Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1961

Question Number 12506    Answers: 2   Comments: 0

A wooden stick was broken randomly into three pieces. What is the probability that a triangle can be built from those three parts?

$$\mathrm{A}\:\mathrm{wooden}\:\mathrm{stick}\:\mathrm{was}\:\mathrm{broken}\:\mathrm{randomly}\:\mathrm{into} \\ $$$$\mathrm{three}\:\mathrm{pieces}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{built}\:\mathrm{from}\:\mathrm{those}\:\mathrm{three}\:\mathrm{parts}? \\ $$

Question Number 12500    Answers: 1   Comments: 0

Please help explain how to solve ∫e^(1/x) dx

$$\mathrm{Please}\:\mathrm{help}\:\mathrm{explain}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\int{e}^{\frac{\mathrm{1}}{{x}}} {dx} \\ $$

Question Number 12495    Answers: 1   Comments: 3

find the real values of x for which the function f(x)=(x^2 /(x^2 +3x+2))

$${find}\:{the}\:{real}\:{values}\:{of}\:{x}\:{for}\:{which} \\ $$$${the}\:{function}\:{f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}} \\ $$$$ \\ $$

Question Number 12492    Answers: 2   Comments: 1

this is calculus evaluate lim_(x→0) ((sin3xsin5x)/(7x^2 ))

$${this}\:{is}\:{calculus}\: \\ $$$${evaluate}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{sin}\mathrm{3}{xsin}\mathrm{5}{x}}{\mathrm{7}{x}^{\mathrm{2}} } \\ $$

Question Number 12490    Answers: 0   Comments: 1

328976/256

$$\mathrm{328976}/\mathrm{256} \\ $$

Question Number 12489    Answers: 1   Comments: 0

log_2 x + log_(1/x) (1/2) ≥ 0 x = ?

$$\mathrm{log}_{\mathrm{2}} \:{x}\:+\:\mathrm{log}_{\mathrm{1}/{x}} \:\frac{\mathrm{1}}{\mathrm{2}}\:\geqslant\:\mathrm{0} \\ $$$${x}\:=\:? \\ $$

Question Number 12487    Answers: 0   Comments: 4

Someone has been solved Goldbach′s Conjecture??

$$\mathrm{Someone}\:\mathrm{has}\:\mathrm{been}\:\mathrm{solved}\:\mathrm{Goldbach}'\mathrm{s} \\ $$$$\mathrm{Conjecture}?? \\ $$

Question Number 12499    Answers: 1   Comments: 0

Water flows out of a tank through a hole of diameter 2cm above the hole (1) Determine the velocity of outflow (2) The rate of outflow when the level of the water in the tank is 2cm above the hole.

$$\mathrm{Water}\:\mathrm{flows}\:\mathrm{out}\:\mathrm{of}\:\mathrm{a}\:\mathrm{tank}\:\mathrm{through}\:\mathrm{a}\:\mathrm{hole}\:\mathrm{of}\:\mathrm{diameter}\:\mathrm{2cm}\:\mathrm{above}\:\mathrm{the}\:\mathrm{hole} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{outflow} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{The}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{outflow}\:\mathrm{when}\:\mathrm{the}\:\mathrm{level}\:\mathrm{of}\:\mathrm{the}\:\mathrm{water}\:\mathrm{in}\:\mathrm{the}\:\mathrm{tank}\:\mathrm{is}\:\mathrm{2cm}\:\mathrm{above} \\ $$$$\mathrm{the}\:\mathrm{hole}.\: \\ $$

Question Number 12470    Answers: 1   Comments: 0

((0.03125))^(1/5) =

$$\sqrt[{\mathrm{5}}]{\mathrm{0}.\mathrm{03125}}\:=\: \\ $$

Question Number 12464    Answers: 3   Comments: 0

∫ sin^3 (7x) dx

$$\int\:\mathrm{sin}^{\mathrm{3}} \left(\mathrm{7x}\right)\:\mathrm{dx} \\ $$

Question Number 12463    Answers: 1   Comments: 0

∫ ((x + 1)/((x^2 + 2x + 3)^(2/3) )) dx

$$\int\:\:\frac{\mathrm{x}\:+\:\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2x}\:+\:\mathrm{3}\right)^{\mathrm{2}/\mathrm{3}} }\:\:\mathrm{dx} \\ $$

Question Number 12446    Answers: 2   Comments: 1

find x (√x) = 8^x

$$\mathrm{find}\:\mathrm{x} \\ $$$$\sqrt{\mathrm{x}}\:\:=\:\:\mathrm{8}^{\mathrm{x}} \\ $$

Question Number 12445    Answers: 0   Comments: 0

Question Number 12442    Answers: 2   Comments: 0

Solve: z^4 = − 16

$$\mathrm{Solve}:\:\:\:\mathrm{z}^{\mathrm{4}} \:=\:−\:\mathrm{16} \\ $$

Question Number 12436    Answers: 0   Comments: 6

∫ (dx/x^x ) dx

$$\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{x}} }\:\mathrm{dx} \\ $$

Question Number 12435    Answers: 0   Comments: 1

Solve equation X_4 −3X_2 +2=0

$$\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{equation}} \\ $$$$\:\:\boldsymbol{{X}}_{\mathrm{4}} −\mathrm{3}\boldsymbol{{X}}_{\mathrm{2}} +\mathrm{2}=\mathrm{0} \\ $$

Question Number 12432    Answers: 0   Comments: 1

To Tinku Tara: it is not possible to post long and narrow images, since the button ′Submit′ is not visible. Can you please solve this problem?

$${To}\:{Tinku}\:{Tara}: \\ $$$${it}\:{is}\:{not}\:{possible}\:{to}\:{post}\:{long}\:{and}\:{narrow} \\ $$$${images},\:{since}\:{the}\:{button}\:'{Submit}'\:{is} \\ $$$${not}\:{visible}.\:{Can}\:{you}\:{please}\:{solve}\:{this}\:{problem}? \\ $$

Question Number 12422    Answers: 2   Comments: 1

Question Number 12419    Answers: 2   Comments: 0

If a body of 2kg mass is at a distance of 7200km from the centre of the earth . What would the acceleration due to gravity be at this point in the Earths field ? (a) 9.6m/s^2 (b) 10m/s^2 (c) 11.3m/s^2 (d) 12.7m/s^2 (e) 15.6m/s^2

$$\mathrm{If}\:\mathrm{a}\:\mathrm{body}\:\mathrm{of}\:\mathrm{2kg}\:\mathrm{mass}\:\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{7200km}\:\mathrm{from}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{earth}\:.\:\mathrm{What}\:\mathrm{would}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{due}\:\mathrm{to}\:\mathrm{gravity}\:\mathrm{be}\:\mathrm{at}\:\mathrm{this}\:\mathrm{point}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{Earths}\:\mathrm{field}\:? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{9}.\mathrm{6m}/\mathrm{s}^{\mathrm{2}} \:\left(\mathrm{b}\right)\:\mathrm{10m}/\mathrm{s}^{\mathrm{2}} \:\left(\mathrm{c}\right)\:\mathrm{11}.\mathrm{3m}/\mathrm{s}^{\mathrm{2}} \:\left(\mathrm{d}\right)\:\mathrm{12}.\mathrm{7m}/\mathrm{s}^{\mathrm{2}} \:\left(\mathrm{e}\right)\:\mathrm{15}.\mathrm{6m}/\mathrm{s}^{\mathrm{2}} \\ $$

Question Number 12414    Answers: 1   Comments: 0

does Σ_(i=1) ^∞ p_i converge, p_i ∈P

$$\mathrm{does}\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{p}_{{i}} \:\:\:\mathrm{converge},\:\:\:\:{p}_{{i}} \in\mathbb{P} \\ $$

Question Number 12405    Answers: 0   Comments: 1

how to prove that there exist infinitely many rationals between any two irrationals?

$${how}\:{to}\:{prove}\:{that}\:{there}\:{exist}\:{infinitely}\:{many}\:{rationals}\:{between}\:{any}\:{two}\:{irrationals}? \\ $$$$ \\ $$

Question Number 12403    Answers: 1   Comments: 0

f(x)=⌊x−(3/e)⌋+⌊x+(3/e)⌋⇒f(1)=?

$${f}\left({x}\right)=\lfloor{x}−\frac{\mathrm{3}}{{e}}\rfloor+\lfloor{x}+\frac{\mathrm{3}}{{e}}\rfloor\Rightarrow{f}\left(\mathrm{1}\right)=? \\ $$

Question Number 12402    Answers: 0   Comments: 2

12sgn(x^2 −x−20)+3≥0⇒ (ss)=?

$$\mathrm{12}{sgn}\left({x}^{\mathrm{2}} −{x}−\mathrm{20}\right)+\mathrm{3}\geqslant\mathrm{0}\Rightarrow \\ $$$$\left({ss}\right)=? \\ $$

Question Number 12401    Answers: 1   Comments: 1

∫_0 ^(2π) sgn(cosx)dx=?

$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} {sgn}\left({cosx}\right){dx}=? \\ $$

Question Number 12394    Answers: 0   Comments: 0

Question Number 12386    Answers: 2   Comments: 0

f(x + (1/x)) = ((x^6 + 1)/(27)) f(x) = ?

$${f}\left({x}\:+\:\frac{\mathrm{1}}{{x}}\right)\:=\:\frac{{x}^{\mathrm{6}} \:+\:\mathrm{1}}{\mathrm{27}} \\ $$$${f}\left({x}\right)\:=\:? \\ $$

  Pg 1956      Pg 1957      Pg 1958      Pg 1959      Pg 1960      Pg 1961      Pg 1962      Pg 1963      Pg 1964      Pg 1965   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com