Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1964

Question Number 11436    Answers: 0   Comments: 1

∫_0 ^(𝛑/4) sinxΓ—cos^7 x dx. solves...

$$ \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\boldsymbol{\pi}}{\mathrm{4}}} {\int}}\boldsymbol{\mathrm{sinx}}Γ—\boldsymbol{\mathrm{cos}}^{\mathrm{7}} \boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{dx}}. \\ $$$$\boldsymbol{\mathrm{solves}}... \\ $$

Question Number 11433    Answers: 1   Comments: 5

for r=(1/ΞΈ), show that the arc length between ΞΈ=3Ο€^(βˆ’1) and ΞΈ=nΟ€^(βˆ’1) (where n>3) is aproxiately equal to the length of the line y=3Ο€^(βˆ’1) between the same bounds. Or show otherwise.

$$\mathrm{for}\:{r}=\frac{\mathrm{1}}{\theta},\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{length}\:\mathrm{between} \\ $$$$\theta=\mathrm{3}\pi^{βˆ’\mathrm{1}} \:\:\mathrm{and}\:\theta={n}\pi^{βˆ’\mathrm{1}} \:\:\:\left(\mathrm{where}\:\:{n}>\mathrm{3}\right)\:\:\mathrm{is}\:\mathrm{aproxiately} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:{y}=\mathrm{3}\pi^{βˆ’\mathrm{1}} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{same}\:\mathrm{bounds}.\:\mathrm{Or}\:\mathrm{show}\:\mathrm{otherwise}. \\ $$$$ \\ $$

Question Number 11429    Answers: 1   Comments: 0

∫_0 ^3 ((2x+3)/(2x+1))dx=𝛂+ln7. 𝛂=? please......

$$\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\frac{\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{3}}{\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{1}}\boldsymbol{\mathrm{dx}}=\boldsymbol{\alpha}+\boldsymbol{\mathrm{ln}}\mathrm{7}. \\ $$$$\boldsymbol{\alpha}=? \\ $$$$\boldsymbol{\mathrm{please}}...... \\ $$

Question Number 11425    Answers: 1   Comments: 0

Question Number 11423    Answers: 0   Comments: 0

please solve. ax^4 + bx^3 + cx^2 + dx + e = 0

$$\mathrm{please}\:\mathrm{solve}.\: \\ $$$$\mathrm{ax}^{\mathrm{4}} \:+\:\mathrm{bx}^{\mathrm{3}} \:+\:\mathrm{cx}^{\mathrm{2}} \:+\:\mathrm{dx}\:+\:\mathrm{e}\:=\:\mathrm{0} \\ $$

Question Number 11420    Answers: 2   Comments: 1

please ∫_0 ^∞ ((xlogx)/((1+x^2 )^2 ))dx=

$${please} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{xlogx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}= \\ $$

Question Number 11419    Answers: 0   Comments: 1

If A = {whole numbers} and B={natural numbers}, then Aβ–³B=___.

$$\mathrm{If}\:\mathrm{A}\:=\:\left\{\mathrm{whole}\:\mathrm{numbers}\right\}\:\mathrm{and}\: \\ $$$$\mathrm{B}=\left\{\mathrm{natural}\:\mathrm{numbers}\right\},\:\mathrm{then}\:\mathrm{A}\bigtriangleup\mathrm{B}=\_\_\_. \\ $$

Question Number 11417    Answers: 0   Comments: 0

A = log (5x + 1)(3x + 5) B = (1/(log (5x+ 1)(x βˆ’ 1))) If A + B β‰₯ 1, x must be ...

$${A}\:=\:\mathrm{log}\:\left(\mathrm{5}{x}\:+\:\mathrm{1}\right)\left(\mathrm{3}{x}\:+\:\mathrm{5}\right) \\ $$$${B}\:=\:\frac{\mathrm{1}}{\mathrm{log}\:\left(\mathrm{5}{x}+\:\mathrm{1}\right)\left({x}\:βˆ’\:\mathrm{1}\right)} \\ $$$$\mathrm{If}\:{A}\:+\:{B}\:\geqslant\:\mathrm{1},\:{x}\:\mathrm{must}\:\mathrm{be}\:... \\ $$

Question Number 11416    Answers: 1   Comments: 0

Question Number 11413    Answers: 1   Comments: 0

Find the length of the arc of the hyperbolic spiral rΞΈ=a lying between r=a and r=2a.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{of}\:\mathrm{the}\:\mathrm{hyperbolic} \\ $$$$\mathrm{spiral}\:\:\mathrm{r}\theta=\mathrm{a}\:\:\mathrm{lying}\:\mathrm{between}\:\:\mathrm{r}=\mathrm{a}\:\:\mathrm{and}\: \\ $$$$\mathrm{r}=\mathrm{2a}. \\ $$

Question Number 11408    Answers: 1   Comments: 0

Question Number 11406    Answers: 1   Comments: 0

Evaluate: ∫_( 1) ^( 3) ((x βˆ’ 1)/((x + 1)^2 )) dx

$$\mathrm{Evaluate}:\:\:\:\:\:\:\:\int_{\:\mathrm{1}} ^{\:\mathrm{3}} \:\:\frac{\mathrm{x}\:βˆ’\:\mathrm{1}}{\left(\mathrm{x}\:+\:\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx} \\ $$

Question Number 11405    Answers: 1   Comments: 0

Find the magnitude of two forces such that if they act at right angle their resultant is (√(10)) , and (√(13)) if they act at an angle of 60°.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{two}\:\mathrm{forces}\:\mathrm{such}\:\mathrm{that}\:\mathrm{if}\:\mathrm{they}\:\mathrm{act}\:\mathrm{at}\:\mathrm{right}\:\mathrm{angle}\:\mathrm{their} \\ $$$$\mathrm{resultant}\:\mathrm{is}\:\sqrt{\mathrm{10}}\:,\:\mathrm{and}\:\sqrt{\mathrm{13}}\:\mathrm{if}\:\mathrm{they}\:\mathrm{act}\:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{60}Β°.\: \\ $$

Question Number 11403    Answers: 0   Comments: 1

how can demonstred that cos(2x)βˆ’sin(2x)βˆ’1=βˆ’cos^2 x

$${how}\:{can}\:{demonstred}\:{that}\: \\ $$$${cos}\left(\mathrm{2}{x}\right)βˆ’{sin}\left(\mathrm{2}{x}\right)βˆ’\mathrm{1}=βˆ’{cos}^{\mathrm{2}} {x} \\ $$

Question Number 11399    Answers: 1   Comments: 0

The sum of the first and last term of an A.P is 51. And the sum of the progression is 255. Find the last term of the A.P.

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{and}\:\mathrm{last}\:\mathrm{term}\:\mathrm{of}\:\mathrm{an}\:\mathrm{A}.\mathrm{P}\:\mathrm{is}\:\mathrm{51}.\:\mathrm{And}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{progression}\:\mathrm{is}\:\mathrm{255}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{term}\:\mathrm{of}\:\mathrm{the}\:\mathrm{A}.\mathrm{P}. \\ $$

Question Number 11398    Answers: 0   Comments: 0

Solve for x : 625^(x βˆ’ 5) = 200(√x^3 )

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:: \\ $$$$\mathrm{625}^{\mathrm{x}\:βˆ’\:\mathrm{5}} \:=\:\mathrm{200}\sqrt{\mathrm{x}^{\mathrm{3}} } \\ $$

Question Number 11395    Answers: 0   Comments: 1

Prove that those functions below donβ€²t have limit a) lim_((x,y)β†’(0,0)) ((xy)/(x^2 + y^2 )) b) lim_((x,y)β†’(0,0)) ((xy + y^3 )/(x^2 + y^2 ))

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{those}\:\mathrm{functions}\:\mathrm{below}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{limit} \\ $$$$\left.\mathrm{a}\right)\:\underset{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}}\:\:\frac{{xy}}{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} } \\ $$$$ \\ $$$$\left.{b}\right)\:\:\underset{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}}\:\:\frac{{xy}\:+\:{y}^{\mathrm{3}} }{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} } \\ $$

Question Number 11394    Answers: 0   Comments: 0

Find equation of the hyperbolas that intersect 3x^2 βˆ’4y^2 =5xy and 3y^2 βˆ’4x^2 =2x+5.

$$\mathrm{Find}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{hyperbolas}\:\mathrm{that}\: \\ $$$$\mathrm{intersect}\:\mathrm{3x}^{\mathrm{2}} βˆ’\mathrm{4y}^{\mathrm{2}} =\mathrm{5xy}\:\mathrm{and}\: \\ $$$$\mathrm{3y}^{\mathrm{2}} βˆ’\mathrm{4x}^{\mathrm{2}} =\mathrm{2x}+\mathrm{5}. \\ $$

Question Number 11393    Answers: 0   Comments: 0

Question Number 11389    Answers: 1   Comments: 0

Given that the mean relative atomic mass of chlorine contain two isotopes of mass numbe 35 and 37. What is the percentage of composition of the isotope of mass number 37

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{mean}\:\mathrm{relative}\:\mathrm{atomic}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{chlorine}\:\mathrm{contain}\:\mathrm{two}\:\mathrm{isotopes} \\ $$$$\mathrm{of}\:\mathrm{mass}\:\mathrm{numbe}\:\mathrm{35}\:\mathrm{and}\:\mathrm{37}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{percentage}\:\mathrm{of}\:\mathrm{composition}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{isotope}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{number}\:\mathrm{37}\: \\ $$

Question Number 11384    Answers: 1   Comments: 0

Out of 5 accountants and 7 bankers, a committee consisting of 2 accountants and 3 bankers is to be formed. In how many ways can this be done if (a) Any acountant and any bankers must be included (b) One particular banker must be included (c) 2 accountant cannot be in the committee

$$\mathrm{Out}\:\mathrm{of}\:\mathrm{5}\:\mathrm{accountants}\:\mathrm{and}\:\mathrm{7}\:\mathrm{bankers},\:\mathrm{a}\:\mathrm{committee}\:\mathrm{consisting}\:\mathrm{of}\: \\ $$$$\mathrm{2}\:\mathrm{accountants}\:\mathrm{and}\:\mathrm{3}\:\mathrm{bankers}\:\mathrm{is}\:\mathrm{to}\:\mathrm{be}\:\mathrm{formed}.\:\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{this} \\ $$$$\mathrm{be}\:\mathrm{done}\:\mathrm{if} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Any}\:\mathrm{acountant}\:\mathrm{and}\:\mathrm{any}\:\mathrm{bankers}\:\mathrm{must}\:\mathrm{be}\:\mathrm{included} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{One}\:\mathrm{particular}\:\mathrm{banker}\:\mathrm{must}\:\mathrm{be}\:\mathrm{included} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{2}\:\mathrm{accountant}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{in}\:\mathrm{the}\:\mathrm{committee} \\ $$

Question Number 11383    Answers: 1   Comments: 0

There are six trains travelling between Abuja and Lagos and back. In how many ways can a man travel from abuja to Lagos by one train and return by a different train

$$\mathrm{There}\:\mathrm{are}\:\mathrm{six}\:\mathrm{trains}\:\mathrm{travelling}\:\mathrm{between}\:\mathrm{Abuja}\:\mathrm{and}\:\mathrm{Lagos}\:\mathrm{and}\:\mathrm{back}. \\ $$$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{a}\:\mathrm{man}\:\mathrm{travel}\:\mathrm{from}\:\mathrm{abuja}\:\mathrm{to}\:\mathrm{Lagos}\:\mathrm{by}\:\mathrm{one}\:\mathrm{train}\:\mathrm{and} \\ $$$$\mathrm{return}\:\mathrm{by}\:\mathrm{a}\:\mathrm{different}\:\mathrm{train} \\ $$

Question Number 11382    Answers: 0   Comments: 2

In how many ways can 24 different articles be divided into groups of 12, 8 and 4 articles respectively

$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{24}\:\mathrm{different}\:\mathrm{articles}\:\mathrm{be}\:\mathrm{divided}\:\mathrm{into}\:\mathrm{groups}\:\mathrm{of} \\ $$$$\mathrm{12},\:\mathrm{8}\:\mathrm{and}\:\mathrm{4}\:\mathrm{articles}\:\mathrm{respectively} \\ $$

Question Number 11373    Answers: 1   Comments: 0

Question Number 11372    Answers: 0   Comments: 0

If G_1 and G_2 are groups , and f : G_1 β†’G_2 is a group homomorphism , then prove that o(G_1 ) = o(G_2 ) .

$$\mathrm{If}\:\mathrm{G}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{G}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{groups}\:,\:\mathrm{and}\:\mathrm{f}\::\:\mathrm{G}_{\mathrm{1}} \:\rightarrow\mathrm{G}_{\mathrm{2}} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{group}\:\mathrm{homomorphism}\:,\:\mathrm{then}\:\mathrm{prove} \\ $$$$\mathrm{that}\:\mathrm{o}\left(\mathrm{G}_{\mathrm{1}} \right)\:=\:\mathrm{o}\left(\mathrm{G}_{\mathrm{2}} \right)\:. \\ $$

Question Number 11365    Answers: 0   Comments: 1

βˆ…(n)=nβˆ’1 , n∈Z ,where βˆ… is Eular phi function. True or false .And explain it .

$$\emptyset\left(\mathrm{n}\right)=\mathrm{n}βˆ’\mathrm{1}\:,\:\mathrm{n}\in\mathrm{Z}\:,\mathrm{where}\:\emptyset\:\mathrm{is}\:\mathrm{Eular}\:\mathrm{phi}\:\mathrm{function}. \\ $$$$\mathrm{True}\:\mathrm{or}\:\mathrm{false}\:.\mathrm{And}\:\mathrm{explain}\:\mathrm{it}\:. \\ $$

  Pg 1959      Pg 1960      Pg 1961      Pg 1962      Pg 1963      Pg 1964      Pg 1965      Pg 1966      Pg 1967      Pg 1968   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com