Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1955

Question Number 12552    Answers: 1   Comments: 0

Find the expression. ((x^2 +2x+8)/(x^2 +2x+3.))

$$\boldsymbol{\mathrm{Find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{expression}}. \\ $$$$\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{8}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{3}.} \\ $$

Question Number 12551    Answers: 1   Comments: 0

This y=((2cos^2 x+sin2x)/(2sin^2 x)) find the smallest value of the function.

$$\boldsymbol{\mathrm{This}}\:\:\boldsymbol{\mathrm{y}}=\frac{\mathrm{2}\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{sin}}\mathrm{2}\boldsymbol{\mathrm{x}}}{\mathrm{2}\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}}\:\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{smallest}}\:\:\boldsymbol{\mathrm{value}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{function}}. \\ $$

Question Number 12547    Answers: 1   Comments: 0

This y=sin(x/2) find the range of the function.

$$\boldsymbol{\mathrm{This}} \\ $$$$\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\:\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{range}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\: \\ $$$$\boldsymbol{\mathrm{function}}. \\ $$

Question Number 12543    Answers: 2   Comments: 0

This x^2 −𝛂x+𝛂−1=0. the roots of the equation x_1 and x_2 a what′s the value of x_1 ^2 +x_2 ^2 this collection of smille(minimum) value.

$$\boldsymbol{\mathrm{This}} \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\alpha\mathrm{x}}+\boldsymbol{\alpha}−\mathrm{1}=\mathrm{0}. \\ $$$$\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{roots}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{equation}}\:\:\boldsymbol{\mathrm{x}}_{\mathrm{1}} \:\:\boldsymbol{\mathrm{and}}\:\:\boldsymbol{\mathrm{x}}_{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{a}}\:\:\boldsymbol{\mathrm{what}}'\boldsymbol{\mathrm{s}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{value}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{x}}_{\mathrm{1}} ^{\mathrm{2}} +\boldsymbol{\mathrm{x}}_{\mathrm{2}} ^{\mathrm{2}} \:\:\boldsymbol{\mathrm{this}}\:\:\boldsymbol{\mathrm{collection}}\:\:\boldsymbol{\mathrm{of}} \\ $$$$\boldsymbol{\mathrm{smille}}\left(\boldsymbol{\mathrm{minimum}}\right)\:\:\boldsymbol{\mathrm{value}}. \\ $$

Question Number 12540    Answers: 0   Comments: 0

prove that lim_(x→2) (√x)=(√2)

$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{2}} {\boldsymbol{{lim}}}\sqrt{\boldsymbol{{x}}}=\sqrt{\mathrm{2}} \\ $$

Question Number 12535    Answers: 1   Comments: 0

Use the reduction formular. I_n = ∫sin^n (x) dx = −(1/n) sin^(n − 1) (x)cos(x) + ((n − 1)/n)I_n − 2 , to evaluate I_(n ) = ∫sin^6 (x) dx

$$\mathrm{Use}\:\mathrm{the}\:\mathrm{reduction}\:\mathrm{formular}. \\ $$$$\mathrm{I}_{\mathrm{n}} \:=\:\int\mathrm{sin}^{\mathrm{n}} \left(\mathrm{x}\right)\:\mathrm{dx}\:=\:−\frac{\mathrm{1}}{\mathrm{n}}\:\mathrm{sin}^{\mathrm{n}\:−\:\mathrm{1}} \left(\mathrm{x}\right)\mathrm{cos}\left(\mathrm{x}\right)\:+\:\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}}\mathrm{I}_{\mathrm{n}} \:−\:\mathrm{2}\:,\:\mathrm{to}\:\mathrm{evaluate}\: \\ $$$$\mathrm{I}_{\mathrm{n}\:} =\:\int\mathrm{sin}^{\mathrm{6}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 12534    Answers: 1   Comments: 0

please help me .How can resolve this system? {_((1+(√2))x+y=1) ^(x^2 +y^2 =1)

$${please}\:{help}\:{me}\:.{How}\:{can}\:{resolve}\:{this}\:{system}? \\ $$$$\left\{_{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){x}+{y}=\mathrm{1}} ^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}} \right. \\ $$

Question Number 12533    Answers: 1   Comments: 0

compute ∫sec^5 (x) tan^3 (x) dx

$$\mathrm{compute} \\ $$$$\int\mathrm{sec}^{\mathrm{5}} \left(\mathrm{x}\right)\:\mathrm{tan}^{\mathrm{3}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 12532    Answers: 1   Comments: 0

Solve the equation : p tan^(−1) (2x) + tan^(−1) (3x) = (π/4)

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\::\:\:\mathrm{p} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2x}\right)\:+\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3x}\right)\:=\:\frac{\pi}{\mathrm{4}} \\ $$

Question Number 12525    Answers: 2   Comments: 0

Use the substitution t = sin(θ) to solve the equation 2sin^4 (θ) − 9sin^3 (θ) + 14sin^2 (θ) − 9sin(θ) + 2 = 0, for possible values of θ in the range 0 ≤ θ ≤ 2π

$$\mathrm{Use}\:\mathrm{the}\:\mathrm{substitution}\:\:\mathrm{t}\:=\:\mathrm{sin}\left(\theta\right)\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{2sin}^{\mathrm{4}} \left(\theta\right)\:−\:\mathrm{9sin}^{\mathrm{3}} \left(\theta\right)\:+\:\mathrm{14sin}^{\mathrm{2}} \left(\theta\right)\:−\:\mathrm{9sin}\left(\theta\right)\:+\:\mathrm{2}\:=\:\mathrm{0},\:\: \\ $$$$\mathrm{for}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\theta\:\mathrm{in}\:\mathrm{the}\:\mathrm{range}\:\:\mathrm{0}\:\leqslant\:\theta\:\leqslant\:\mathrm{2}\pi \\ $$

Question Number 12517    Answers: 1   Comments: 0

A spring stretches by 15cm when a mass of 300g hangs down from it. if the spring is then strethed an additional 10cm and realeased, calculate (a) the spring constant (b) Angular velocity (c) The amplitude of the oscillation (d) The maximum velocity (e) The maximum acceleration of the mass (f) The period T and frequency f

$$\mathrm{A}\:\mathrm{spring}\:\mathrm{stretches}\:\mathrm{by}\:\mathrm{15cm}\:\mathrm{when}\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{300g}\:\mathrm{hangs}\:\mathrm{down}\:\mathrm{from}\:\mathrm{it}. \\ $$$$\mathrm{if}\:\mathrm{the}\:\mathrm{spring}\:\mathrm{is}\:\mathrm{then}\:\mathrm{strethed}\:\mathrm{an}\:\mathrm{additional}\:\mathrm{10cm}\:\mathrm{and}\:\mathrm{realeased},\:\mathrm{calculate} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{the}\:\mathrm{spring}\:\mathrm{constant} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Angular}\:\mathrm{velocity} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{The}\:\mathrm{amplitude}\:\mathrm{of}\:\mathrm{the}\:\mathrm{oscillation} \\ $$$$\left(\mathrm{d}\right)\:\mathrm{The}\:\mathrm{maximum}\:\mathrm{velocity} \\ $$$$\left(\mathrm{e}\right)\:\mathrm{The}\:\mathrm{maximum}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{mass} \\ $$$$\left(\mathrm{f}\right)\:\mathrm{The}\:\mathrm{period}\:\mathrm{T}\:\mathrm{and}\:\mathrm{frequency}\:\mathrm{f} \\ $$

Question Number 12513    Answers: 1   Comments: 0

lim_(x→∞) x^2 [sec ((2/x)) − 1]

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}^{\mathrm{2}} \:\left[\mathrm{sec}\:\left(\frac{\mathrm{2}}{{x}}\right)\:−\:\mathrm{1}\right] \\ $$

Question Number 12506    Answers: 2   Comments: 0

A wooden stick was broken randomly into three pieces. What is the probability that a triangle can be built from those three parts?

$$\mathrm{A}\:\mathrm{wooden}\:\mathrm{stick}\:\mathrm{was}\:\mathrm{broken}\:\mathrm{randomly}\:\mathrm{into} \\ $$$$\mathrm{three}\:\mathrm{pieces}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{built}\:\mathrm{from}\:\mathrm{those}\:\mathrm{three}\:\mathrm{parts}? \\ $$

Question Number 12500    Answers: 1   Comments: 0

Please help explain how to solve ∫e^(1/x) dx

$$\mathrm{Please}\:\mathrm{help}\:\mathrm{explain}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\int{e}^{\frac{\mathrm{1}}{{x}}} {dx} \\ $$

Question Number 12495    Answers: 1   Comments: 3

find the real values of x for which the function f(x)=(x^2 /(x^2 +3x+2))

$${find}\:{the}\:{real}\:{values}\:{of}\:{x}\:{for}\:{which} \\ $$$${the}\:{function}\:{f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}} \\ $$$$ \\ $$

Question Number 12492    Answers: 2   Comments: 1

this is calculus evaluate lim_(x→0) ((sin3xsin5x)/(7x^2 ))

$${this}\:{is}\:{calculus}\: \\ $$$${evaluate}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{sin}\mathrm{3}{xsin}\mathrm{5}{x}}{\mathrm{7}{x}^{\mathrm{2}} } \\ $$

Question Number 12490    Answers: 0   Comments: 1

328976/256

$$\mathrm{328976}/\mathrm{256} \\ $$

Question Number 12489    Answers: 1   Comments: 0

log_2 x + log_(1/x) (1/2) ≥ 0 x = ?

$$\mathrm{log}_{\mathrm{2}} \:{x}\:+\:\mathrm{log}_{\mathrm{1}/{x}} \:\frac{\mathrm{1}}{\mathrm{2}}\:\geqslant\:\mathrm{0} \\ $$$${x}\:=\:? \\ $$

Question Number 12487    Answers: 0   Comments: 4

Someone has been solved Goldbach′s Conjecture??

$$\mathrm{Someone}\:\mathrm{has}\:\mathrm{been}\:\mathrm{solved}\:\mathrm{Goldbach}'\mathrm{s} \\ $$$$\mathrm{Conjecture}?? \\ $$

Question Number 12499    Answers: 1   Comments: 0

Water flows out of a tank through a hole of diameter 2cm above the hole (1) Determine the velocity of outflow (2) The rate of outflow when the level of the water in the tank is 2cm above the hole.

$$\mathrm{Water}\:\mathrm{flows}\:\mathrm{out}\:\mathrm{of}\:\mathrm{a}\:\mathrm{tank}\:\mathrm{through}\:\mathrm{a}\:\mathrm{hole}\:\mathrm{of}\:\mathrm{diameter}\:\mathrm{2cm}\:\mathrm{above}\:\mathrm{the}\:\mathrm{hole} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{outflow} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{The}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{outflow}\:\mathrm{when}\:\mathrm{the}\:\mathrm{level}\:\mathrm{of}\:\mathrm{the}\:\mathrm{water}\:\mathrm{in}\:\mathrm{the}\:\mathrm{tank}\:\mathrm{is}\:\mathrm{2cm}\:\mathrm{above} \\ $$$$\mathrm{the}\:\mathrm{hole}.\: \\ $$

Question Number 12470    Answers: 1   Comments: 0

((0.03125))^(1/5) =

$$\sqrt[{\mathrm{5}}]{\mathrm{0}.\mathrm{03125}}\:=\: \\ $$

Question Number 12464    Answers: 3   Comments: 0

∫ sin^3 (7x) dx

$$\int\:\mathrm{sin}^{\mathrm{3}} \left(\mathrm{7x}\right)\:\mathrm{dx} \\ $$

Question Number 12463    Answers: 1   Comments: 0

∫ ((x + 1)/((x^2 + 2x + 3)^(2/3) )) dx

$$\int\:\:\frac{\mathrm{x}\:+\:\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2x}\:+\:\mathrm{3}\right)^{\mathrm{2}/\mathrm{3}} }\:\:\mathrm{dx} \\ $$

Question Number 12446    Answers: 2   Comments: 1

find x (√x) = 8^x

$$\mathrm{find}\:\mathrm{x} \\ $$$$\sqrt{\mathrm{x}}\:\:=\:\:\mathrm{8}^{\mathrm{x}} \\ $$

Question Number 12445    Answers: 0   Comments: 0

Question Number 12442    Answers: 2   Comments: 0

Solve: z^4 = − 16

$$\mathrm{Solve}:\:\:\:\mathrm{z}^{\mathrm{4}} \:=\:−\:\mathrm{16} \\ $$

  Pg 1950      Pg 1951      Pg 1952      Pg 1953      Pg 1954      Pg 1955      Pg 1956      Pg 1957      Pg 1958      Pg 1959   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com