Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1957

Question Number 10913    Answers: 1   Comments: 0

∫_( 1) ^( 3) x^x dx

$$\int_{\:\mathrm{1}} ^{\:\mathrm{3}} \:\mathrm{x}^{\mathrm{x}} \:\:\mathrm{dx} \\ $$

Question Number 10912    Answers: 0   Comments: 1

5^(log_2 3) is transcendental? General: Let a,b and c algebraic and log_b c transcendental. If a^(log_b c) is algebraic, so b = a^q , with q rational?

$$\mathrm{5}^{\mathrm{log}_{\mathrm{2}} \mathrm{3}} \:\mathrm{is}\:\mathrm{transcendental}? \\ $$$$\mathrm{General}: \\ $$$$\mathrm{Let}\:{a},{b}\:\mathrm{and}\:{c}\:\mathrm{algebraic}\:\mathrm{and}\:\mathrm{log}_{{b}} {c}\: \\ $$$$\mathrm{transcendental}.\:\mathrm{If}\:{a}^{\mathrm{log}_{{b}} {c}} \:\mathrm{is}\:\mathrm{algebraic},\:\mathrm{so} \\ $$$${b}\:=\:{a}^{{q}} ,\:\mathrm{with}\:{q}\:\mathrm{rational}? \\ $$

Question Number 10908    Answers: 1   Comments: 0

Question Number 10907    Answers: 1   Comments: 0

express in partial fraction ((3x+2)/((x^2 −1)(x+1)))

$$\mathrm{express}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction} \\ $$$$\frac{\mathrm{3x}+\mathrm{2}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)} \\ $$

Question Number 10906    Answers: 1   Comments: 1

Q . smallest positive x satisfying the equation sin3x+3cosx=2sin2x(sinx+cosx) , is

$${Q}\:.\:\:{smallest}\:{positive}\:{x}\:{satisfying}\:{the}\:{equation} \\ $$$${sin}\mathrm{3}{x}+\mathrm{3}{cosx}=\mathrm{2}{sin}\mathrm{2}{x}\left({sinx}+{cosx}\right)\:,\:{is} \\ $$

Question Number 10903    Answers: 0   Comments: 0

Question Number 10902    Answers: 2   Comments: 0

∫(√(1−x^2 ))dx=?

$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx}=? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 10900    Answers: 0   Comments: 1

Question Number 10899    Answers: 1   Comments: 0

Question Number 10898    Answers: 1   Comments: 0

Question Number 10887    Answers: 1   Comments: 0

Suppose that f(x) = (1/(x + 1)) and g(x) = (4/(x + 1)) . Find the domain of each of the composition (a) f o g (b) f o f

$$\mathrm{Suppose}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{x}\:+\:\mathrm{1}}\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{4}}{\mathrm{x}\:+\:\mathrm{1}}\:. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{composition}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{f}\:\mathrm{o}\:\mathrm{g}\:\:\:\left(\mathrm{b}\right)\:\:\mathrm{f}\:\mathrm{o}\:\mathrm{f} \\ $$

Question Number 10880    Answers: 1   Comments: 0

∫ (x + 3)(√((x + 4))) dx

$$\left.\int\:\left(\mathrm{x}\:+\:\mathrm{3}\right)\sqrt{\left(\mathrm{x}\:+\:\mathrm{4}\right.}\right)\:\mathrm{dx}\: \\ $$

Question Number 10876    Answers: 1   Comments: 0

∫_( 0) ^( 1) ∫_( x) ^( (√x)) (x + y^5 ) dy dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \int_{\:\mathrm{x}} ^{\:\sqrt{\mathrm{x}}} \:\left(\mathrm{x}\:+\:\mathrm{y}^{\mathrm{5}} \right)\:\mathrm{dy}\:\mathrm{dx} \\ $$

Question Number 10889    Answers: 0   Comments: 0

The solution of the Schanuel′s Conjecture will to decide if γ is transcendental or not? Tell me all consequences of the conjecture.

$$\mathrm{The}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{Schanuel}'\mathrm{s}\:\mathrm{Conjecture} \\ $$$$\mathrm{will}\:\mathrm{to}\:\mathrm{decide}\:\mathrm{if}\:\gamma\:\mathrm{is}\:\mathrm{transcendental}\:\mathrm{or}\:\mathrm{not}? \\ $$$$\mathrm{Tell}\:\mathrm{me}\:\mathrm{all}\:\mathrm{consequences}\:\mathrm{of}\:\mathrm{the}\:\mathrm{conjecture}. \\ $$

Question Number 10874    Answers: 1   Comments: 0

If f(x + 3) = 2x^2 − 3x + 5. find f(5)

$$\mathrm{If}\:\:\mathrm{f}\left(\mathrm{x}\:+\:\mathrm{3}\right)\:=\:\mathrm{2x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{5}.\:\mathrm{find}\:\:\:\mathrm{f}\left(\mathrm{5}\right) \\ $$

Question Number 10872    Answers: 1   Comments: 0

In a cultural gathering of 400 people, there are 270 men and 200 musicians. Of the latter, 80 are singers. 60 of the women are not musicians and 220 of the men are not singers. How many of the women are musicians but not singers. if there are 150 singers altogether and 40 men are both musicians and singers.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{cultural}\:\mathrm{gathering}\:\mathrm{of}\:\mathrm{400}\:\mathrm{people},\:\mathrm{there}\:\mathrm{are}\:\mathrm{270}\:\mathrm{men}\:\mathrm{and}\:\mathrm{200} \\ $$$$\mathrm{musicians}.\:\mathrm{Of}\:\mathrm{the}\:\mathrm{latter},\:\mathrm{80}\:\mathrm{are}\:\mathrm{singers}.\:\mathrm{60}\:\mathrm{of}\:\mathrm{the}\:\mathrm{women}\:\mathrm{are}\:\mathrm{not}\:\:\mathrm{musicians} \\ $$$$\mathrm{and}\:\mathrm{220}\:\mathrm{of}\:\mathrm{the}\:\mathrm{men}\:\mathrm{are}\:\mathrm{not}\:\mathrm{singers}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{of}\:\mathrm{the}\:\mathrm{women}\:\mathrm{are} \\ $$$$\mathrm{musicians}\:\mathrm{but}\:\mathrm{not}\:\mathrm{singers}.\:\mathrm{if}\:\mathrm{there}\:\mathrm{are}\:\mathrm{150}\:\mathrm{singers}\:\mathrm{altogether}\:\mathrm{and}\: \\ $$$$\mathrm{40}\:\mathrm{men}\:\mathrm{are}\:\mathrm{both}\:\mathrm{musicians}\:\mathrm{and}\:\mathrm{singers}. \\ $$

Question Number 10873    Answers: 1   Comments: 0

without using calculator or table, find the exact value of : sin[tan^(−1) ((1/2))]

$$\mathrm{without}\:\mathrm{using}\:\mathrm{calculator}\:\mathrm{or}\:\mathrm{table},\:\mathrm{find}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of}\:\:: \\ $$$$\mathrm{sin}\left[\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right] \\ $$

Question Number 10868    Answers: 0   Comments: 0

Question Number 10867    Answers: 0   Comments: 0

(1) Show that : ((x^(2n + 1) − y^(2n + 1) )/(x − y)) = x^(2n ) + x^(2n − 1) y + ... + xy^(2n − 1) + y^(2n) (2) Show that: ((x^(2n) − y^(2n) )/(x − y)) = x^(2n − 1 ) + x^(2n − 2) y + ... + xy^(2n − 2) + y^(2n − 1)

$$\left(\mathrm{1}\right) \\ $$$$\mathrm{Show}\:\mathrm{that}\:: \\ $$$$\frac{\mathrm{x}^{\mathrm{2n}\:+\:\mathrm{1}} \:−\:\mathrm{y}^{\mathrm{2n}\:+\:\mathrm{1}} }{\mathrm{x}\:−\:\mathrm{y}}\:=\:\mathrm{x}^{\mathrm{2n}\:} +\:\mathrm{x}^{\mathrm{2n}\:−\:\mathrm{1}} \mathrm{y}\:+\:...\:+\:\mathrm{xy}^{\mathrm{2n}\:−\:\mathrm{1}} \:+\:\mathrm{y}^{\mathrm{2n}} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{Show}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}^{\mathrm{2n}} \:−\:\mathrm{y}^{\mathrm{2n}} }{\mathrm{x}\:−\:\mathrm{y}}\:=\:\mathrm{x}^{\mathrm{2n}\:\:−\:\mathrm{1}\:} +\:\mathrm{x}^{\mathrm{2n}\:−\:\mathrm{2}} \mathrm{y}\:+\:...\:+\:\mathrm{xy}^{\mathrm{2n}\:−\:\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2n}\:−\:\mathrm{1}} \\ $$

Question Number 10865    Answers: 0   Comments: 0

Question Number 10864    Answers: 1   Comments: 0

Question Number 10862    Answers: 2   Comments: 2

Given that: a^ = 3i + 4j + 5k and b^ = 2i + 2j + 3k and c^ = 6i − 7j − 8k. find 3a^ + 2b^ − 3c^

$$\mathrm{Given}\:\mathrm{that}:\:\:\hat {\mathrm{a}}\:=\:\mathrm{3i}\:+\:\mathrm{4j}\:+\:\mathrm{5k}\:\:\mathrm{and}\:\:\hat {\mathrm{b}}\:=\:\mathrm{2i}\:+\:\mathrm{2j}\:+\:\mathrm{3k}\:\:\mathrm{and}\:\:\:\hat {\mathrm{c}}\:=\:\mathrm{6i}\:−\:\mathrm{7j}\:−\:\mathrm{8k}. \\ $$$$\mathrm{find} \\ $$$$\mathrm{3}\hat {\mathrm{a}}\:+\:\mathrm{2}\hat {\mathrm{b}}\:−\:\mathrm{3}\hat {\mathrm{c}} \\ $$

Question Number 10856    Answers: 1   Comments: 0

Find all the solution that fulfilled the equation below (1 + (1/x))^(x + 1) = (1 + (1/(2013)))^(2013)

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{that}\:\mathrm{fulfilled}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{below} \\ $$$$\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{x}}\right)^{{x}\:+\:\mathrm{1}} \:=\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2013}}\right)^{\mathrm{2013}} \\ $$

Question Number 10855    Answers: 1   Comments: 0

(3/(1!+2!+3!)) + (4/(2!+3!+4!)) + (5/(3!+4!+5!)) + ... + ((2016)/(2014!+2015!+2016!)) = ?

$$\frac{\mathrm{3}}{\mathrm{1}!+\mathrm{2}!+\mathrm{3}!}\:+\:\frac{\mathrm{4}}{\mathrm{2}!+\mathrm{3}!+\mathrm{4}!}\:+\:\frac{\mathrm{5}}{\mathrm{3}!+\mathrm{4}!+\mathrm{5}!}\:+\:...\:+\:\frac{\mathrm{2016}}{\mathrm{2014}!+\mathrm{2015}!+\mathrm{2016}!}\:=\:? \\ $$

Question Number 10854    Answers: 1   Comments: 0

f : R → R f(x . f(x) + f(y)) = (f(x))^2 + y x,y ∈ R f(x) = ??

$${f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$${f}\left({x}\:.\:{f}\left({x}\right)\:+\:{f}\left({y}\right)\right)\:=\:\left({f}\left({x}\right)\right)^{\mathrm{2}} \:+\:{y}\:\:\:\:\:\:\:\:\:\:{x},{y}\:\in\:\mathbb{R} \\ $$$$ \\ $$$${f}\left({x}\right)\:=\:?? \\ $$

Question Number 10853    Answers: 1   Comments: 0

(x + y)^n = Σ_(k=0) ^n ((n),(k) )x^k y^(n−k) (x − y)^n = ???????

$$\left({x}\:+\:{y}\right)^{{n}} \:=\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{x}^{{k}} {y}^{{n}−{k}} \\ $$$$\left({x}\:−\:{y}\right)^{{n}} \:=\:??????? \\ $$

  Pg 1952      Pg 1953      Pg 1954      Pg 1955      Pg 1956      Pg 1957      Pg 1958      Pg 1959      Pg 1960      Pg 1961   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com