Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1955

Question Number 12814    Answers: 1   Comments: 2

Question Number 12812    Answers: 1   Comments: 0

Question Number 12804    Answers: 1   Comments: 3

Question Number 12801    Answers: 1   Comments: 0

Question Number 12797    Answers: 1   Comments: 2

1 + x + x^2 + ... x^(49) = (1/2)(x^(49) − (1/x)) Find the value of x

$$\mathrm{1}\:+\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{2}} \:+\:...\:\mathrm{x}^{\mathrm{49}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{x}^{\mathrm{49}} \:−\:\frac{\mathrm{1}}{\mathrm{x}}\right) \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$

Question Number 12796    Answers: 1   Comments: 0

The sum of two positive numbers is 20. find the numbers (i) If their product is maximum (ii) If the sum of their square is maximum (iii) If the product of the square of one and the cube of the other is maximum

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{positive}\:\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{20}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{numbers} \\ $$$$\left(\mathrm{i}\right)\:\:\mathrm{If}\:\mathrm{their}\:\mathrm{product}\:\mathrm{is}\:\mathrm{maximum} \\ $$$$\left(\mathrm{ii}\right)\:\:\mathrm{If}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{square}\:\mathrm{is}\:\mathrm{maximum} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{If}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}\:\mathrm{of}\:\mathrm{one}\:\mathrm{and}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{is}\:\mathrm{maximum} \\ $$

Question Number 12794    Answers: 0   Comments: 0

Let R be a cummutative ring with 1, and a,b∈R. suppose a is ivertible and b is nilpotent. Show that a + b is ivertible.

$$\mathrm{Let}\:\mathrm{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{cummutative}\:\mathrm{ring}\:\mathrm{with}\:\mathrm{1},\:\mathrm{and}\:\:\mathrm{a},\mathrm{b}\in\mathrm{R}.\:\mathrm{suppose}\:\mathrm{a}\:\mathrm{is}\:\mathrm{ivertible}\:\mathrm{and} \\ $$$$\mathrm{b}\:\mathrm{is}\:\mathrm{nilpotent}.\:\mathrm{Show}\:\mathrm{that}\:\:\mathrm{a}\:+\:\mathrm{b}\:\:\mathrm{is}\:\mathrm{ivertible}. \\ $$

Question Number 12773    Answers: 1   Comments: 0

Question Number 12768    Answers: 1   Comments: 0

∫ ((sec x)/(tan^2 x)) dx

$$\int\:\frac{\mathrm{sec}\:{x}}{\mathrm{tan}^{\mathrm{2}} \:{x}}\:{dx} \\ $$

Question Number 12766    Answers: 1   Comments: 0

∫ (dx/(1 + tan x))

$$\int\:\frac{{dx}}{\mathrm{1}\:+\:\mathrm{tan}\:{x}} \\ $$

Question Number 12763    Answers: 0   Comments: 0

Solve simultaneously 2x + y − z = 8 ........... equation (i) x^2 − y^2 + 2z^2 = 14 .......... equation (ii) 3x^3 + 4y^3 + z^3 = 195 ........... equation (iii)

$$\mathrm{Solve}\:\mathrm{simultaneously} \\ $$$$\mathrm{2x}\:+\:\mathrm{y}\:−\:\mathrm{z}\:=\:\mathrm{8}\:\:\:\:\:\:\:\:...........\:\mathrm{equation}\:\left(\mathrm{i}\right) \\ $$$$\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{2z}^{\mathrm{2}} \:=\:\mathrm{14}\:\:\:\:\:\:\:..........\:\mathrm{equation}\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{3x}^{\mathrm{3}} \:+\:\mathrm{4y}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{3}} \:=\:\mathrm{195}\:\:\:\:\:\:\:\:\:...........\:\mathrm{equation}\:\left(\mathrm{iii}\right) \\ $$

Question Number 12760    Answers: 2   Comments: 0

Question Number 12753    Answers: 1   Comments: 0

evaluate ∫(√((sin x)))dx

$${evaluate}\:\int\sqrt{\left(\mathrm{sin}\:{x}\right)}{dx} \\ $$

Question Number 12752    Answers: 0   Comments: 0

Let V and W be 4 dimensional subspaces of a 7 dimensional vector space X. Which of the following CANNOT be the dimension of the subspace V∩W. (A) 0 (B) 1 (C) 2 (D) 3 (E) 4

$$\mathrm{Let}\:\mathrm{V}\:\mathrm{and}\:\mathrm{W}\:\mathrm{be}\:\mathrm{4}\:\mathrm{dimensional}\:\mathrm{subspaces}\:\mathrm{of}\:\mathrm{a}\:\mathrm{7}\:\mathrm{dimensional}\:\mathrm{vector}\:\mathrm{space}\:\mathrm{X}. \\ $$$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{CANNOT}\:\mathrm{be}\:\mathrm{the}\:\mathrm{dimension}\:\mathrm{of}\:\mathrm{the}\:\mathrm{subspace}\:\mathrm{V}\cap\mathrm{W}. \\ $$$$\left(\mathrm{A}\right)\:\mathrm{0}\:\left(\mathrm{B}\right)\:\mathrm{1}\:\left(\mathrm{C}\right)\:\mathrm{2}\:\left(\mathrm{D}\right)\:\mathrm{3}\:\left(\mathrm{E}\right)\:\mathrm{4} \\ $$

Question Number 12744    Answers: 1   Comments: 0

∫_( e^(−3) ) ^( e^(−2) ) (1/((x)log(x))) dx = ?

$$\int_{\:\mathrm{e}^{−\mathrm{3}} } ^{\:\mathrm{e}^{−\mathrm{2}} } \:\:\frac{\mathrm{1}}{\left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{x}\right)}\:\mathrm{dx}\:\:=\:\:? \\ $$

Question Number 12743    Answers: 2   Comments: 0

What is the area of eqilateral triangle whose inscribed circle has a radius 2

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{eqilateral}\:\mathrm{triangle}\:\mathrm{whose}\:\mathrm{inscribed}\:\mathrm{circle}\:\mathrm{has}\:\mathrm{a}\:\mathrm{radius}\:\mathrm{2} \\ $$

Question Number 12742    Answers: 1   Comments: 0

Prove that ∫ (dx/((x +1)^2 (√(x^2 + 2x +2)))) = ((−(√(x^2 + 2x + 2)))/(x + 1)) + C

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\int\:\frac{{dx}}{\left({x}\:+\mathrm{1}\right)^{\mathrm{2}} \:\sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\mathrm{2}}}\:=\:\frac{−\sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\:\mathrm{2}}}{{x}\:+\:\mathrm{1}}\:+\:{C} \\ $$

Question Number 12740    Answers: 1   Comments: 0

∫∣x∣ dx

$$\int\mid\mathrm{x}\mid\:\mathrm{dx} \\ $$

Question Number 12732    Answers: 4   Comments: 0

lim_(x→0) (((√x) − x)/((√x) + x))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{x}}\:−\:{x}}{\sqrt{{x}}\:+\:{x}} \\ $$

Question Number 12728    Answers: 0   Comments: 0

x^n + ca^x = k c, a, n, k constant x = F(n, a, c, k) (solve for x) I will try make x^n = k − θ and ca^x = θ, but, if someone can help, please!

$${x}^{{n}} \:+\:{ca}^{{x}} \:=\:{k}\:\:\:\:\:\:\:\:\:\:{c},\:{a},\:{n},\:{k}\:\mathrm{constant} \\ $$$${x}\:=\:{F}\left({n},\:{a},\:{c},\:{k}\right)\:\:\left(\boldsymbol{{solve}}\:\boldsymbol{{for}}\:\boldsymbol{{x}}\right) \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{try}\:\mathrm{make}\:{x}^{{n}} \:=\:{k}\:−\:\theta\:\mathrm{and}\:{ca}^{{x}} \:=\:\theta, \\ $$$$\mathrm{but},\:\mathrm{if}\:\mathrm{someone}\:\mathrm{can}\:\mathrm{help},\:{please}! \\ $$

Question Number 12725    Answers: 3   Comments: 4

Question Number 12724    Answers: 1   Comments: 0

Question Number 12714    Answers: 0   Comments: 1

Question Number 12713    Answers: 1   Comments: 1

Q. 𝛉 = tan^(−1) 4/3

$$\boldsymbol{{Q}}.\:\boldsymbol{\theta}\:=\:\mathrm{tan}^{−\mathrm{1}} \:\:\mathrm{4}/\mathrm{3}\: \\ $$$$ \\ $$

Question Number 12708    Answers: 0   Comments: 0

what′s values 𝛂. y=2e^x −𝛂e^(−x) +(2𝛂+1)x−3 will feature all of the outlets growing.

$$\boldsymbol{\mathrm{what}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{values}}\:\:\boldsymbol{\alpha}. \\ $$$$\boldsymbol{\mathrm{y}}=\mathrm{2}\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} −\boldsymbol{\alpha\mathrm{e}}^{−\boldsymbol{\mathrm{x}}} +\left(\mathrm{2}\boldsymbol{\alpha}+\mathrm{1}\right)\boldsymbol{\mathrm{x}}−\mathrm{3} \\ $$$$\boldsymbol{\mathrm{will}}\:\:\boldsymbol{\mathrm{feature}}\:\:\boldsymbol{\mathrm{all}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{outlets}} \\ $$$$\boldsymbol{\mathrm{growing}}. \\ $$

Question Number 12705    Answers: 1   Comments: 0

this y=sin(x/2) find the range of the function.

$$\boldsymbol{\mathrm{this}}\:\:\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\:\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{range}}\:\:\boldsymbol{\mathrm{of}} \\ $$$$\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{function}}. \\ $$

  Pg 1950      Pg 1951      Pg 1952      Pg 1953      Pg 1954      Pg 1955      Pg 1956      Pg 1957      Pg 1958      Pg 1959   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com