Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1955

Question Number 12279    Answers: 0   Comments: 4

i guess i posted this question but didnt really get much response. pls help out if 8log_2 x + (x−1)log_x 2 =3^x find x.

$$\mathrm{i}\:\mathrm{guess}\:\mathrm{i}\:\mathrm{posted}\:\mathrm{this}\:\mathrm{question}\:\mathrm{but} \\ $$$$\mathrm{didnt}\:\mathrm{really}\:\mathrm{get}\:\mathrm{much}\:\mathrm{response}. \\ $$$$\mathrm{pls}\:\mathrm{help}\:\mathrm{out} \\ $$$$ \\ $$$$\mathrm{if}\:\mathrm{8log}_{\mathrm{2}} \:\mathrm{x}\:+\:\left(\mathrm{x}−\mathrm{1}\right)\mathrm{log}_{\mathrm{x}} \:\mathrm{2}\:=\mathrm{3}^{\mathrm{x}} \: \\ $$$$\mathrm{find}\:\mathrm{x}. \\ $$

Question Number 12275    Answers: 0   Comments: 0

∮(x)=(x/(1−x)). ∮′(2)=?.

$$\oint\left(\boldsymbol{\mathrm{x}}\right)=\frac{\boldsymbol{\mathrm{x}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}}.\:\:\:\:\:\oint'\left(\mathrm{2}\right)=?. \\ $$

Question Number 12267    Answers: 2   Comments: 0

Find the nth term of the sequence 1) (1/3) , (1/(15)) , (1/(35)) , (1/(63)) , (1/(99)) 2) (1/2), (1/6), (1/(12)), (1/(20)), (1/(30))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sequence} \\ $$$$\left.\mathrm{1}\right)\:\:\:\frac{\mathrm{1}}{\mathrm{3}}\:,\:\frac{\mathrm{1}}{\mathrm{15}}\:,\:\frac{\mathrm{1}}{\mathrm{35}}\:,\:\frac{\mathrm{1}}{\mathrm{63}}\:,\:\frac{\mathrm{1}}{\mathrm{99}} \\ $$$$\left.\mathrm{2}\right)\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{1}}{\mathrm{6}},\:\frac{\mathrm{1}}{\mathrm{12}},\:\frac{\mathrm{1}}{\mathrm{20}},\:\frac{\mathrm{1}}{\mathrm{30}} \\ $$

Question Number 12265    Answers: 0   Comments: 2

Determinant method can be used to solve the system below?, if yes solve by determinant method and if no solve by another method x+y−z=8 2x+y−2z=3 (give clear reason for your answer)

$${Determinant}\:{method}\:{can}\:{be}\:{used}\:{to}\:{solve} \\ $$$${the}\:{system}\:{below}?,\:\mathrm{if}\:\mathrm{yes}\:\mathrm{solve}\:\mathrm{by}\:\mathrm{determinant}\:\mathrm{method}\:\mathrm{and} \\ $$$$\:\mathrm{if}\:\mathrm{no}\:\mathrm{solve}\:\mathrm{by}\:\mathrm{another}\:\mathrm{method} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$${x}+{y}−{z}=\mathrm{8} \\ $$$$\mathrm{2}{x}+{y}−\mathrm{2}{z}=\mathrm{3} \\ $$$$\left({give}\:{clear}\:{reason}\:{for}\:{your}\:{answer}\right) \\ $$

Question Number 12261    Answers: 1   Comments: 0

find the value of a b and c a+b+c=4 a^2 +b^2 +c^2 =66 a^3 +b^3 +c^3 =280

$${find}\:{the}\:{value}\:{of}\:{a}\:{b}\:{and}\:{c} \\ $$$$\:{a}+{b}+{c}=\mathrm{4} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{66} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} =\mathrm{280} \\ $$

Question Number 12257    Answers: 1   Comments: 0

Question Number 12255    Answers: 2   Comments: 0

Question Number 12254    Answers: 0   Comments: 0

Question Number 12246    Answers: 1   Comments: 0

Let g(x) be an ininitely differentiable function , such that g(2x + 6) = g^′ (3x − 1) for all x. given that g(((44)/3)) = 33 . find g′′(8)

$$\mathrm{Let}\:\:\mathrm{g}\left(\mathrm{x}\right)\:\mathrm{be}\:\mathrm{an}\:\mathrm{ininitely}\:\mathrm{differentiable}\:\mathrm{function}\:,\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{g}\left(\mathrm{2x}\:+\:\mathrm{6}\right)\:=\:\mathrm{g}^{'} \left(\mathrm{3x}\:−\:\mathrm{1}\right)\:\mathrm{for}\:\mathrm{all}\:\mathrm{x}. \\ $$$$\mathrm{given}\:\mathrm{that}\:\:\mathrm{g}\left(\frac{\mathrm{44}}{\mathrm{3}}\right)\:=\:\mathrm{33}\:.\:\:\mathrm{find}\:\:\:\mathrm{g}''\left(\mathrm{8}\right) \\ $$

Question Number 12245    Answers: 1   Comments: 0

Solve the differential equation (dy/dx) = ((4x + 2y − 3)/(8x − 4y + 5))

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{4x}\:+\:\mathrm{2y}\:−\:\mathrm{3}}{\mathrm{8x}\:−\:\mathrm{4y}\:+\:\mathrm{5}} \\ $$

Question Number 12228    Answers: 2   Comments: 0

Solve the differential equation (dy/dx) = ((2xy)/(x^2 + y^2 ))

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{2xy}}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} } \\ $$

Question Number 12226    Answers: 2   Comments: 0

Find the nth term of this sequence 3, 18, 45, 84, 135 ...

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}\:\mathrm{of}\:\mathrm{this}\:\mathrm{sequence} \\ $$$$\mathrm{3},\:\mathrm{18},\:\mathrm{45},\:\mathrm{84},\:\mathrm{135}\:... \\ $$

Question Number 12218    Answers: 1   Comments: 3

5!! = ?

$$\mathrm{5}!!\:=\:? \\ $$

Question Number 12209    Answers: 1   Comments: 1

For all n ≥ 1 , n ∈ Z, prove that, p(n) : 4 + 8 + ... + 4n = 2n(n + 1)

$$\mathrm{For}\:\mathrm{all}\:\mathrm{n}\:\geqslant\:\mathrm{1}\:,\:\:\mathrm{n}\:\in\:\mathrm{Z},\:\:\mathrm{prove}\:\mathrm{that},\: \\ $$$$\mathrm{p}\left(\mathrm{n}\right)\::\:\mathrm{4}\:+\:\mathrm{8}\:+\:...\:+\:\mathrm{4n}\:=\:\mathrm{2n}\left(\mathrm{n}\:+\:\mathrm{1}\right) \\ $$

Question Number 12207    Answers: 0   Comments: 0

Multi−point ∮(x)=x^3 well be equal to the values of the function ant its harvest.

$$\boldsymbol{\mathrm{Multi}}−\boldsymbol{\mathrm{point}}\:\:\:\oint\left(\boldsymbol{\mathrm{x}}\right)=\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:\:\boldsymbol{\mathrm{well}}\:\boldsymbol{\mathrm{be}} \\ $$$$\boldsymbol{\mathrm{equal}}\:\:\boldsymbol{\mathrm{to}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{values}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{function}} \\ $$$$\boldsymbol{\mathrm{ant}}\:\:\boldsymbol{\mathrm{its}}\:\:\boldsymbol{\mathrm{harvest}}. \\ $$

Question Number 12197    Answers: 0   Comments: 8

Question Number 12190    Answers: 1   Comments: 0

Show that, 0.9999999999999 ...... ∞ is equal to 1

$$\mathrm{Show}\:\mathrm{that},\:\:\mathrm{0}.\mathrm{9999999999999}\:......\:\infty\:\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{1} \\ $$

Question Number 12189    Answers: 1   Comments: 0

Find the fraction to the below deimal 4.4444444444444....... ∞

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{fraction}\:\mathrm{to}\:\mathrm{the}\:\mathrm{below}\:\mathrm{deimal} \\ $$$$\mathrm{4}.\mathrm{4444444444444}.......\:\infty \\ $$

Question Number 12185    Answers: 1   Comments: 0

A particle is moving with velocity v=K(yi^ +xj^ ) prove that y^2 =x^2 +constant

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{velocity} \\ $$$${v}={K}\left({y}\hat {{i}}+{x}\hat {{j}}\right) \\ $$$${prove}\:{that} \\ $$$${y}^{\mathrm{2}} ={x}^{\mathrm{2}} +{constant} \\ $$

Question Number 12201    Answers: 3   Comments: 0

∫(1/(sin(x)))dx

$$\int\frac{\mathrm{1}}{{sin}\left({x}\right)}{dx} \\ $$

Question Number 12291    Answers: 1   Comments: 0

Question Number 12181    Answers: 0   Comments: 0

The value of xyz is 15/2 or 18/5 according as the series a,x,y,z,b are in an A.P. or H.P., then ′a+b′ equals where a, b are +ve integers.

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:{xyz}\:\mathrm{is}\:\mathrm{15}/\mathrm{2}\:\mathrm{or}\:\mathrm{18}/\mathrm{5} \\ $$$$\mathrm{according}\:\mathrm{as}\:\mathrm{the}\:\mathrm{series}\:{a},{x},{y},{z},{b}\:\mathrm{are} \\ $$$$\mathrm{in}\:\mathrm{an}\:\mathrm{A}.\mathrm{P}.\:\mathrm{or}\:\mathrm{H}.\mathrm{P}.,\:\mathrm{then}\:'{a}+{b}'\:\mathrm{equals} \\ $$$$\mathrm{where}\:{a},\:{b}\:\mathrm{are}\:+\mathrm{ve}\:\mathrm{integers}. \\ $$

Question Number 12173    Answers: 2   Comments: 0

Prove that ∀x∈[1,2] ⇒ 1−x^2 ≤ x

$$\boldsymbol{{Prove}}\:\boldsymbol{{that}}\:\forall\boldsymbol{{x}}\in\left[\mathrm{1},\mathrm{2}\right] \\ $$$$\Rightarrow\:\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} \:\leqslant\:\boldsymbol{{x}} \\ $$

Question Number 12171    Answers: 1   Comments: 0

∫x^2 ×sgn(2x)dx=?

$$\int\mathrm{x}^{\mathrm{2}} ×\mathrm{sgn}\left(\mathrm{2x}\right)\mathrm{dx}=? \\ $$

Question Number 12170    Answers: 1   Comments: 0

In any △ABC, 2(bc cos A+ca cos B+ab cos C) =

$$\mathrm{In}\:\mathrm{any}\:\bigtriangleup{ABC}, \\ $$$$\:\mathrm{2}\left({bc}\:\mathrm{cos}\:{A}+{ca}\:\mathrm{cos}\:{B}+{ab}\:\mathrm{cos}\:{C}\right)\:= \\ $$

Question Number 12169    Answers: 1   Comments: 0

If tan α equals the integral solution of the inequality 4x^2 −16x+15<0 and cos β equals to the slope of the bisector of the first quadrant, then sin (α+β) sin (α−β) is equal to

$$\mathrm{If}\:\:\mathrm{tan}\:\alpha\:\mathrm{equals}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{solution}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{inequality}\:\:\mathrm{4}{x}^{\mathrm{2}} −\mathrm{16}{x}+\mathrm{15}<\mathrm{0}\:\mathrm{and}\: \\ $$$$\mathrm{cos}\:\beta\:\:\mathrm{equals}\:\mathrm{to}\:\mathrm{the}\:\mathrm{slope}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bisector} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{quadrant},\:\mathrm{then}\: \\ $$$$\mathrm{sin}\:\left(\alpha+\beta\right)\:\mathrm{sin}\:\left(\alpha−\beta\right)\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

  Pg 1950      Pg 1951      Pg 1952      Pg 1953      Pg 1954      Pg 1955      Pg 1956      Pg 1957      Pg 1958      Pg 1959   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com