Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1964

Question Number 11284    Answers: 0   Comments: 0

a+2b+3c....(1) −3a−4b+2c....(2) 2a−b−c....(3) a=...?? b=...?? c=...??

$${a}+\mathrm{2}{b}+\mathrm{3}{c}....\left(\mathrm{1}\right) \\ $$$$−\mathrm{3}{a}−\mathrm{4}{b}+\mathrm{2}{c}....\left(\mathrm{2}\right) \\ $$$$\mathrm{2}{a}−{b}−{c}....\left(\mathrm{3}\right) \\ $$$${a}=...?? \\ $$$${b}=...?? \\ $$$${c}=...?? \\ $$

Question Number 11283    Answers: 0   Comments: 0

2a+b+4c....(1) a+3c....(2) −3a−4b−c....(4) a=..?? b=..?? c=..??

$$\mathrm{2}{a}+{b}+\mathrm{4}{c}....\left(\mathrm{1}\right) \\ $$$${a}+\mathrm{3}{c}....\left(\mathrm{2}\right) \\ $$$$−\mathrm{3}{a}−\mathrm{4}{b}−{c}....\left(\mathrm{4}\right) \\ $$$${a}=..?? \\ $$$${b}=..?? \\ $$$${c}=..?? \\ $$

Question Number 11278    Answers: 0   Comments: 2

please what is the meaning of I go go the go

$${please} \\ $$$${what}\:{is}\:{the}\:{meaning}\:{of} \\ $$$${I}\:{go}\:{go}\:{the}\:{go} \\ $$

Question Number 11274    Answers: 2   Comments: 0

((sin20+(√3)×cos20)/(cos10))=?

$$\frac{{sin}\mathrm{20}+\sqrt{\mathrm{3}}×{cos}\mathrm{20}}{{cos}\mathrm{10}}=? \\ $$

Question Number 11272    Answers: 1   Comments: 0

Question Number 11268    Answers: 1   Comments: 0

Solve x, y and z in terms of p, q and r yz = py + qz ........ (i) zx = qz + rx ....... (ii) xy = rx + py ....... (iii)

$$\mathrm{Solve}\:\mathrm{x},\:\mathrm{y}\:\mathrm{and}\:\mathrm{z}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{p},\:\mathrm{q}\:\mathrm{and}\:\mathrm{r} \\ $$$$\mathrm{yz}\:=\:\mathrm{py}\:+\:\mathrm{qz}\:\:\:\:\:........\:\left(\mathrm{i}\right) \\ $$$$\mathrm{zx}\:=\:\mathrm{qz}\:+\:\mathrm{rx}\:\:\:\:\:\:.......\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{xy}\:=\:\mathrm{rx}\:+\:\mathrm{py}\:\:\:\:\:.......\:\left(\mathrm{iii}\right) \\ $$

Question Number 11267    Answers: 1   Comments: 0

Sum of all 2 digit numbers which when divided by 4 yield unity as remainder is

$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{2}\:\mathrm{digit}\:\mathrm{numbers}\:\mathrm{which}\:\mathrm{when} \\ $$$$\mathrm{divided}\:\mathrm{by}\:\mathrm{4}\:\mathrm{yield}\:\mathrm{unity}\:\mathrm{as}\:\mathrm{remainder}\:\mathrm{is} \\ $$

Question Number 11266    Answers: 0   Comments: 1

Question Number 11263    Answers: 1   Comments: 0

Solve for x in the equation . 625^(x − 5) = 200(√x^3 )

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{equation}\:. \\ $$$$\mathrm{625}^{\mathrm{x}\:−\:\mathrm{5}} \:=\:\mathrm{200}\sqrt{\mathrm{x}^{\mathrm{3}} } \\ $$

Question Number 11262    Answers: 1   Comments: 0

The k^(th) term of a sequence is K, the m^(th) term of M and n^(th) term is N. Show that if it is a geometic, (m−n) log K + (n−k) log M + (k−m) log N = 0.

$$\mathrm{The}\:\mathrm{k}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{of}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{is}\:\mathrm{K},\:\mathrm{the}\:\mathrm{m}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{of}\:\:\mathrm{M}\:\mathrm{and}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{is}\:\mathrm{N}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{it}\:\mathrm{is}\:\mathrm{a}\:\mathrm{geometic}, \\ $$$$\left(\mathrm{m}−\mathrm{n}\right)\:\mathrm{log}\:\mathrm{K}\:+\:\left(\mathrm{n}−\mathrm{k}\right)\:\mathrm{log}\:\mathrm{M}\:+\:\left(\mathrm{k}−\mathrm{m}\right)\:\mathrm{log}\:\mathrm{N}\:=\:\mathrm{0}.\: \\ $$

Question Number 11261    Answers: 0   Comments: 0

The n^(th) term of a progression is np+q and the sum of n terms is denoted by S_n . Given that the 6^(th) term is 4 times 2^(nd) term and that S_3 =12, find the value of p and q. Express S_n in terms of n.

$$\mathrm{The}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{of}\:\mathrm{a}\:\mathrm{progression}\:\mathrm{is}\:\mathrm{np}+\mathrm{q}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{n}\:\mathrm{terms}\:\mathrm{is}\:\mathrm{denoted}\:\mathrm{by}\:\mathrm{S}_{\mathrm{n}} . \\ $$$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{6}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{is}\:\mathrm{4}\:\mathrm{times}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{term}\:\mathrm{and}\:\mathrm{that}\:\mathrm{S}_{\mathrm{3}} \:=\mathrm{12},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}. \\ $$$$\mathrm{Express}\:\mathrm{S}_{\mathrm{n}} \:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{n}. \\ $$

Question Number 11258    Answers: 1   Comments: 0

cos65=m ⇒ sin40=?

$${cos}\mathrm{65}={m}\:\:\Rightarrow\:{sin}\mathrm{40}=? \\ $$

Question Number 11256    Answers: 1   Comments: 0

In the arithmetic progression, u_(1 ) =1.Given that u_(7 ) , u_(11) and u_(17) are in geometric progression, find the value of each.

$$\mathrm{In}\:\mathrm{the}\:\mathrm{arithmetic}\:\mathrm{progression},\:\mathrm{u}_{\mathrm{1}\:} =\mathrm{1}.\mathrm{Given}\:\mathrm{that}\:\mathrm{u}_{\mathrm{7}\:} ,\:\mathrm{u}_{\mathrm{11}} \mathrm{and}\:\mathrm{u}_{\mathrm{17}} \:\mathrm{are}\:\mathrm{in}\:\mathrm{geometric}\: \\ $$$$\mathrm{progression},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{each}. \\ $$

Question Number 11255    Answers: 1   Comments: 0

If the sum of the first 4 terms of an A.P., is p, the sum of the first 8 terms is q and the sum of the first 12 terms is r, express (3p+r) in terms of q.

$$\mathrm{If}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{4}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{A}.\mathrm{P}.,\:\mathrm{is}\:\mathrm{p},\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{8}\:\mathrm{terms}\:\mathrm{is}\:\mathrm{q}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{12}\:\mathrm{terms}\:\mathrm{is}\:\mathrm{r},\:\mathrm{express}\:\left(\mathrm{3p}+\mathrm{r}\right)\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{q}. \\ $$

Question Number 11249    Answers: 2   Comments: 0

x∈(0,2π) 2cos^2 x +sinx−1=0 ⇒Σx=?

$${x}\in\left(\mathrm{0},\mathrm{2}\pi\right) \\ $$$$\mathrm{2cos}^{\mathrm{2}} {x}\:+{sinx}−\mathrm{1}=\mathrm{0}\:\Rightarrow\Sigma{x}=?\: \\ $$

Question Number 11246    Answers: 2   Comments: 0

The sum of the first n terms of the series (1/2) + (3/4) + (7/8) + ((15)/(16)) + ... is equal to

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:{n}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:+\:\frac{\mathrm{7}}{\mathrm{8}}\:+\:\frac{\mathrm{15}}{\mathrm{16}}\:+\:...\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 11245    Answers: 1   Comments: 0

cos10×cos20×cos40=?

$${cos}\mathrm{10}×{cos}\mathrm{20}×{cos}\mathrm{40}=? \\ $$

Question Number 11228    Answers: 1   Comments: 0

Question Number 11238    Answers: 1   Comments: 0

f(1 − 2x) = g(x + 3) f^(−1) (x) = ? (A) 7 − 2g^(−1) (x) (B) 2g^(−1) (x) + 7 (C) 2g^(−1) (x) − 5 (D) 5 − 2g^(−1) (x)

$${f}\left(\mathrm{1}\:−\:\mathrm{2}{x}\right)\:=\:{g}\left({x}\:+\:\mathrm{3}\right) \\ $$$${f}^{−\mathrm{1}} \left({x}\right)\:=\:? \\ $$$$ \\ $$$$\left(\mathrm{A}\right)\:\mathrm{7}\:−\:\mathrm{2}{g}^{−\mathrm{1}} \left({x}\right) \\ $$$$\left(\mathrm{B}\right)\:\mathrm{2}{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{7} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{2}{g}^{−\mathrm{1}} \left({x}\right)\:−\:\mathrm{5} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{5}\:−\:\mathrm{2}{g}^{−\mathrm{1}} \left({x}\right) \\ $$

Question Number 11221    Answers: 0   Comments: 4

Question Number 11146    Answers: 2   Comments: 0

∫sin^3 (1+2x)dx=....???

$$\int{sin}^{\mathrm{3}} \left(\mathrm{1}+\mathrm{2}{x}\right){dx}=....??? \\ $$

Question Number 11139    Answers: 1   Comments: 1

Question Number 11218    Answers: 0   Comments: 6

at tinkutara there are major bugs with combining brackets. e.g. typing: ∣A⟩=(∣B^∗ ⟩)^T writing ∣⟩(∣A)^∗ then changing it to ∣⟩(∣A)^∗ ⟩ causes odd size glitches. furthermore, while typing my previous post, a huge glitch occured where tapping the screen (moving the cursor?) caused the text to get really really big

$$\mathrm{at}\:\mathrm{tinkutara} \\ $$$$\: \\ $$$$\mathrm{there}\:\mathrm{are}\:\mathrm{major}\:\mathrm{bugs}\:\mathrm{with}\:\mathrm{combining} \\ $$$$\mathrm{brackets}. \\ $$$$\: \\ $$$$\mathrm{e}.\mathrm{g}.\:\mathrm{typing}: \\ $$$$\mid{A}\rangle=\left(\mid{B}^{\ast} \rangle\right)^{\mathrm{T}} \\ $$$$\: \\ $$$$\mathrm{writing}\:\mid\rangle\left(\mid{A}\right)^{\ast} \\ $$$$\mathrm{then}\:\mathrm{changing}\:\mathrm{it}\:\mathrm{to}\:\mid\rangle\left(\mid{A}\right)^{\ast} \rangle \\ $$$$\mathrm{causes}\:\mathrm{odd}\:\mathrm{size}\:\mathrm{glitches}. \\ $$$$ \\ $$$$\mathrm{furthermore},\:\mathrm{while}\:\mathrm{typing}\:\mathrm{my}\:\mathrm{previous} \\ $$$$\mathrm{post},\:\mathrm{a}\:\mathrm{huge}\:\mathrm{glitch}\:\mathrm{occured}\:\mathrm{where}\:\mathrm{tapping} \\ $$$$\mathrm{the}\:\mathrm{screen}\:\left(\mathrm{moving}\:\mathrm{the}\:\mathrm{cursor}?\right)\:\mathrm{caused} \\ $$$$\mathrm{the}\:\mathrm{text}\:\mathrm{to}\:\mathrm{get}\:\mathrm{really}\:\mathrm{really}\:\mathrm{big} \\ $$

Question Number 11145    Answers: 0   Comments: 1

let set S=R let nS={R, R, ..., R_(n sets of R) } n∈Z^+ is ∣S∣<∣nS∣? what if n=∣S∣?

$$\mathrm{let}\:\mathrm{set}\:{S}=\mathbb{R} \\ $$$$\mathrm{let}\:{nS}=\left\{\underset{{n}\:\mathrm{sets}\:\mathrm{of}\:\mathbb{R}} {\mathbb{R},\:\mathbb{R},\:...,\:\mathbb{R}}\right\}\:\:\:\:\:\:\:\:\:{n}\in\mathbb{Z}^{+} \\ $$$$\mathrm{is}\:\mid{S}\mid<\mid{nS}\mid? \\ $$$$\: \\ $$$$\mathrm{what}\:\mathrm{if}\:{n}=\mid{S}\mid? \\ $$

Question Number 11167    Answers: 2   Comments: 0

f(x)=ln∣x+(√((1+x^2 )))∣ is even or odd? give reasion.

$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{ln}\mid\mathrm{x}+\sqrt{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}\mid\:\mathrm{is}\:\mathrm{even}\:\mathrm{or}\:\mathrm{odd}?\: \\ $$$$\mathrm{give}\:\mathrm{reasion}. \\ $$

Question Number 11131    Answers: 0   Comments: 3

Proof with induction, for every n ∈ N Σ_(i = 1) ^n 2^(i + 2) = 2^(n + 3) − 8

$$\mathrm{Proof}\:\mathrm{with}\:\mathrm{induction},\:\mathrm{for}\:\mathrm{every}\:{n}\:\in\:\mathbb{N} \\ $$$$\underset{{i}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\:\mathrm{2}^{{i}\:+\:\mathrm{2}} \:=\:\mathrm{2}^{{n}\:+\:\mathrm{3}} \:−\:\mathrm{8} \\ $$

  Pg 1959      Pg 1960      Pg 1961      Pg 1962      Pg 1963      Pg 1964      Pg 1965      Pg 1966      Pg 1967      Pg 1968   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com