Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1964
Question Number 11005 Answers: 1 Comments: 0
$${prove}\:{that}\:\frac{\mathrm{9}}{\mathrm{4}}\:<\:\left(\mathrm{log}\:_{\mathrm{2}} \mathrm{3}\right)^{\mathrm{2}} \:<\:\frac{\mathrm{25}}{\mathrm{9}}\:\:. \\ $$
Question Number 10995 Answers: 1 Comments: 1
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{3}>\left(\mathrm{log}_{\mathrm{2}} \mathrm{3}\right)^{\mathrm{2}} >\mathrm{2}. \\ $$
Question Number 10994 Answers: 0 Comments: 3
$$\Gamma\left(\mathrm{2407}\right)\:=\:\left(\mathrm{2406}\right)!\:=\:\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {x}^{\mathrm{2406}} \:\mathrm{dx} \\ $$$$\mathrm{How}\:\mathrm{evaluate}\:\int{e}^{−{x}} {x}^{\mathrm{2406}} \:\mathrm{dx}\:??? \\ $$
Question Number 10989 Answers: 1 Comments: 0
$${find}\:{the}\:{image}\:{of}\:{the}\:{point}\left(\mathrm{5},\mathrm{2}\right)\: \\ $$$${under}\:{a}\:{rotation}\:{of}\:\mathrm{90}°\:{clockwise} \\ $$
Question Number 10987 Answers: 1 Comments: 0
$$\mathrm{If}\: \\ $$$$\bullet\:{f}\left(\mathrm{2}{x}\:+\:\mathrm{1}\right)\:+\:{g}\left(\mathrm{3}\:−\:{x}\right)\:=\:{x} \\ $$$$\bullet\:{f}\left(\frac{\mathrm{3}{x}\:+\:\mathrm{5}}{\:{x}\:+\:\mathrm{1}}\right)\:+\:\mathrm{2}{g}\left(\frac{\mathrm{2}{x}\:+\:\mathrm{1}}{{x}\:+\:\mathrm{1}}\right)\:=\:\frac{{x}}{{x}\:+\:\mathrm{1}} \\ $$$$\mathrm{for}\:\mathrm{every}\:{x}\:\in\:\mathbb{R},\:\:{x}\:\neq\:−\mathrm{1} \\ $$$$\mathrm{Find}\:{f}\left({x}\right)\:!! \\ $$
Question Number 10981 Answers: 1 Comments: 1
Question Number 10970 Answers: 1 Comments: 0
$${x}^{{x}^{{x}^{\iddots^{\mathrm{2}} } } } \:=\:\mathrm{2} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}\:? \\ $$
Question Number 10973 Answers: 3 Comments: 1
$$\mid\mid{x}\mid+\mathrm{2x}\mid\leqslant\mathrm{3},\:\mathrm{interval}\:\mathrm{x}=...? \\ $$$$\mathrm{A}.−\mathrm{3}\leqslant{x}\leqslant\mathrm{3} \\ $$$$\mathrm{B}.\:{x}\geqslant\mathrm{0} \\ $$$$\mathrm{C}.\:{x}\leqslant\mathrm{0} \\ $$$$\mathrm{D}.\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{1} \\ $$$$\mathrm{E}.\:{x}\leqslant\mathrm{2} \\ $$
Question Number 10956 Answers: 0 Comments: 4
$${y}\:=\:\frac{{x}\:−\:\mathrm{2}}{\mathrm{2}\left({x}\:−\:\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}} } \\ $$$$\mathrm{Let}\:\:{p}\:=\:{x}\:−\:\mathrm{1} \\ $$$$\Rightarrow\:{y}\:=\:\frac{{p}\:−\:\mathrm{1}}{\mathrm{2}{p}^{\mathrm{3}/\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{Is}\:\mathrm{it}\:\mathrm{true}\:\mathrm{that}\:\:\:\frac{{dy}}{{dx}}\:\:\:=\:\:\frac{{dy}}{{dp}}\:\:? \\ $$
Question Number 10955 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\frac{\mathrm{cos}\:\theta}{\mathrm{1}\:−\:\mathrm{sin}\:\theta}\:=\:{a}\:\:\:\:\:\:\:\:\:\:\:{a}\:\neq\:\frac{\pi}{\mathrm{2}}\:+\:\mathrm{2}{k}\pi \\ $$$$\mathrm{So},\:\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\:=\:... \\ $$$$\left(\mathrm{A}\right)\:\:\frac{{a}}{{a}\:+\:\mathrm{1}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\:\frac{{a}\:+\:\mathrm{1}}{{a}\:−\:\mathrm{1}} \\ $$$$\left(\mathrm{B}\right)\:\:\frac{\mathrm{1}}{{a}\:+\:\mathrm{1}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{E}\right)\:\:\frac{{a}}{{a}\:−\:\mathrm{1}} \\ $$$$\left(\mathrm{C}\right)\:\:\frac{{a}\:−\:\mathrm{1}}{{a}\:+\:\mathrm{1}} \\ $$
Question Number 10948 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{cos}^{−\mathrm{1}} \frac{{x}}{{a}}+\mathrm{cos}^{−\mathrm{1}} \frac{{y}}{{b}}=\alpha \\ $$$${prove}\: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{2}{xy}}{{ab}}\mathrm{cos}\:\alpha+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{sin}^{\mathrm{2}} \alpha \\ $$
Question Number 10947 Answers: 0 Comments: 0
$$\mathrm{In}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{prove}\:\mathrm{the}\:\mathrm{following} \\ $$$$\frac{\left({a}+{b}+{c}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }\:=\:\frac{\mathrm{cot}\:\frac{{A}}{\mathrm{2}}+\mathrm{cot}\:\frac{{B}}{\mathrm{2}}+\mathrm{cot}\:\frac{{C}}{\mathrm{2}}}{\mathrm{cot}\:{A}+\mathrm{cot}\:{B}+\mathrm{cot}\:{C}} \\ $$
Question Number 10944 Answers: 1 Comments: 2
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{ordered}\:\mathrm{pairs}\:\left(\mathrm{a},\mathrm{b}\right)\:\mathrm{so}\:\mathrm{that}\:\frac{\mathrm{ab}}{\mathrm{a}+\mathrm{b}}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer}. \\ $$$$\left(\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{are}\:\mathrm{integers}\right). \\ $$
Question Number 10933 Answers: 2 Comments: 0
$$\mathrm{If}\:\:{p}\:\:\mathrm{and}\:\:{q}\:\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{for}\:\mathrm{the} \\ $$$${x}^{\mathrm{2}} \:−\:\left({a}\:+\:\mathrm{1}\right){x}\:+\:\left(−{a}\:−\:\frac{\mathrm{5}}{\mathrm{2}}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{The}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\:{p}^{\mathrm{2}\:} +\:{q}^{\mathrm{2}} \:\:\mathrm{is}\:... \\ $$
Question Number 10917 Answers: 1 Comments: 0
$${hence}\:{show}\:{that} \\ $$$$\left.{i}\right)\frac{\mathrm{1}−{cos}\mathrm{4}\theta}{{sin}\mathrm{4}\theta}={tan}\mathrm{2}\theta \\ $$$$\left.{ii}\right)\frac{\mathrm{1}−{cos}\mathrm{6}\theta}{{sin}\mathrm{6}\theta}={tan}\mathrm{3}\theta \\ $$
Question Number 10916 Answers: 1 Comments: 0
$${find}\:{all}\:{possible}\:{values}\:{of}\:{cos}\theta\:{such} \\ $$$${that}\:\mathrm{2}{cot}^{\mathrm{2}} \theta+{cos}\theta=\mathrm{0} \\ $$
Question Number 10914 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{200}\:\mathrm{N}\:\mathrm{force}\:\mathrm{inclined}\:\mathrm{at}\:\mathrm{40}°\:\mathrm{above}\:\mathrm{the}\:\mathrm{horizontal}\:,\:\mathrm{drag}\:\mathrm{load}\:\mathrm{along}\:\mathrm{the} \\ $$$$\mathrm{horizontal}\:\mathrm{floor}.\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{the}\:\mathrm{kinetic}\:\mathrm{friction}\:\mathrm{between}\:\mathrm{the}\:\mathrm{load}\:\mathrm{is}\:\mathrm{0}.\mathrm{30}\: \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{load}\:\mathrm{experiences}\:\mathrm{an}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{1}.\mathrm{2}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} , \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{the}\:\mathrm{load}. \\ $$
Question Number 10913 Answers: 1 Comments: 0
$$\int_{\:\mathrm{1}} ^{\:\mathrm{3}} \:\mathrm{x}^{\mathrm{x}} \:\:\mathrm{dx} \\ $$
Question Number 10912 Answers: 0 Comments: 1
$$\mathrm{5}^{\mathrm{log}_{\mathrm{2}} \mathrm{3}} \:\mathrm{is}\:\mathrm{transcendental}? \\ $$$$\mathrm{General}: \\ $$$$\mathrm{Let}\:{a},{b}\:\mathrm{and}\:{c}\:\mathrm{algebraic}\:\mathrm{and}\:\mathrm{log}_{{b}} {c}\: \\ $$$$\mathrm{transcendental}.\:\mathrm{If}\:{a}^{\mathrm{log}_{{b}} {c}} \:\mathrm{is}\:\mathrm{algebraic},\:\mathrm{so} \\ $$$${b}\:=\:{a}^{{q}} ,\:\mathrm{with}\:{q}\:\mathrm{rational}? \\ $$
Question Number 10908 Answers: 1 Comments: 0
Question Number 10907 Answers: 1 Comments: 0
$$\mathrm{express}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction} \\ $$$$\frac{\mathrm{3x}+\mathrm{2}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)} \\ $$
Question Number 10906 Answers: 1 Comments: 1
$${Q}\:.\:\:{smallest}\:{positive}\:{x}\:{satisfying}\:{the}\:{equation} \\ $$$${sin}\mathrm{3}{x}+\mathrm{3}{cosx}=\mathrm{2}{sin}\mathrm{2}{x}\left({sinx}+{cosx}\right)\:,\:{is} \\ $$
Question Number 10903 Answers: 0 Comments: 0
Question Number 10902 Answers: 2 Comments: 0
$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx}=? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 10900 Answers: 0 Comments: 1
Question Number 10899 Answers: 1 Comments: 0
Pg 1959 Pg 1960 Pg 1961 Pg 1962 Pg 1963 Pg 1964 Pg 1965 Pg 1966 Pg 1967 Pg 1968
Terms of Service
Privacy Policy
Contact: info@tinkutara.com