm{when}\:\mathrm{expanded}\:\mathrm{in}\:\mathrm{descending} \\ $$$$\mathrm{powers}\:\mathrm{of}\:{x},\:\mathrm{is} \\ $$

Question Number 10543    Answers: 0   Comments: 0

Question Number 10542    Answers: 1   Comments: 0

Prove that: tan(sec^(−1) ((√(tan(θ)))))=(√(tan(θ)))(√(1−cot(θ)))

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{tan}\left(\mathrm{sec}^{−\mathrm{1}} \left(\sqrt{\mathrm{tan}\left(\theta\right)}\right)\right)=\sqrt{\mathrm{tan}\left(\theta\right)}\sqrt{\mathrm{1}−\mathrm{cot}\left(\theta\right)} \\ $$

Question Number 10540    Answers: 1   Comments: 3

Question Number 10539    Answers: 1   Comments: 0

prove that (√(2 + ^3 (√(3 +...+ ^(1993) (√(1993)))))) <2

$${prove}\:{that} \\ $$$$\sqrt{\mathrm{2}\:+\overset{\mathrm{3}} {\:}\sqrt{\mathrm{3}\:+...+\overset{\mathrm{1993}} {\:}\sqrt{\mathrm{1993}}}}\:<\mathrm{2} \\ $$

Question Number 10536    Answers: 1   Comments: 0

how can one rougly judge ((548)/(879)) ?

$${how}\:{can}\:{one}\:{rougly}\:\:{judge}\:\frac{\mathrm{548}}{\mathrm{879}}\:? \\ $$

Question Number 10521    Answers: 1   Comments: 0

A number (αβ..λ...μ2)×2 =(2αβ..λ...μ) find the number.

$${A}\:{number}\:\left(\alpha\beta..\lambda...\mu\mathrm{2}\right)×\mathrm{2}\:=\left(\mathrm{2}\alpha\beta..\lambda...\mu\right) \\ $$$${find}\:{the}\:{number}. \\ $$$$ \\ $$

Question Number 10517    Answers: 0   Comments: 0

Question Number 10515    Answers: 1   Comments: 0

2^a =6^((x/(x+y)) ) .3^a =6^(y/(x+y)) ⇒8^((y/x)+1) =?

$$\mathrm{2}^{{a}} =\mathrm{6}^{\frac{{x}}{{x}+{y}}\:} \:\:\:.\mathrm{3}^{{a}} \:=\mathrm{6}^{\frac{{y}}{{x}+{y}}} \:\Rightarrow\mathrm{8}^{\frac{{y}}{{x}}+\mathrm{1}} =? \\ $$

Question Number 10513    Answers: 0   Comments: 1

e^((−2×10^(−2) /2))

$${e}^{\left(−\mathrm{2}×\mathrm{10}^{−\mathrm{2}} /\mathrm{2}\right)} \\ $$

  Pg 1965      Pg 1966      Pg 1967      Pg 1968      Pg 1969      Pg 1970      Pg 1971      Pg 1972      Pg 1973      Pg 1974   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com