Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1970

Question Number 8828    Answers: 1   Comments: 2

If the third common multiple of two number is 495. Find (a) their LCM (b) the second number if one is 15

$$\mathrm{If}\:\mathrm{the}\:\mathrm{third}\:\mathrm{common}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{two}\:\mathrm{number} \\ $$$$\mathrm{is}\:\mathrm{495}.\:\mathrm{Find} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{their}\:\mathrm{LCM} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{the}\:\mathrm{second}\:\mathrm{number}\:\mathrm{if}\:\mathrm{one}\:\mathrm{is}\:\mathrm{15} \\ $$

Question Number 8827    Answers: 1   Comments: 1

The LCM of two numbers is 272 and one of them is 16. Find (a) Their second common multiple (b) The other number

$$\mathrm{The}\:\mathrm{LCM}\:\mathrm{of}\:\mathrm{two}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{272}\:\mathrm{and}\:\mathrm{one}\:\mathrm{of} \\ $$$$\mathrm{them}\:\mathrm{is}\:\mathrm{16}.\:\mathrm{Find} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Their}\:\mathrm{second}\:\mathrm{common}\:\mathrm{multiple} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{The}\:\mathrm{other}\:\mathrm{number} \\ $$

Question Number 8822    Answers: 0   Comments: 0

Question Number 8823    Answers: 1   Comments: 0

When an electron is placed in an electric field, it experience an electric force whose magnitude is 1.6 times its weight . find the magnitude of the electric field.

$$\mathrm{When}\:\mathrm{an}\:\mathrm{electron}\:\mathrm{is}\:\mathrm{placed}\:\mathrm{in}\:\mathrm{an}\:\mathrm{electric}\:\mathrm{field}, \\ $$$$\mathrm{it}\:\mathrm{experience}\:\mathrm{an}\:\mathrm{electric}\:\mathrm{force}\:\mathrm{whose}\:\mathrm{magnitude} \\ $$$$\mathrm{is}\:\mathrm{1}.\mathrm{6}\:\mathrm{times}\:\mathrm{its}\:\mathrm{weight}\:.\:\mathrm{find}\:\mathrm{the}\:\mathrm{magnitude} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{electric}\:\mathrm{field}. \\ $$

Question Number 8817    Answers: 0   Comments: 2

If I_1 =∫_( 0) ^(3π) f (cos^2 x)dx and I_2 =∫_( 0) ^π f (cos^2 x)dx then

$$\mathrm{If}\:{I}_{\mathrm{1}} =\underset{\:\mathrm{0}} {\overset{\mathrm{3}\pi} {\int}}\:{f}\:\left(\mathrm{cos}^{\mathrm{2}} {x}\right){dx}\:\mathrm{and}\:\:{I}_{\mathrm{2}} =\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:{f}\:\left(\mathrm{cos}^{\mathrm{2}} {x}\right){dx} \\ $$$$\mathrm{then} \\ $$

Question Number 8816    Answers: 0   Comments: 0

how can we solve y′′f(x)+y′f_2 (x)=0 y=?

$${how}\:{can}\:{we}\:{solve} \\ $$$${y}''{f}\left({x}\right)+{y}'{f}_{\mathrm{2}} \left({x}\right)=\mathrm{0} \\ $$$${y}=? \\ $$

Question Number 8811    Answers: 0   Comments: 0

Question Number 8808    Answers: 0   Comments: 2

∫_((π/(12)) ) ^(π/4) cos^2 x dx

$$\int_{\frac{\pi}{\mathrm{12}}\:} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{cos}^{\mathrm{2}} \mathrm{x}\:\:\mathrm{dx} \\ $$

Question Number 8807    Answers: 1   Comments: 0

∫_2 ^π (sec^2 x − tan^2 x) dx

$$\int_{\mathrm{2}} ^{\pi} \left(\mathrm{sec}^{\mathrm{2}} \mathrm{x}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 8806    Answers: 0   Comments: 2

∫_(π/4) ^π cos2x dx

$$\int_{\frac{\pi}{\mathrm{4}}} ^{\pi} \mathrm{cos2x}\:\mathrm{dx} \\ $$

Question Number 8803    Answers: 1   Comments: 0

The probability that a leap year selected at random contains either 53 Sundays or 53 Mondays, is

$$\mathrm{The}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{a}\:\mathrm{leap}\:\mathrm{year}\:\mathrm{selected} \\ $$$$\mathrm{at}\:\mathrm{random}\:\mathrm{contains}\:\mathrm{either}\:\mathrm{53}\:\mathrm{Sundays}\:\mathrm{or} \\ $$$$\mathrm{53}\:\mathrm{Mondays},\:\mathrm{is} \\ $$

Question Number 8801    Answers: 1   Comments: 0

tent. persamaan garis singung pada lingkaran a. x^2 +y^2 +4x−6y−7=0 dititik yg berabsis 2. b. ( x+2 )^2 (y−3)^2 =16 tegak lurus garis x−2y+4=0.

$$\mathrm{tent}.\:\mathrm{persamaan}\:\mathrm{garis}\:\mathrm{singung}\:\mathrm{pada}\:\mathrm{lingkaran} \\ $$$$\mathrm{a}.\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{4x}−\mathrm{6y}−\mathrm{7}=\mathrm{0}\:\mathrm{dititik}\:\mathrm{yg}\:\mathrm{berabsis}\:\mathrm{2}. \\ $$$$\mathrm{b}.\:\left(\:\mathrm{x}+\mathrm{2}\:\right)^{\mathrm{2}} \:\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} \:=\mathrm{16}\:\mathrm{tegak}\:\mathrm{lurus}\:\mathrm{garis}\:\mathrm{x}−\mathrm{2y}+\mathrm{4}=\mathrm{0}. \\ $$

Question Number 8798    Answers: 0   Comments: 2

please solve ∫_0 ^∞ f(x)dx=g(x)

$${please}\:{solve} \\ $$$$\int_{\mathrm{0}} ^{\infty} {f}\left({x}\right){dx}={g}\left({x}\right) \\ $$

Question Number 8794    Answers: 0   Comments: 1

f(x)=×^(4/3) −2×^(1/3)

$${f}\left({x}\right)=×^{\frac{\mathrm{4}}{\mathrm{3}}} −\mathrm{2}×^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$

Question Number 8789    Answers: 0   Comments: 2

Find the general solution of the equation (dy/dx) = ((2xy + y^2 )/(x^2 + 2xy))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{2xy}\:+\:\mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2xy}} \\ $$

Question Number 8788    Answers: 0   Comments: 1

Solve for α U(z)=U_b +((2A)/(n+1))(ρ×g×α)^n [H−i(H−Z)^(n+1) ]

$${Solve}\:{for}\:\alpha \\ $$$$ \\ $$$${U}\left({z}\right)={U}_{{b}} +\frac{\mathrm{2}{A}}{{n}+\mathrm{1}}\left(\rho×{g}×\alpha\right)^{{n}} \left[{H}−{i}\left({H}−{Z}\right)^{{n}+\mathrm{1}} \right] \\ $$

Question Number 8785    Answers: 0   Comments: 3

Question Number 8783    Answers: 1   Comments: 0

evaluate ∫4^x dx

$${evaluate}\:\int\mathrm{4}^{{x}} {dx} \\ $$

Question Number 8782    Answers: 1   Comments: 0

evaluate; ∫((sin^(−1) x)/(√(1−x^2 )))dx

$${evaluate};\:\int\frac{\mathrm{sin}^{−\mathrm{1}} {x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 8781    Answers: 0   Comments: 0

Father reduced the quantity of food bought for the family by ((25)/2)% . When he found that the cost of living has increased by 15%. What is the fraction increase in the family′s food bill now ?

$$\mathrm{Father}\:\mathrm{reduced}\:\mathrm{the}\:\mathrm{quantity}\:\mathrm{of}\:\mathrm{food}\:\mathrm{bought}\:\mathrm{for} \\ $$$$\mathrm{the}\:\mathrm{family}\:\mathrm{by}\:\frac{\mathrm{25}}{\mathrm{2}}\%\:.\:\mathrm{When}\:\mathrm{he}\:\mathrm{found}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{cost}\:\mathrm{of}\:\mathrm{living}\:\mathrm{has}\:\mathrm{increased}\:\mathrm{by}\:\mathrm{15\%}.\:\mathrm{What} \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{fraction}\:\mathrm{increase}\:\mathrm{in}\:\mathrm{the}\:\mathrm{family}'\mathrm{s}\:\mathrm{food} \\ $$$$\mathrm{bill}\:\mathrm{now}\:? \\ $$

Question Number 8762    Answers: 1   Comments: 0

∫x^2 (2x + 1)^(1/2) dx

$$\int\mathrm{x}^{\mathrm{2}} \left(\mathrm{2x}\:+\:\mathrm{1}\right)^{\mathrm{1}/\mathrm{2}} \:\mathrm{dx} \\ $$

Question Number 8756    Answers: 0   Comments: 0

show that every sphere through the circle x^2 +y^2 −2ax+r^2 =0,z=0 ,z=0 cuts orthogonally every sphere through the circle x^2 +z^2 =r^2 , y=o .

$${show}\:{that}\:{every}\:{sphere}\:{through}\:{the}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}+{r}^{\mathrm{2}} =\mathrm{0},{z}=\mathrm{0} \\ $$$$,{z}=\mathrm{0}\:\:\:\:\:\:\:{cuts}\:{orthogonally}\:{every}\:{sphere}\:{through}\:{the}\:{circle}\: \\ $$$${x}^{\mathrm{2}} +{z}^{\mathrm{2}} ={r}^{\mathrm{2}} ,\:{y}={o}\:. \\ $$

Question Number 8755    Answers: 0   Comments: 0

find the equation of the sphere which touches the plane 3x+2y−z+2=0 at the point (1,−2,1) and cuts orthogonally the the sphere x^2 +y^2 +z^2 −4x+6y+4=0

$${find}\:{the}\:{equation}\:{of}\:{the}\:{sphere}\:{which}\:{touches}\:{the}\:{plane}\: \\ $$$$\mathrm{3}{x}+\mathrm{2}{y}−{z}+\mathrm{2}=\mathrm{0}\:{at}\:{the}\:{point}\:\left(\mathrm{1},−\mathrm{2},\mathrm{1}\right)\:{and}\:{cuts}\:{orthogonally}\:{the} \\ $$$${the}\:{sphere}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{6}{y}+\mathrm{4}=\mathrm{0} \\ $$

Question Number 8750    Answers: 1   Comments: 2

wx + 2z = 3 ............ (i) 3x − y + 4z = 4 ........... (ii) 6x + 2wy = − 4 ........... (iii) find w, x, y, z

$$\mathrm{wx}\:+\:\mathrm{2z}\:=\:\mathrm{3}\:\:\:............\:\left(\mathrm{i}\right) \\ $$$$\mathrm{3x}\:−\:\mathrm{y}\:+\:\mathrm{4z}\:=\:\mathrm{4}\:\:\:...........\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{6x}\:+\:\mathrm{2wy}\:=\:−\:\mathrm{4}\:\:\:...........\:\left(\mathrm{iii}\right) \\ $$$$ \\ $$$$\mathrm{find}\:\:\mathrm{w},\:\mathrm{x},\:\mathrm{y},\:\mathrm{z} \\ $$

Question Number 8764    Answers: 0   Comments: 2

(a) Find the sum given by S_n = (1/(1.3)) + (1/(3.5)) + (1/(5.7)) + ... + (1/((2n − 1)(2n + 1))) (b) find the limit of S_n as n → ∞

$$\left(\mathrm{a}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{given}\:\mathrm{by} \\ $$$$\mathrm{S}_{\mathrm{n}} \:=\:\frac{\mathrm{1}}{\mathrm{1}.\mathrm{3}}\:+\:\frac{\mathrm{1}}{\mathrm{3}.\mathrm{5}}\:+\:\frac{\mathrm{1}}{\mathrm{5}.\mathrm{7}}\:+\:...\:+\:\frac{\mathrm{1}}{\left(\mathrm{2n}\:−\:\mathrm{1}\right)\left(\mathrm{2n}\:+\:\mathrm{1}\right)} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{of}\:\:\:\mathrm{S}_{\mathrm{n}} \:\:\mathrm{as}\:\:\mathrm{n}\:\rightarrow\:\infty \\ $$

Question Number 8763    Answers: 1   Comments: 2

∫x(√(3x + 1)) dx

$$\int\mathrm{x}\sqrt{\mathrm{3x}\:+\:\mathrm{1}}\:\:\mathrm{dx} \\ $$

  Pg 1965      Pg 1966      Pg 1967      Pg 1968      Pg 1969      Pg 1970      Pg 1971      Pg 1972      Pg 1973      Pg 1974   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com