Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1957

Question Number 7211    Answers: 0   Comments: 0

Find the next time of the sequence −1, 8, 49, 68, 131, .....

$${Find}\:{the}\:{next}\:{time}\:{of}\:{the}\:{sequence}\: \\ $$$$−\mathrm{1},\:\mathrm{8},\:\mathrm{49},\:\mathrm{68},\:\mathrm{131},\:..... \\ $$

Question Number 7207    Answers: 0   Comments: 4

x^((2x/y)) × y^((y/x)) = 4 ............. (i) xy^((xy + yx)) = 16 ............ (ii) Find the value of x and y

$${x}^{\left(\mathrm{2}{x}/{y}\right)} \:\:×\:\:\:{y}^{\left({y}/{x}\right)} \:\:=\:\:\mathrm{4}\:\:\:\:\:\:.............\:\left({i}\right) \\ $$$${xy}^{\left({xy}\:+\:{yx}\right)} \:\:=\:\:\mathrm{16}\:\:\:\:\:............\:\left({ii}\right) \\ $$$$ \\ $$$${Find}\:{the}\:{value}\:{of}\:{x}\:{and}\:{y} \\ $$

Question Number 7230    Answers: 0   Comments: 2

An Interesting App: I′ve recently downloaded the app called ′Math Tricks′ from the Google Play Store. If you′d like to improve your speed and skill in the mental calculations arena, I think this app should be of interest to you. The app can throw you simple calculations that include the basic operations of addition,subtraction,division and multiplication. The application can show you tricks to calculating 52^2 or 125^2 ,for example, under 10 seconds mentally. So, check it out! I′ve seen that the levels of difficulty on the app can go as high as mentally calculating positive integers raised to the power of 9, and also finding 9th roots of positive integers! Yozzia

$${An}\:{Interesting}\:{App}: \\ $$$${I}'{ve}\:{recently}\:{downloaded}\:{the}\:{app}\:{called} \\ $$$$'{Math}\:{Tricks}'\:{from}\:{the}\:{Google}\:{Play}\:{Store}. \\ $$$${If}\:{you}'{d}\:{like}\:{to}\:{improve}\:{your}\:{speed} \\ $$$${and}\:{skill}\:{in}\:{the}\:{mental}\:{calculations} \\ $$$${arena},\:{I}\:{think}\:{this}\:{app}\:{should}\:{be}\:{of} \\ $$$${interest}\:{to}\:{you}.\:{The}\:{app}\:{can}\:{throw}\:{you}\:{simple} \\ $$$${calculations}\:{that}\:{include}\:{the}\:{basic}\:{operations} \\ $$$${of}\:{addition},{subtraction},{division}\:{and} \\ $$$${multiplication}.\:{The}\:{application}\:{can} \\ $$$${show}\:{you}\:{tricks}\:{to}\:{calculating}\:\mathrm{52}^{\mathrm{2}} \:{or} \\ $$$$\mathrm{125}^{\mathrm{2}} ,{for}\:{example},\:{under}\:\mathrm{10}\:{seconds} \\ $$$${mentally}.\:{So},\:{check}\:{it}\:{out}!\:{I}'{ve}\:{seen} \\ $$$${that}\:{the}\:{levels}\:{of}\:{difficulty}\:{on}\:{the}\: \\ $$$${app}\:{can}\:{go}\:{as}\:{high}\:{as}\:{mentally}\:{calculating}\:{positive} \\ $$$${integers}\:{raised}\:{to}\:{the}\:{power}\:{of}\:\mathrm{9}, \\ $$$${and}\:{also}\:{finding}\:\mathrm{9}{th}\:{roots}\:{of}\: \\ $$$${positive}\:{integers}! \\ $$$$ \\ $$$${Yozzia} \\ $$

Question Number 7200    Answers: 1   Comments: 4

Prove that ((sin((Θ/2)))/(((Θ/2)))) = 1

$${Prove}\:{that}\: \\ $$$$\frac{{sin}\left(\frac{\Theta}{\mathrm{2}}\right)}{\left(\frac{\Theta}{\mathrm{2}}\right)}\:\:=\:\:\mathrm{1} \\ $$

Question Number 7196    Answers: 1   Comments: 0

Question Number 7187    Answers: 0   Comments: 0

Prove that ((√(4sin^2 36−1))/2)=cos72.

$${Prove}\:{that}\:\frac{\sqrt{\mathrm{4}{sin}^{\mathrm{2}} \mathrm{36}−\mathrm{1}}}{\mathrm{2}}={cos}\mathrm{72}. \\ $$

Question Number 7193    Answers: 0   Comments: 2

Question Number 7191    Answers: 1   Comments: 0

Evaluate Σ ((sin(3n))/n) from 1 to infinity

$${Evaluate}\:\:\:\:\:\Sigma\:\frac{{sin}\left(\mathrm{3}{n}\right)}{{n}}\:\:\:\:\:{from}\:\:\mathrm{1}\:\:{to}\:\:{infinity}\: \\ $$

Question Number 7178    Answers: 0   Comments: 2

Question Number 7189    Answers: 0   Comments: 2

Evaluate : Σ ((sin(n))/n) , From 1 to infinity.

$${Evaluate}\:\:\::\:\:\:\Sigma\:\frac{{sin}\left({n}\right)}{{n}}\:\:,\:\:\:{From}\:\:\:\mathrm{1}\:{to}\:\:{infinity}. \\ $$

Question Number 7184    Answers: 0   Comments: 0

Show that ∫(2^x /((1+(√5))^x +(3+(√5))^x ))dx=(1/(ln(1+(√5))−ln2))(ln[1+((((√5)−1)/2))^x ]−((((√5)−1)/2))^x )+C

$${Show}\:{that} \\ $$$$\int\frac{\mathrm{2}^{{x}} }{\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)^{{x}} +\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)^{{x}} }{dx}=\frac{\mathrm{1}}{{ln}\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)−{ln}\mathrm{2}}\left({ln}\left[\mathrm{1}+\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right)^{{x}} \right]−\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right)^{{x}} \right)+{C} \\ $$$$ \\ $$

Question Number 7168    Answers: 0   Comments: 2

I have five envelopes numbered 3,4,5,6,7 all hidden in a box, i picked an envelope . If its prime then i get the square of that number in Naira. Otherwise (without replacement) i picked another envelope and then get the sum of the squares of the two numbers picked (in Naira) what is the chance of me getting N25 ?

$${I}\:{have}\:{five}\:{envelopes}\:{numbered}\:\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7}\:{all}\:{hidden}\:{in}\:{a} \\ $$$${box},\:{i}\:{picked}\:{an}\:{envelope}\:.\:\:{If}\:{its}\:{prime}\:{then}\:{i}\:{get}\:{the}\: \\ $$$${square}\:{of}\:{that}\:{number}\:{in}\:{Naira}.\:{Otherwise}\:\left({without}\:\right. \\ $$$$\left.{replacement}\right)\:{i}\:{picked}\:{another}\:{envelope}\:{and}\:{then}\:{get}\:{the} \\ $$$${sum}\:{of}\:{the}\:{squares}\:{of}\:{the}\:{two}\:{numbers}\:{picked}\:\left({in}\:{Naira}\right) \\ $$$${what}\:{is}\:{the}\:{chance}\:{of}\:{me}\:{getting}\:\:{N}\mathrm{25}\:\:? \\ $$$$ \\ $$

Question Number 7165    Answers: 0   Comments: 0

30 teams participated in the football tournament . At the end of the competition it turned out that in Any group of three teams it is possible to single out two teams which score equal point in three games. within this group (3 points are given for the victory, 1 point for the draw , 0 point for the defeat ). what is the least possible number of draws that can occur in such a tournament ? please help me. Please help .. thanks.

$$\mathrm{30}\:{teams}\:{participated}\:{in}\:{the}\:{football}\:{tournament}\:.\:{At}\:{the}\: \\ $$$${end}\:{of}\:{the}\:{competition}\:{it}\:{turned}\:{out}\:{that}\:{in} \\ $$$${Any}\:{group}\:{of}\:{three}\:\:{teams}\:{it}\:{is}\:{possible}\:{to}\:{single}\:{out}\:{two} \\ $$$${teams}\:{which}\:{score}\:{equal}\:{point}\:{in}\:{three}\:{games}.\: \\ $$$${within}\:{this}\:{group}\:\left(\mathrm{3}\:{points}\:{are}\:{given}\:{for}\:{the}\:{victory},\:\right. \\ $$$$\left.\mathrm{1}\:{point}\:{for}\:{the}\:{draw}\:,\:\mathrm{0}\:{point}\:{for}\:{the}\:{defeat}\:\right).\: \\ $$$${what}\:{is}\:{the}\:{least}\:{possible}\:{number}\:{of}\:{draws}\:{that}\:{can}\:{occur} \\ $$$${in}\:{such}\:{a}\:{tournament}\:? \\ $$$$ \\ $$$$ \\ $$$${please}\:{help}\:{me}. \\ $$$${Please}\:{help}\:..\:{thanks}. \\ $$

Question Number 7164    Answers: 1   Comments: 0

Question Number 7163    Answers: 0   Comments: 2

Question Number 7161    Answers: 1   Comments: 3

If ax^2 + bx + c = 0, prove that. x = ((2c)/(− b ± (√(b^2 − 4ac))))

$${If}\:\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0},\:\:{prove}\:{that}. \\ $$$${x}\:=\:\frac{\mathrm{2}{c}}{−\:{b}\:\pm\:\sqrt{{b}^{\mathrm{2}} \:−\:\mathrm{4}{ac}}}\: \\ $$

Question Number 7159    Answers: 0   Comments: 2

log_2 Π_(x=1) ^(2015) Π_(y=1) ^(2015) (1+e^((2𝛑ixy)/(2015)) ) = ?

$$\boldsymbol{{log}}_{\mathrm{2}} \underset{\boldsymbol{{x}}=\mathrm{1}} {\overset{\mathrm{2015}} {\prod}}\:\underset{\boldsymbol{{y}}=\mathrm{1}} {\overset{\mathrm{2015}} {\prod}}\left(\mathrm{1}+\boldsymbol{{e}}^{\frac{\mathrm{2}\boldsymbol{\pi{ixy}}}{\mathrm{2015}}} \right)\:=\:? \\ $$

Question Number 7157    Answers: 1   Comments: 0

If a and b are positive numbers what is the value of ∫_0 ^∞ ((e^(ax) − e^(bx) )/((1 + e^(ax) )(1 + e^(bx) ))) dx

$${If}\:{a}\:{and}\:{b}\:{are}\:{positive}\:{numbers} \\ $$$${what}\:{is}\:{the}\:{value}\:{of}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{{ax}} \:−\:{e}^{{bx}} }{\left(\mathrm{1}\:+\:{e}^{{ax}} \right)\left(\mathrm{1}\:+\:{e}^{{bx}} \right)}\:{dx}\: \\ $$

Question Number 7150    Answers: 0   Comments: 1

Question Number 7149    Answers: 0   Comments: 0

Find last digit P P=(2017^k +2016)(2016^m +2015)(2015^n +2014) where k,m,n∈N Help me!!!

$$\mathrm{Find}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{P} \\ $$$$\:\mathrm{P}=\left(\mathrm{2017}^{\boldsymbol{\mathrm{k}}} +\mathrm{2016}\right)\left(\mathrm{2016}^{\boldsymbol{\mathrm{m}}} +\mathrm{2015}\right)\left(\mathrm{2015}^{\boldsymbol{\mathrm{n}}} +\mathrm{2014}\right) \\ $$$$\mathrm{where}\:\boldsymbol{\mathrm{k}},\boldsymbol{\mathrm{m}},\boldsymbol{\mathrm{n}}\in{N} \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:{Help}\:{me}!!! \\ $$

Question Number 7147    Answers: 0   Comments: 2

Question Number 7142    Answers: 1   Comments: 0

The sides of a triangle are x cm, (x − 4) cm, (x − 8)cm respectively . if the cosine o the largest is (1/5) , calculate the angles of triangle.

$${The}\:{sides}\:{of}\:{a}\:{triangle}\:{are}\:{x}\:{cm},\:\left({x}\:−\:\mathrm{4}\right)\:{cm},\:\left({x}\:−\:\mathrm{8}\right){cm} \\ $$$${respectively}\:.\:{if}\:{the}\:{cosine}\:{o}\:{the}\:{largest}\:{is}\:\frac{\mathrm{1}}{\mathrm{5}}\:,\: \\ $$$${calculate}\:{the}\:{angles}\:{of}\:\:{triangle}. \\ $$$$ \\ $$

Question Number 7139    Answers: 0   Comments: 0

Question Number 7138    Answers: 1   Comments: 0

Question Number 7135    Answers: 0   Comments: 0

Prove that (3/((2)^(1/5) +(3)^(1/5) +(5)^(1/5) )) > (((2)^(1/4) +(3)^(1/4) +(5)^(1/4) )/(((√2)+(√3)+(√5))((2)^(1/3) +(3)^(1/3) +(5)^(1/3) ))) How to prove it ?

$$\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}} \\ $$$$\:\frac{\mathrm{3}}{\sqrt[{\mathrm{5}}]{\mathrm{2}}+\sqrt[{\mathrm{5}}]{\mathrm{3}}+\sqrt[{\mathrm{5}}]{\mathrm{5}}}\:>\:\frac{\sqrt[{\mathrm{4}}]{\mathrm{2}}+\sqrt[{\mathrm{4}}]{\mathrm{3}}+\sqrt[{\mathrm{4}}]{\mathrm{5}}}{\left(\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}+\sqrt{\mathrm{5}}\right)\left(\sqrt[{\mathrm{3}}]{\mathrm{2}}+\sqrt[{\mathrm{3}}]{\mathrm{3}}+\sqrt[{\mathrm{3}}]{\mathrm{5}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:{How}\:{to}\:{prove}\:{it}\:? \\ $$

Question Number 7145    Answers: 0   Comments: 1

  Pg 1952      Pg 1953      Pg 1954      Pg 1955      Pg 1956      Pg 1957      Pg 1958      Pg 1959      Pg 1960      Pg 1961   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com