Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1961

Question Number 5723    Answers: 0   Comments: 2

(1/2)+(1/4)+(1/8)+....+(1/2^n )=1−(1/2^n ) P r o v e the above for integral n≥1.

$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}+....+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} } \\ $$$$\mathrm{P}\:\:\:\mathrm{r}\:\:\:\mathrm{o}\:\:\:\mathrm{v}\:\:\:\mathrm{e}\:\mathrm{the}\:\mathrm{above}\:\mathrm{for}\:\mathrm{integral}\:\mathrm{n}\geqslant\mathrm{1}. \\ $$

Question Number 5722    Answers: 0   Comments: 2

Prove by mathematical induction that tbe following formula is correct for all positive integers n: ((2),(2) ) + ((3),(2) ) + ((4),(2) ) +...+ (((n+1)),(( 2)) ) = (((n+2)),(( 3)) )

$$\mathrm{Prove}\:\mathrm{by}\:\boldsymbol{\mathrm{mathematical}}\:\boldsymbol{\mathrm{induction}} \\ $$$$\mathrm{that}\:\mathrm{tbe}\:\mathrm{following}\:\mathrm{formula}\:\mathrm{is}\:\mathrm{correct} \\ $$$$\mathrm{for}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{n}: \\ $$$$\begin{pmatrix}{\mathrm{2}}\\{\mathrm{2}}\end{pmatrix}\:+\begin{pmatrix}{\mathrm{3}}\\{\mathrm{2}}\end{pmatrix}\:+\begin{pmatrix}{\mathrm{4}}\\{\mathrm{2}}\end{pmatrix}\:+...+\begin{pmatrix}{\mathrm{n}+\mathrm{1}}\\{\:\:\:\mathrm{2}}\end{pmatrix}\:=\begin{pmatrix}{\mathrm{n}+\mathrm{2}}\\{\:\:\:\mathrm{3}}\end{pmatrix} \\ $$

Question Number 5718    Answers: 0   Comments: 2

Two angles can be added and subtracted. Can we multiply them also? For example x radians × y radians = xy (radians)^2 ? What will be the meaning of (radians)^2 (square radians)?

$$\mathrm{Two}\:\mathrm{angles}\:\mathrm{can}\:\mathrm{be}\:\mathrm{added}\:\mathrm{and}\:\mathrm{subtracted}. \\ $$$$\mathrm{Can}\:\mathrm{we}\:\mathrm{multiply}\:\mathrm{them}\:\mathrm{also}? \\ $$$$\mathrm{For}\:\mathrm{example}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}\:\mathrm{radians}\:×\:\mathrm{y}\:\mathrm{radians}\:=\:\mathrm{xy}\:\left(\mathrm{radians}\right)^{\mathrm{2}} \:? \\ $$$$\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{meaning}\:\mathrm{of}\:\:\left(\mathrm{radians}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{square}\:\mathrm{radians}\right)? \\ $$

Question Number 5715    Answers: 1   Comments: 0

Differentiate x^x from the first principle. please help

$${Differentiate}\:\:\:{x}^{{x}} \:\:\:{from}\:{the}\:{first}\:{principle}. \\ $$$$ \\ $$$${please}\:{help} \\ $$

Question Number 5712    Answers: 0   Comments: 3

Find the value of x 2^x = 4x workings is needed please.

$${Find}\:{the}\:{value}\:{of}\:{x}\: \\ $$$$ \\ $$$$\mathrm{2}^{{x}} \:=\:\mathrm{4}{x} \\ $$$$ \\ $$$${workings}\:{is}\:{needed}\:{please}. \\ $$

Question Number 5674    Answers: 0   Comments: 0

Find the value of x x^((x + 2)) = (x + 2)^x Please help.

$${Find}\:{the}\:{value}\:{of}\:{x}\: \\ $$$$ \\ $$$${x}^{\left({x}\:+\:\mathrm{2}\right)} \:=\:\left({x}\:+\:\mathrm{2}\right)^{{x}} \\ $$$$ \\ $$$${Please}\:{help}. \\ $$

Question Number 5673    Answers: 2   Comments: 1

Using inductive method. prove that .. 7^(2n) + 16n − 1 is divisible by 4 please help.

$${Using}\:{inductive}\:{method}.\:{prove}\:{that}\:.. \\ $$$$ \\ $$$$\mathrm{7}^{\mathrm{2}{n}} \:+\:\mathrm{16}{n}\:−\:\mathrm{1}\:{is}\:{divisible}\:{by}\:\mathrm{4} \\ $$$$ \\ $$$${please}\:{help}. \\ $$

Question Number 5672    Answers: 1   Comments: 0

Differentiate ((lnx)/e^x ) fom the first principle. Please help me.

$${Differentiate}\:\:\:\:\frac{{lnx}}{{e}^{{x}} }\:\:\:\:{fom}\:{the}\:{first}\:{principle}. \\ $$$$ \\ $$$${Please}\:{help}\:{me}. \\ $$

Question Number 5685    Answers: 1   Comments: 0

Find the value of x . 9^x = 6^x + 4^x Please help.

$${Find}\:{the}\:{value}\:{of}\:{x}\:. \\ $$$$ \\ $$$$\mathrm{9}^{{x}} \:=\:\mathrm{6}^{{x}} \:+\:\mathrm{4}^{{x}} \\ $$$$ \\ $$$${Please}\:{help}. \\ $$

Question Number 5684    Answers: 0   Comments: 1

Find the value of x . x^((x + 2)) = (x + 2)^x Thanks for your help.

$${Find}\:{the}\:{value}\:{of}\:{x}\:.\: \\ $$$$ \\ $$$${x}^{\left({x}\:+\:\mathrm{2}\right)} \:=\:\left({x}\:+\:\mathrm{2}\right)^{{x}} \\ $$$$ \\ $$$${Thanks}\:{for}\:{your}\:{help}. \\ $$

Question Number 5695    Answers: 1   Comments: 5

Question Number 5692    Answers: 0   Comments: 2

f(x)=e^x g(x)=ln x h(x)=x A line L is perpendicular to h(x) at point P(x,y) and extends and disects f(x) and g(x). The length of L between f(x) and g(x) is r. When is r minimum?

$${f}\left({x}\right)={e}^{{x}} \\ $$$${g}\left({x}\right)=\mathrm{ln}\:{x} \\ $$$${h}\left({x}\right)={x} \\ $$$$ \\ $$$$\mathrm{A}\:\mathrm{line}\:{L}\:\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to}\:{h}\left({x}\right)\:\mathrm{at}\:\mathrm{point} \\ $$$${P}\left({x},{y}\right)\:\mathrm{and}\:\mathrm{extends}\:\mathrm{and}\:\mathrm{disects}\:{f}\left({x}\right)\:\mathrm{and}\:{g}\left({x}\right). \\ $$$$\mathrm{The}\:\mathrm{length}\:\mathrm{of}\:{L}\:\mathrm{between}\:{f}\left({x}\right)\:{and}\:{g}\left({x}\right) \\ $$$$\mathrm{is}\:{r}.\:\mathrm{When}\:\mathrm{is}\:{r}\:\mathrm{minimum}? \\ $$

Question Number 5705    Answers: 1   Comments: 0

Question Number 5704    Answers: 1   Comments: 0

Show that ... Limit [((3^x − 3^(−x) )/(3^(x ) + 3^(−x) ))] = − 1 x → −∞

$${Show}\:{that}\:... \\ $$$$ \\ $$$${Limit}\:\:\:\:\:\:\left[\frac{\mathrm{3}^{{x}} \:−\:\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}\:} \:+\:\mathrm{3}^{−{x}} }\right]\:=\:−\:\mathrm{1} \\ $$$${x}\:\rightarrow\:−\infty \\ $$

Question Number 5702    Answers: 0   Comments: 0

Question Number 5639    Answers: 1   Comments: 1

The number of negative real roots of x^4 −4x−1=0 is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{negative}\:\mathrm{real}\:\mathrm{roots}\: \\ $$$$\mathrm{of}\:\:\:{x}^{\mathrm{4}} −\mathrm{4}{x}−\mathrm{1}=\mathrm{0}\:\mathrm{is} \\ $$

Question Number 5638    Answers: 1   Comments: 0

If a≤ 0, then the real values of x satisfying x^2 −2a ∣ x−a ∣−3a^2 =0 are

$$\mathrm{If}\:{a}\leqslant\:\mathrm{0},\:\mathrm{then}\:\mathrm{the}\:\mathrm{real}\:\mathrm{values}\:\mathrm{of}\:{x} \\ $$$$\mathrm{satisfying}\:{x}^{\mathrm{2}} −\mathrm{2}{a}\:\mid\:{x}−{a}\:\mid−\mathrm{3}{a}^{\mathrm{2}} =\mathrm{0}\:\mathrm{are} \\ $$

Question Number 5637    Answers: 1   Comments: 0

Limit [((3^(n+1) − 5^(n+1) )/(3^n − 5^n ))] x→∞ Please help. Thanks

$${Limit}\:\:\:\left[\frac{\mathrm{3}^{{n}+\mathrm{1}} \:−\:\mathrm{5}^{{n}+\mathrm{1}} }{\mathrm{3}^{{n}} \:−\:\mathrm{5}^{{n}} }\right] \\ $$$${x}\rightarrow\infty \\ $$$$ \\ $$$$ \\ $$$${Please}\:{help}.\:{Thanks} \\ $$

Question Number 5632    Answers: 1   Comments: 0

Question Number 5630    Answers: 0   Comments: 8

Question Number 5629    Answers: 0   Comments: 4

L(sin^2 t)=?

$$\mathscr{L}\left(\mathrm{sin}\:^{\mathrm{2}} {t}\right)=? \\ $$

Question Number 5628    Answers: 0   Comments: 0

If siny = xsin(a + y) Show that (dy/dx) = ((sin^2 (a + y))/(sina)) Please help. Thanks in advance.

$${If}\:\:\:{siny}\:=\:{xsin}\left({a}\:+\:{y}\right) \\ $$$$ \\ $$$${Show}\:{that}\:\:\frac{{dy}}{{dx}}\:\:=\:\:\frac{{sin}^{\mathrm{2}} \left({a}\:+\:{y}\right)}{{sina}} \\ $$$$ \\ $$$$ \\ $$$${Please}\:{help}.\:{Thanks}\:{in}\:{advance}. \\ $$

Question Number 5627    Answers: 0   Comments: 0

Determine interval in which 2^x ≥x^2

$$\mathrm{Determine}\:\mathrm{interval}\:\mathrm{in}\:\mathrm{which} \\ $$$$\mathrm{2}^{\mathrm{x}} \geqslant\mathrm{x}^{\mathrm{2}} \\ $$

Question Number 5626    Answers: 1   Comments: 0

What is the length of chord in a circle of radius r which divides the circumference of circle in m : n ?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\boldsymbol{\mathrm{length}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{chord}}\:\mathrm{in}\:\mathrm{a}\:\boldsymbol{\mathrm{circle}}\:\boldsymbol{\mathrm{of}} \\ $$$$\boldsymbol{\mathrm{radius}}\:\boldsymbol{\mathrm{r}}\:\mathrm{which}\:\:\mathrm{divides}\:\mathrm{the}\:\boldsymbol{\mathrm{circumference}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{circle}}\:\mathrm{in}\:\boldsymbol{\mathrm{m}}\::\:\boldsymbol{\mathrm{n}}\:? \\ $$

Question Number 5620    Answers: 0   Comments: 2

Find the resolved part of the vector a = 6i − 3j + 9k in the diection of b = 2i + 2j − k please help. i got the answer to be (−1)

$${Find}\:{the}\:{resolved}\:{part}\:{of}\:{the}\:{vector}\:{a}\:=\:\mathrm{6}{i}\:−\:\mathrm{3}{j}\:+\:\mathrm{9}{k}\: \\ $$$${in}\:{the}\:{diection}\:{of}\:{b}\:=\:\mathrm{2}{i}\:+\:\mathrm{2}{j}\:−\:{k} \\ $$$$ \\ $$$${please}\:{help}. \\ $$$$ \\ $$$${i}\:{got}\:{the}\:{answer}\:{to}\:{be}\:\left(−\mathrm{1}\right) \\ $$

Question Number 5616    Answers: 1   Comments: 0

Find [1 + 3n^(−1) ]^n Limit as n →∞ Please help.

$${Find}\: \\ $$$$ \\ $$$$\left[\mathrm{1}\:+\:\mathrm{3}{n}^{−\mathrm{1}} \right]^{{n}} \\ $$$$ \\ $$$${Limit}\:{as}\:{n}\:\rightarrow\infty \\ $$$$ \\ $$$$ \\ $$$${Please}\:{help}. \\ $$

  Pg 1956      Pg 1957      Pg 1958      Pg 1959      Pg 1960      Pg 1961      Pg 1962      Pg 1963      Pg 1964      Pg 1965   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com