Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1955

Question Number 12577    Answers: 2   Comments: 0

Find the area generated when the curve x = a(θ − sinθ), (1 − cosθ) θ = 0, θ = π rotates about x−axis through 2π radian. Note: 1 − cosθ = 2 sin^2 ((θ/2))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{generated}\:\mathrm{when}\:\mathrm{the}\:\mathrm{curve}\:\:\mathrm{x}\:=\:\mathrm{a}\left(\theta\:−\:\mathrm{sin}\theta\right),\:\left(\mathrm{1}\:−\:\mathrm{cos}\theta\right) \\ $$$$\theta\:=\:\mathrm{0},\:\theta\:=\:\pi\:\:\mathrm{rotates}\:\mathrm{about}\:\mathrm{x}−\mathrm{axis}\:\mathrm{through}\:\mathrm{2}\pi\:\mathrm{radian}. \\ $$$$\mathrm{Note}:\:\mathrm{1}\:−\:\mathrm{cos}\theta\:=\:\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right) \\ $$

Question Number 12576    Answers: 1   Comments: 0

Given two functions f(x) and g(x) with f(1) = 7, g(2) = 1 , f′(1) = 204 and g′(x) = 22. What is the derivative of f(g(x)) at x = 2

$$\mathrm{Given}\:\mathrm{two}\:\mathrm{functions}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)\:\mathrm{with}\:\mathrm{f}\left(\mathrm{1}\right)\:=\:\mathrm{7},\:\mathrm{g}\left(\mathrm{2}\right)\:=\:\mathrm{1}\:,\:\mathrm{f}'\left(\mathrm{1}\right)\:=\:\mathrm{204} \\ $$$$\mathrm{and}\:\mathrm{g}'\left(\mathrm{x}\right)\:=\:\mathrm{22}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{of}\:\:\mathrm{f}\left(\mathrm{g}\left(\mathrm{x}\right)\right)\:\mathrm{at}\:\mathrm{x}\:=\:\mathrm{2} \\ $$

Question Number 12572    Answers: 2   Comments: 1

prove that if, sin(θ) = ((1 − x)/(1 + x)) then tan((x/4) − (θ/2)) = (√x)

$$\mathrm{prove}\:\mathrm{that}\:\mathrm{if}, \\ $$$$\mathrm{sin}\left(\theta\right)\:=\:\frac{\mathrm{1}\:−\:\mathrm{x}}{\mathrm{1}\:+\:\mathrm{x}}\:\:\:\:\:\mathrm{then}\:\:\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{4}}\:−\:\frac{\theta}{\mathrm{2}}\right)\:=\:\sqrt{\mathrm{x}} \\ $$

Question Number 12569    Answers: 0   Comments: 0

tank you

$${tank}\:{you} \\ $$

Question Number 12566    Answers: 1   Comments: 0

we give U_1 ,U_2 ,U_3 the terms of a geometric sequence .Determine U_1 ,U_2 ,U_3 such that : { ((U_1 .U_2 .U_3 =64)),((U_1 ^2 +U_2 ^2 +U_3 ^2 =84)) :}

$${we}\:{give}\:{U}_{\mathrm{1}} ,{U}_{\mathrm{2}} ,{U}_{\mathrm{3}} \:{the}\:{terms}\:{of}\:{a}\:{geometric}\:{sequence} \\ $$$$.{Determine}\:{U}_{\mathrm{1}} ,{U}_{\mathrm{2}} ,{U}_{\mathrm{3}} \:{such}\:{that}\:: \\ $$$$ \\ $$$$\begin{cases}{{U}_{\mathrm{1}} .{U}_{\mathrm{2}} .{U}_{\mathrm{3}} =\mathrm{64}}\\{{U}_{\mathrm{1}} ^{\mathrm{2}} +{U}_{\mathrm{2}} ^{\mathrm{2}} +{U}_{\mathrm{3}} ^{\mathrm{2}} =\mathrm{84}}\end{cases} \\ $$$$ \\ $$

Question Number 12562    Answers: 1   Comments: 1

y=−(x^3 /3)+2x^2 −3x maximum−minimum=?

$$\boldsymbol{\mathrm{y}}=−\frac{\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\mathrm{3}}+\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{3}\boldsymbol{\mathrm{x}} \\ $$$$\boldsymbol{\mathrm{maximum}}−\boldsymbol{\mathrm{minimum}}=? \\ $$

Question Number 12561    Answers: 0   Comments: 0

Prove mean, expected mean of binomial and bernoulli distribution

$$\mathrm{Prove}\:\mathrm{mean},\:\mathrm{expected}\:\mathrm{mean}\:\mathrm{of}\:\mathrm{binomial}\:\mathrm{and}\:\mathrm{bernoulli}\:\mathrm{distribution}\: \\ $$

Question Number 12558    Answers: 1   Comments: 0

This y=−x^2 +6x−12 find the values of the function area.

$$\boldsymbol{\mathrm{This}}\:\: \\ $$$$\boldsymbol{\mathrm{y}}=−\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{\mathrm{x}}−\mathrm{12}\:\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{values}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{function}}\:\boldsymbol{\mathrm{area}}. \\ $$

Question Number 12553    Answers: 0   Comments: 0

Using Laplace Transform, solve f(t) = ((sin 3t)/t)

$$\mathrm{Using}\:\mathrm{Laplace}\:\mathrm{Transform},\:\mathrm{solve} \\ $$$${f}\left({t}\right)\:=\:\frac{\mathrm{sin}\:\mathrm{3}{t}}{{t}} \\ $$

Question Number 12552    Answers: 1   Comments: 0

Find the expression. ((x^2 +2x+8)/(x^2 +2x+3.))

$$\boldsymbol{\mathrm{Find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{expression}}. \\ $$$$\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{8}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{3}.} \\ $$

Question Number 12551    Answers: 1   Comments: 0

This y=((2cos^2 x+sin2x)/(2sin^2 x)) find the smallest value of the function.

$$\boldsymbol{\mathrm{This}}\:\:\boldsymbol{\mathrm{y}}=\frac{\mathrm{2}\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{sin}}\mathrm{2}\boldsymbol{\mathrm{x}}}{\mathrm{2}\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}}\:\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{smallest}}\:\:\boldsymbol{\mathrm{value}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{function}}. \\ $$

Question Number 12547    Answers: 1   Comments: 0

This y=sin(x/2) find the range of the function.

$$\boldsymbol{\mathrm{This}} \\ $$$$\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\:\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{range}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\: \\ $$$$\boldsymbol{\mathrm{function}}. \\ $$

Question Number 12543    Answers: 2   Comments: 0

This x^2 −𝛂x+𝛂−1=0. the roots of the equation x_1 and x_2 a what′s the value of x_1 ^2 +x_2 ^2 this collection of smille(minimum) value.

$$\boldsymbol{\mathrm{This}} \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\alpha\mathrm{x}}+\boldsymbol{\alpha}−\mathrm{1}=\mathrm{0}. \\ $$$$\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{roots}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{equation}}\:\:\boldsymbol{\mathrm{x}}_{\mathrm{1}} \:\:\boldsymbol{\mathrm{and}}\:\:\boldsymbol{\mathrm{x}}_{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{a}}\:\:\boldsymbol{\mathrm{what}}'\boldsymbol{\mathrm{s}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{value}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{x}}_{\mathrm{1}} ^{\mathrm{2}} +\boldsymbol{\mathrm{x}}_{\mathrm{2}} ^{\mathrm{2}} \:\:\boldsymbol{\mathrm{this}}\:\:\boldsymbol{\mathrm{collection}}\:\:\boldsymbol{\mathrm{of}} \\ $$$$\boldsymbol{\mathrm{smille}}\left(\boldsymbol{\mathrm{minimum}}\right)\:\:\boldsymbol{\mathrm{value}}. \\ $$

Question Number 12540    Answers: 0   Comments: 0

prove that lim_(x→2) (√x)=(√2)

$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{2}} {\boldsymbol{{lim}}}\sqrt{\boldsymbol{{x}}}=\sqrt{\mathrm{2}} \\ $$

Question Number 12535    Answers: 1   Comments: 0

Use the reduction formular. I_n = ∫sin^n (x) dx = −(1/n) sin^(n − 1) (x)cos(x) + ((n − 1)/n)I_n − 2 , to evaluate I_(n ) = ∫sin^6 (x) dx

$$\mathrm{Use}\:\mathrm{the}\:\mathrm{reduction}\:\mathrm{formular}. \\ $$$$\mathrm{I}_{\mathrm{n}} \:=\:\int\mathrm{sin}^{\mathrm{n}} \left(\mathrm{x}\right)\:\mathrm{dx}\:=\:−\frac{\mathrm{1}}{\mathrm{n}}\:\mathrm{sin}^{\mathrm{n}\:−\:\mathrm{1}} \left(\mathrm{x}\right)\mathrm{cos}\left(\mathrm{x}\right)\:+\:\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}}\mathrm{I}_{\mathrm{n}} \:−\:\mathrm{2}\:,\:\mathrm{to}\:\mathrm{evaluate}\: \\ $$$$\mathrm{I}_{\mathrm{n}\:} =\:\int\mathrm{sin}^{\mathrm{6}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 12534    Answers: 1   Comments: 0

please help me .How can resolve this system? {_((1+(√2))x+y=1) ^(x^2 +y^2 =1)

$${please}\:{help}\:{me}\:.{How}\:{can}\:{resolve}\:{this}\:{system}? \\ $$$$\left\{_{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){x}+{y}=\mathrm{1}} ^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}} \right. \\ $$

Question Number 12533    Answers: 1   Comments: 0

compute ∫sec^5 (x) tan^3 (x) dx

$$\mathrm{compute} \\ $$$$\int\mathrm{sec}^{\mathrm{5}} \left(\mathrm{x}\right)\:\mathrm{tan}^{\mathrm{3}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 12532    Answers: 1   Comments: 0

Solve the equation : p tan^(−1) (2x) + tan^(−1) (3x) = (π/4)

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\::\:\:\mathrm{p} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2x}\right)\:+\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3x}\right)\:=\:\frac{\pi}{\mathrm{4}} \\ $$

Question Number 12525    Answers: 2   Comments: 0

Use the substitution t = sin(θ) to solve the equation 2sin^4 (θ) − 9sin^3 (θ) + 14sin^2 (θ) − 9sin(θ) + 2 = 0, for possible values of θ in the range 0 ≤ θ ≤ 2π

$$\mathrm{Use}\:\mathrm{the}\:\mathrm{substitution}\:\:\mathrm{t}\:=\:\mathrm{sin}\left(\theta\right)\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{2sin}^{\mathrm{4}} \left(\theta\right)\:−\:\mathrm{9sin}^{\mathrm{3}} \left(\theta\right)\:+\:\mathrm{14sin}^{\mathrm{2}} \left(\theta\right)\:−\:\mathrm{9sin}\left(\theta\right)\:+\:\mathrm{2}\:=\:\mathrm{0},\:\: \\ $$$$\mathrm{for}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\theta\:\mathrm{in}\:\mathrm{the}\:\mathrm{range}\:\:\mathrm{0}\:\leqslant\:\theta\:\leqslant\:\mathrm{2}\pi \\ $$

Question Number 12517    Answers: 1   Comments: 0

A spring stretches by 15cm when a mass of 300g hangs down from it. if the spring is then strethed an additional 10cm and realeased, calculate (a) the spring constant (b) Angular velocity (c) The amplitude of the oscillation (d) The maximum velocity (e) The maximum acceleration of the mass (f) The period T and frequency f

$$\mathrm{A}\:\mathrm{spring}\:\mathrm{stretches}\:\mathrm{by}\:\mathrm{15cm}\:\mathrm{when}\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{300g}\:\mathrm{hangs}\:\mathrm{down}\:\mathrm{from}\:\mathrm{it}. \\ $$$$\mathrm{if}\:\mathrm{the}\:\mathrm{spring}\:\mathrm{is}\:\mathrm{then}\:\mathrm{strethed}\:\mathrm{an}\:\mathrm{additional}\:\mathrm{10cm}\:\mathrm{and}\:\mathrm{realeased},\:\mathrm{calculate} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{the}\:\mathrm{spring}\:\mathrm{constant} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Angular}\:\mathrm{velocity} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{The}\:\mathrm{amplitude}\:\mathrm{of}\:\mathrm{the}\:\mathrm{oscillation} \\ $$$$\left(\mathrm{d}\right)\:\mathrm{The}\:\mathrm{maximum}\:\mathrm{velocity} \\ $$$$\left(\mathrm{e}\right)\:\mathrm{The}\:\mathrm{maximum}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{mass} \\ $$$$\left(\mathrm{f}\right)\:\mathrm{The}\:\mathrm{period}\:\mathrm{T}\:\mathrm{and}\:\mathrm{frequency}\:\mathrm{f} \\ $$

Question Number 12513    Answers: 1   Comments: 0

lim_(x→∞) x^2 [sec ((2/x)) − 1]

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}^{\mathrm{2}} \:\left[\mathrm{sec}\:\left(\frac{\mathrm{2}}{{x}}\right)\:−\:\mathrm{1}\right] \\ $$

Question Number 12506    Answers: 2   Comments: 0

A wooden stick was broken randomly into three pieces. What is the probability that a triangle can be built from those three parts?

$$\mathrm{A}\:\mathrm{wooden}\:\mathrm{stick}\:\mathrm{was}\:\mathrm{broken}\:\mathrm{randomly}\:\mathrm{into} \\ $$$$\mathrm{three}\:\mathrm{pieces}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{built}\:\mathrm{from}\:\mathrm{those}\:\mathrm{three}\:\mathrm{parts}? \\ $$

Question Number 12500    Answers: 1   Comments: 0

Please help explain how to solve ∫e^(1/x) dx

$$\mathrm{Please}\:\mathrm{help}\:\mathrm{explain}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\int{e}^{\frac{\mathrm{1}}{{x}}} {dx} \\ $$

Question Number 12495    Answers: 1   Comments: 3

find the real values of x for which the function f(x)=(x^2 /(x^2 +3x+2))

$${find}\:{the}\:{real}\:{values}\:{of}\:{x}\:{for}\:{which} \\ $$$${the}\:{function}\:{f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}} \\ $$$$ \\ $$

Question Number 12492    Answers: 2   Comments: 1

this is calculus evaluate lim_(x→0) ((sin3xsin5x)/(7x^2 ))

$${this}\:{is}\:{calculus}\: \\ $$$${evaluate}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{sin}\mathrm{3}{xsin}\mathrm{5}{x}}{\mathrm{7}{x}^{\mathrm{2}} } \\ $$

Question Number 12490    Answers: 0   Comments: 1

328976/256

$$\mathrm{328976}/\mathrm{256} \\ $$

  Pg 1950      Pg 1951      Pg 1952      Pg 1953      Pg 1954      Pg 1955      Pg 1956      Pg 1957      Pg 1958      Pg 1959   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com