Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1958

Question Number 9869    Answers: 0   Comments: 0

find the value of Σ_(n=1) ^(99) (n/(1+n^2 +n^4 )) a)0.46 and 0.47 b)0.47 and 0.48 c)0.48 and 0.49 d)0.49 and 0.50 kush

$${find}\:{the}\:{value}\:{of} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\:\:\frac{{n}}{\mathrm{1}+{n}^{\mathrm{2}} +{n}^{\mathrm{4}} } \\ $$$$\left.{a}\right)\mathrm{0}.\mathrm{46}\:{and}\:\mathrm{0}.\mathrm{47} \\ $$$$\left.{b}\right)\mathrm{0}.\mathrm{47}\:{and}\:\mathrm{0}.\mathrm{48} \\ $$$$\left.{c}\right)\mathrm{0}.\mathrm{48}\:{and}\:\mathrm{0}.\mathrm{49} \\ $$$$\left.{d}\right)\mathrm{0}.\mathrm{49}\:{and}\:\mathrm{0}.\mathrm{50} \\ $$$$\boldsymbol{{kush}} \\ $$

Question Number 9867    Answers: 0   Comments: 0

Question Number 9866    Answers: 0   Comments: 0

If I_n =∫_( 0) ^∞ e^(−x) x^(n−1) dx, then ∫_( 0) ^∞ e^(−λx) x^(n−1) dx =

$$\mathrm{If}\:{I}_{{n}} =\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:{e}^{−{x}} \:{x}^{{n}−\mathrm{1}} \:{dx},\:\mathrm{then}\:\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:{e}^{−\lambda{x}} \:{x}^{{n}−\mathrm{1}} {dx}\:= \\ $$

Question Number 9865    Answers: 0   Comments: 1

lim_(n→∞) [((1^m + 2^m + 3^m + ...+ n^m )/n^(m+1) )] =

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\frac{\mathrm{1}^{{m}} +\:\mathrm{2}^{{m}} +\:\mathrm{3}^{{m}} +\:...+\:{n}^{{m}} }{{n}^{{m}+\mathrm{1}} }\right]\:= \\ $$

Question Number 9864    Answers: 0   Comments: 0

If (1/(√a)) ∫_( 1) ^a ((3/2) (√x) +1− (1/(√x)))dx < 4, then a may take values :

$$\mathrm{If}\:\:\frac{\mathrm{1}}{\sqrt{{a}}}\:\underset{\:\mathrm{1}} {\overset{{a}} {\int}}\:\left(\frac{\mathrm{3}}{\mathrm{2}}\:\sqrt{{x}}\:+\mathrm{1}−\:\frac{\mathrm{1}}{\sqrt{{x}}}\right){dx}\:<\:\mathrm{4},\:\mathrm{then}\:\:{a} \\ $$$$\mathrm{may}\:\mathrm{take}\:\mathrm{values}\:: \\ $$

Question Number 9861    Answers: 1   Comments: 0

find λ value in λ^2 −4λ−13=0

$$\mathrm{find}\:\:\lambda\:\mathrm{value}\:\mathrm{in}\:\lambda^{\mathrm{2}} −\mathrm{4}\lambda−\mathrm{13}=\mathrm{0} \\ $$

Question Number 9860    Answers: 0   Comments: 0

Question Number 9859    Answers: 0   Comments: 0

Question Number 9858    Answers: 0   Comments: 0

Question Number 9863    Answers: 0   Comments: 0

the value of: ∫_0 ^(π/2) (1/(1+tan^3 x)) dx

$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}: \\ $$$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\mathrm{3}} {x}}\:{dx} \\ $$

Question Number 9847    Answers: 1   Comments: 3

Question Number 9844    Answers: 1   Comments: 0

Question Number 9839    Answers: 0   Comments: 1

Question Number 9838    Answers: 0   Comments: 5

Where is YOZIA since this days. is being long i saw his chat here.

$$\mathrm{Where}\:\mathrm{is}\:\mathrm{YOZIA}\:\mathrm{since}\:\mathrm{this}\:\mathrm{days}. \\ $$$$\mathrm{is}\:\mathrm{being}\:\mathrm{long}\:\mathrm{i}\:\mathrm{saw}\:\mathrm{his}\:\mathrm{chat}\:\mathrm{here}. \\ $$

Question Number 9837    Answers: 0   Comments: 0

∫_0 ^1 e^x^2 dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$

Question Number 9836    Answers: 0   Comments: 3

Prove that. ∣z_1 + z_2 ∣ ≤ ∣z_1 ∣ ∣z_2 ∣

$$\mathrm{Prove}\:\mathrm{that}. \\ $$$$\mid\mathrm{z}_{\mathrm{1}} \:+\:\mathrm{z}_{\mathrm{2}} \mid\:\leqslant\:\mid\mathrm{z}_{\mathrm{1}} \mid\:\mid\mathrm{z}_{\mathrm{2}} \mid \\ $$

Question Number 9831    Answers: 1   Comments: 0

Question Number 9827    Answers: 1   Comments: 0

(7 − 4(√3))^(x^2 − 4x + 3) + (7 + 4(√3))^(x^2 − 4x + 3) = 14

$$\left(\mathrm{7}\:−\:\mathrm{4}\sqrt{\mathrm{3}}\right)^{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{4x}\:+\:\mathrm{3}} \:+\:\left(\mathrm{7}\:+\:\mathrm{4}\sqrt{\mathrm{3}}\right)^{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{4x}\:+\:\mathrm{3}} \:=\:\mathrm{14} \\ $$

Question Number 9824    Answers: 1   Comments: 0

Question Number 9822    Answers: 1   Comments: 0

Question Number 9821    Answers: 0   Comments: 1

Question Number 9818    Answers: 0   Comments: 1

Question Number 9817    Answers: 0   Comments: 0

Question Number 9813    Answers: 1   Comments: 0

From the top of a tower 80m high, a student observe that the angle of depression of the top of a vertical pole A is 45° and the angle of depression of point B on the pole is 60°. if O is the foot of the pole and OB = 20m. Find the distance between A and B. leaving your answer in surd form.

$$\mathrm{From}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{a}\:\mathrm{tower}\:\mathrm{80m}\:\mathrm{high},\:\mathrm{a}\:\mathrm{student} \\ $$$$\mathrm{observe}\:\mathrm{that}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{depression}\:\mathrm{of}\:\mathrm{the}\:\mathrm{top}\: \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{vertical}\:\mathrm{pole}\:\mathrm{A}\:\mathrm{is}\:\mathrm{45}°\:\mathrm{and}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\: \\ $$$$\mathrm{depression}\:\mathrm{of}\:\mathrm{point}\:\mathrm{B}\:\mathrm{on}\:\mathrm{the}\:\mathrm{pole}\:\mathrm{is}\:\mathrm{60}°. \\ $$$$\mathrm{if}\:\mathrm{O}\:\mathrm{is}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pole}\:\mathrm{and}\:\mathrm{OB}\:=\:\mathrm{20m}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}. \\ $$$$\mathrm{leaving}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{in}\:\mathrm{surd}\:\mathrm{form}. \\ $$

Question Number 9804    Answers: 0   Comments: 1

Express f(x)=x^t e^x as a series

$$\mathrm{Express}\:{f}\left({x}\right)={x}^{{t}} {e}^{{x}} \:\mathrm{as}\:\mathrm{a}\:\mathrm{series} \\ $$

Question Number 9800    Answers: 1   Comments: 2

is there a value for tg^2 (π/4) ?

$$\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{value}\:\mathrm{for}\:\mathrm{tg}^{\mathrm{2}} \frac{\pi}{\mathrm{4}}\:\:? \\ $$

  Pg 1953      Pg 1954      Pg 1955      Pg 1956      Pg 1957      Pg 1958      Pg 1959      Pg 1960      Pg 1961      Pg 1962   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com