Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1958

Question Number 10874    Answers: 1   Comments: 0

If f(x + 3) = 2x^2 − 3x + 5. find f(5)

$$\mathrm{If}\:\:\mathrm{f}\left(\mathrm{x}\:+\:\mathrm{3}\right)\:=\:\mathrm{2x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{5}.\:\mathrm{find}\:\:\:\mathrm{f}\left(\mathrm{5}\right) \\ $$

Question Number 10872    Answers: 1   Comments: 0

In a cultural gathering of 400 people, there are 270 men and 200 musicians. Of the latter, 80 are singers. 60 of the women are not musicians and 220 of the men are not singers. How many of the women are musicians but not singers. if there are 150 singers altogether and 40 men are both musicians and singers.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{cultural}\:\mathrm{gathering}\:\mathrm{of}\:\mathrm{400}\:\mathrm{people},\:\mathrm{there}\:\mathrm{are}\:\mathrm{270}\:\mathrm{men}\:\mathrm{and}\:\mathrm{200} \\ $$$$\mathrm{musicians}.\:\mathrm{Of}\:\mathrm{the}\:\mathrm{latter},\:\mathrm{80}\:\mathrm{are}\:\mathrm{singers}.\:\mathrm{60}\:\mathrm{of}\:\mathrm{the}\:\mathrm{women}\:\mathrm{are}\:\mathrm{not}\:\:\mathrm{musicians} \\ $$$$\mathrm{and}\:\mathrm{220}\:\mathrm{of}\:\mathrm{the}\:\mathrm{men}\:\mathrm{are}\:\mathrm{not}\:\mathrm{singers}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{of}\:\mathrm{the}\:\mathrm{women}\:\mathrm{are} \\ $$$$\mathrm{musicians}\:\mathrm{but}\:\mathrm{not}\:\mathrm{singers}.\:\mathrm{if}\:\mathrm{there}\:\mathrm{are}\:\mathrm{150}\:\mathrm{singers}\:\mathrm{altogether}\:\mathrm{and}\: \\ $$$$\mathrm{40}\:\mathrm{men}\:\mathrm{are}\:\mathrm{both}\:\mathrm{musicians}\:\mathrm{and}\:\mathrm{singers}. \\ $$

Question Number 10873    Answers: 1   Comments: 0

without using calculator or table, find the exact value of : sin[tan^(−1) ((1/2))]

$$\mathrm{without}\:\mathrm{using}\:\mathrm{calculator}\:\mathrm{or}\:\mathrm{table},\:\mathrm{find}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of}\:\:: \\ $$$$\mathrm{sin}\left[\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right] \\ $$

Question Number 10868    Answers: 0   Comments: 0

Question Number 10867    Answers: 0   Comments: 0

(1) Show that : ((x^(2n + 1) − y^(2n + 1) )/(x − y)) = x^(2n ) + x^(2n − 1) y + ... + xy^(2n − 1) + y^(2n) (2) Show that: ((x^(2n) − y^(2n) )/(x − y)) = x^(2n − 1 ) + x^(2n − 2) y + ... + xy^(2n − 2) + y^(2n − 1)

$$\left(\mathrm{1}\right) \\ $$$$\mathrm{Show}\:\mathrm{that}\:: \\ $$$$\frac{\mathrm{x}^{\mathrm{2n}\:+\:\mathrm{1}} \:−\:\mathrm{y}^{\mathrm{2n}\:+\:\mathrm{1}} }{\mathrm{x}\:−\:\mathrm{y}}\:=\:\mathrm{x}^{\mathrm{2n}\:} +\:\mathrm{x}^{\mathrm{2n}\:−\:\mathrm{1}} \mathrm{y}\:+\:...\:+\:\mathrm{xy}^{\mathrm{2n}\:−\:\mathrm{1}} \:+\:\mathrm{y}^{\mathrm{2n}} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{Show}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}^{\mathrm{2n}} \:−\:\mathrm{y}^{\mathrm{2n}} }{\mathrm{x}\:−\:\mathrm{y}}\:=\:\mathrm{x}^{\mathrm{2n}\:\:−\:\mathrm{1}\:} +\:\mathrm{x}^{\mathrm{2n}\:−\:\mathrm{2}} \mathrm{y}\:+\:...\:+\:\mathrm{xy}^{\mathrm{2n}\:−\:\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2n}\:−\:\mathrm{1}} \\ $$

Question Number 10865    Answers: 0   Comments: 0

Question Number 10864    Answers: 1   Comments: 0

Question Number 10862    Answers: 2   Comments: 2

Given that: a^ = 3i + 4j + 5k and b^ = 2i + 2j + 3k and c^ = 6i − 7j − 8k. find 3a^ + 2b^ − 3c^

$$\mathrm{Given}\:\mathrm{that}:\:\:\hat {\mathrm{a}}\:=\:\mathrm{3i}\:+\:\mathrm{4j}\:+\:\mathrm{5k}\:\:\mathrm{and}\:\:\hat {\mathrm{b}}\:=\:\mathrm{2i}\:+\:\mathrm{2j}\:+\:\mathrm{3k}\:\:\mathrm{and}\:\:\:\hat {\mathrm{c}}\:=\:\mathrm{6i}\:−\:\mathrm{7j}\:−\:\mathrm{8k}. \\ $$$$\mathrm{find} \\ $$$$\mathrm{3}\hat {\mathrm{a}}\:+\:\mathrm{2}\hat {\mathrm{b}}\:−\:\mathrm{3}\hat {\mathrm{c}} \\ $$

Question Number 10856    Answers: 1   Comments: 0

Find all the solution that fulfilled the equation below (1 + (1/x))^(x + 1) = (1 + (1/(2013)))^(2013)

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{that}\:\mathrm{fulfilled}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{below} \\ $$$$\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{x}}\right)^{{x}\:+\:\mathrm{1}} \:=\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2013}}\right)^{\mathrm{2013}} \\ $$

Question Number 10855    Answers: 1   Comments: 0

(3/(1!+2!+3!)) + (4/(2!+3!+4!)) + (5/(3!+4!+5!)) + ... + ((2016)/(2014!+2015!+2016!)) = ?

$$\frac{\mathrm{3}}{\mathrm{1}!+\mathrm{2}!+\mathrm{3}!}\:+\:\frac{\mathrm{4}}{\mathrm{2}!+\mathrm{3}!+\mathrm{4}!}\:+\:\frac{\mathrm{5}}{\mathrm{3}!+\mathrm{4}!+\mathrm{5}!}\:+\:...\:+\:\frac{\mathrm{2016}}{\mathrm{2014}!+\mathrm{2015}!+\mathrm{2016}!}\:=\:? \\ $$

Question Number 10854    Answers: 1   Comments: 0

f : R → R f(x . f(x) + f(y)) = (f(x))^2 + y x,y ∈ R f(x) = ??

$${f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$${f}\left({x}\:.\:{f}\left({x}\right)\:+\:{f}\left({y}\right)\right)\:=\:\left({f}\left({x}\right)\right)^{\mathrm{2}} \:+\:{y}\:\:\:\:\:\:\:\:\:\:{x},{y}\:\in\:\mathbb{R} \\ $$$$ \\ $$$${f}\left({x}\right)\:=\:?? \\ $$

Question Number 10853    Answers: 1   Comments: 0

(x + y)^n = Σ_(k=0) ^n ((n),(k) )x^k y^(n−k) (x − y)^n = ???????

$$\left({x}\:+\:{y}\right)^{{n}} \:=\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{x}^{{k}} {y}^{{n}−{k}} \\ $$$$\left({x}\:−\:{y}\right)^{{n}} \:=\:??????? \\ $$

Question Number 10849    Answers: 0   Comments: 0

Given that f(x) = f(x + 1000) for every x ∈ R If ∫_0 ^3 f(x) = 30,what is the value of ∫_3 ^5 f(x + 2016) dx ?

$$\mathrm{Given}\:\mathrm{that}\:{f}\left({x}\right)\:=\:{f}\left({x}\:+\:\mathrm{1000}\right)\:\mathrm{for}\:\mathrm{every}\:{x}\:\in\:\mathbb{R} \\ $$$$\mathrm{If}\:\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\:{f}\left({x}\right)\:=\:\mathrm{30},\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\underset{\mathrm{3}} {\overset{\mathrm{5}} {\int}}\:{f}\left({x}\:+\:\mathrm{2016}\right)\:{dx}\:? \\ $$

Question Number 10846    Answers: 1   Comments: 0

Two parallel chords of length 24 cm and 10 cm which lies on opposite sides of a circle are 17 cm apart. Calculate the radius of the circle to the nearest whole number.

$$\mathrm{Two}\:\mathrm{parallel}\:\mathrm{chords}\:\mathrm{of}\:\mathrm{length}\:\mathrm{24}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{10}\:\mathrm{cm}\:\mathrm{which}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{opposite} \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{are}\:\mathrm{17}\:\mathrm{cm}\:\mathrm{apart}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{whole}\:\mathrm{number}. \\ $$

Question Number 10837    Answers: 1   Comments: 0

given that sinA=((12)/(13))and sinB=(4/5), where A and B are acute angles, find cos(A−B) and sin(A+B)

$${given}\:{that}\:{sinA}=\frac{\mathrm{12}}{\mathrm{13}}{and}\:{sinB}=\frac{\mathrm{4}}{\mathrm{5}}, \\ $$$${where}\:{A}\:{and}\:{B}\:{are}\:{acute}\:{angles}, \\ $$$${find}\:{cos}\left({A}−{B}\right)\:{and}\:{sin}\left({A}+{B}\right) \\ $$$$ \\ $$

Question Number 10830    Answers: 2   Comments: 0

lim_(x→∞) ((3^x − 3^(−x) )/(3^x + 3^(−x) ))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{3}^{\mathrm{x}} \:−\:\mathrm{3}^{−\mathrm{x}} }{\mathrm{3}^{\mathrm{x}} \:+\:\mathrm{3}^{−\mathrm{x}} } \\ $$

Question Number 10825    Answers: 1   Comments: 0

Given that sin(x) − sin(y) = sin(θ) cos(x) + cos(y) = cos(θ) Show that cos(x + y) = −(1/2)

$$\mathrm{Given}\:\mathrm{that}\: \\ $$$$\mathrm{sin}\left(\mathrm{x}\right)\:−\:\mathrm{sin}\left(\mathrm{y}\right)\:=\:\mathrm{sin}\left(\theta\right) \\ $$$$\mathrm{cos}\left(\mathrm{x}\right)\:+\:\mathrm{cos}\left(\mathrm{y}\right)\:=\:\mathrm{cos}\left(\theta\right) \\ $$$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\mathrm{cos}\left(\mathrm{x}\:+\:\mathrm{y}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 10820    Answers: 1   Comments: 0

Question Number 10836    Answers: 1   Comments: 0

solve cos2θ−3cosθ=1 for o≤θ≤2π

$${solve}\:{cos}\mathrm{2}\theta−\mathrm{3}{cos}\theta=\mathrm{1} \\ $$$${for}\:{o}\leqslant\theta\leqslant\mathrm{2}\pi \\ $$

Question Number 10815    Answers: 0   Comments: 0

Evalute ∫(x^(2 ) + 9)^9 dx .

$${Evalute}\:\:\int\left({x}^{\mathrm{2}\:} \:\:+\:\mathrm{9}\right)^{\mathrm{9}} \:{dx}\:. \\ $$

Question Number 10807    Answers: 2   Comments: 2

Question Number 10795    Answers: 1   Comments: 1

by use sketching determine the range or(ranges) of the value x can take for each of the following inqualities (i) 3x^2 −19x−6≤0 (ii)2x^2 −5x−3≥0

$$\mathrm{by}\:\mathrm{use}\:\mathrm{sketching}\:\mathrm{determine}\:\mathrm{the}\:\mathrm{range} \\ $$$$\mathrm{or}\left(\mathrm{ranges}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{value}\:\mathrm{x}\:\mathrm{can}\:\mathrm{take}\:\mathrm{for} \\ $$$$\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inqualities} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{3x}^{\mathrm{2}} −\mathrm{19x}−\mathrm{6}\leqslant\mathrm{0} \\ $$$$\left(\mathrm{ii}\right)\mathrm{2x}^{\mathrm{2}} −\mathrm{5x}−\mathrm{3}\geqslant\mathrm{0} \\ $$

Question Number 10794    Answers: 0   Comments: 1

find the range or(ranges) of the value x can take for x+6>∣2x+3∣

$$\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{or}\left(\mathrm{ranges}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{x}\:\mathrm{can}\:\mathrm{take}\:\mathrm{for}\:\mathrm{x}+\mathrm{6}>\mid\mathrm{2x}+\mathrm{3}\mid \\ $$

Question Number 10793    Answers: 1   Comments: 0

let A = determinant ((4,(4k),k),(0,k,(4k)),(0,0,4)) if det(A^2 )=16 then ∣k∣ is?

$$\mathrm{let}\:\:\mathrm{A}\:=\begin{vmatrix}{\mathrm{4}}&{\mathrm{4k}}&{\mathrm{k}}\\{\mathrm{0}}&{\mathrm{k}}&{\mathrm{4k}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{4}}\end{vmatrix}\:\mathrm{if}\:\mathrm{det}\left(\mathrm{A}^{\mathrm{2}} \right)=\mathrm{16} \\ $$$$\mathrm{then}\:\mid\mathrm{k}\mid\:\mathrm{is}? \\ $$

Question Number 10790    Answers: 1   Comments: 0

∫_0 ^(π/2) (√(sin x)) dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{sin}\:{x}}\:{dx} \\ $$

Question Number 10789    Answers: 1   Comments: 0

(2+3i)x^2 −(3−2i)y=2x−3y+5i

$$\left(\mathrm{2}+\mathrm{3}{i}\right){x}^{\mathrm{2}} −\left(\mathrm{3}−\mathrm{2}{i}\right){y}=\mathrm{2}{x}−\mathrm{3}{y}+\mathrm{5}{i} \\ $$

  Pg 1953      Pg 1954      Pg 1955      Pg 1956      Pg 1957      Pg 1958      Pg 1959      Pg 1960      Pg 1961      Pg 1962   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com