Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1955

Question Number 12535    Answers: 1   Comments: 0

Use the reduction formular. I_n = ∫sin^n (x) dx = −(1/n) sin^(n − 1) (x)cos(x) + ((n − 1)/n)I_n − 2 , to evaluate I_(n ) = ∫sin^6 (x) dx

$$\mathrm{Use}\:\mathrm{the}\:\mathrm{reduction}\:\mathrm{formular}. \\ $$$$\mathrm{I}_{\mathrm{n}} \:=\:\int\mathrm{sin}^{\mathrm{n}} \left(\mathrm{x}\right)\:\mathrm{dx}\:=\:−\frac{\mathrm{1}}{\mathrm{n}}\:\mathrm{sin}^{\mathrm{n}\:−\:\mathrm{1}} \left(\mathrm{x}\right)\mathrm{cos}\left(\mathrm{x}\right)\:+\:\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}}\mathrm{I}_{\mathrm{n}} \:−\:\mathrm{2}\:,\:\mathrm{to}\:\mathrm{evaluate}\: \\ $$$$\mathrm{I}_{\mathrm{n}\:} =\:\int\mathrm{sin}^{\mathrm{6}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 12534    Answers: 1   Comments: 0

please help me .How can resolve this system? {_((1+(√2))x+y=1) ^(x^2 +y^2 =1)

$${please}\:{help}\:{me}\:.{How}\:{can}\:{resolve}\:{this}\:{system}? \\ $$$$\left\{_{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){x}+{y}=\mathrm{1}} ^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}} \right. \\ $$

Question Number 12533    Answers: 1   Comments: 0

compute ∫sec^5 (x) tan^3 (x) dx

$$\mathrm{compute} \\ $$$$\int\mathrm{sec}^{\mathrm{5}} \left(\mathrm{x}\right)\:\mathrm{tan}^{\mathrm{3}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 12532    Answers: 1   Comments: 0

Solve the equation : p tan^(−1) (2x) + tan^(−1) (3x) = (π/4)

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\::\:\:\mathrm{p} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2x}\right)\:+\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3x}\right)\:=\:\frac{\pi}{\mathrm{4}} \\ $$

Question Number 12525    Answers: 2   Comments: 0

Use the substitution t = sin(θ) to solve the equation 2sin^4 (θ) − 9sin^3 (θ) + 14sin^2 (θ) − 9sin(θ) + 2 = 0, for possible values of θ in the range 0 ≤ θ ≤ 2π

$$\mathrm{Use}\:\mathrm{the}\:\mathrm{substitution}\:\:\mathrm{t}\:=\:\mathrm{sin}\left(\theta\right)\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{2sin}^{\mathrm{4}} \left(\theta\right)\:−\:\mathrm{9sin}^{\mathrm{3}} \left(\theta\right)\:+\:\mathrm{14sin}^{\mathrm{2}} \left(\theta\right)\:−\:\mathrm{9sin}\left(\theta\right)\:+\:\mathrm{2}\:=\:\mathrm{0},\:\: \\ $$$$\mathrm{for}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\theta\:\mathrm{in}\:\mathrm{the}\:\mathrm{range}\:\:\mathrm{0}\:\leqslant\:\theta\:\leqslant\:\mathrm{2}\pi \\ $$

Question Number 12517    Answers: 1   Comments: 0

A spring stretches by 15cm when a mass of 300g hangs down from it. if the spring is then strethed an additional 10cm and realeased, calculate (a) the spring constant (b) Angular velocity (c) The amplitude of the oscillation (d) The maximum velocity (e) The maximum acceleration of the mass (f) The period T and frequency f

$$\mathrm{A}\:\mathrm{spring}\:\mathrm{stretches}\:\mathrm{by}\:\mathrm{15cm}\:\mathrm{when}\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{300g}\:\mathrm{hangs}\:\mathrm{down}\:\mathrm{from}\:\mathrm{it}. \\ $$$$\mathrm{if}\:\mathrm{the}\:\mathrm{spring}\:\mathrm{is}\:\mathrm{then}\:\mathrm{strethed}\:\mathrm{an}\:\mathrm{additional}\:\mathrm{10cm}\:\mathrm{and}\:\mathrm{realeased},\:\mathrm{calculate} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{the}\:\mathrm{spring}\:\mathrm{constant} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Angular}\:\mathrm{velocity} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{The}\:\mathrm{amplitude}\:\mathrm{of}\:\mathrm{the}\:\mathrm{oscillation} \\ $$$$\left(\mathrm{d}\right)\:\mathrm{The}\:\mathrm{maximum}\:\mathrm{velocity} \\ $$$$\left(\mathrm{e}\right)\:\mathrm{The}\:\mathrm{maximum}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{mass} \\ $$$$\left(\mathrm{f}\right)\:\mathrm{The}\:\mathrm{period}\:\mathrm{T}\:\mathrm{and}\:\mathrm{frequency}\:\mathrm{f} \\ $$

Question Number 12513    Answers: 1   Comments: 0

lim_(x→∞) x^2 [sec ((2/x)) − 1]

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}^{\mathrm{2}} \:\left[\mathrm{sec}\:\left(\frac{\mathrm{2}}{{x}}\right)\:−\:\mathrm{1}\right] \\ $$

Question Number 12506    Answers: 2   Comments: 0

A wooden stick was broken randomly into three pieces. What is the probability that a triangle can be built from those three parts?

$$\mathrm{A}\:\mathrm{wooden}\:\mathrm{stick}\:\mathrm{was}\:\mathrm{broken}\:\mathrm{randomly}\:\mathrm{into} \\ $$$$\mathrm{three}\:\mathrm{pieces}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{built}\:\mathrm{from}\:\mathrm{those}\:\mathrm{three}\:\mathrm{parts}? \\ $$

Question Number 12500    Answers: 1   Comments: 0

Please help explain how to solve ∫e^(1/x) dx

$$\mathrm{Please}\:\mathrm{help}\:\mathrm{explain}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\int{e}^{\frac{\mathrm{1}}{{x}}} {dx} \\ $$

Question Number 12495    Answers: 1   Comments: 3

find the real values of x for which the function f(x)=(x^2 /(x^2 +3x+2))

$${find}\:{the}\:{real}\:{values}\:{of}\:{x}\:{for}\:{which} \\ $$$${the}\:{function}\:{f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}} \\ $$$$ \\ $$

Question Number 12492    Answers: 2   Comments: 1

this is calculus evaluate lim_(x→0) ((sin3xsin5x)/(7x^2 ))

$${this}\:{is}\:{calculus}\: \\ $$$${evaluate}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{sin}\mathrm{3}{xsin}\mathrm{5}{x}}{\mathrm{7}{x}^{\mathrm{2}} } \\ $$

Question Number 12490    Answers: 0   Comments: 1

328976/256

$$\mathrm{328976}/\mathrm{256} \\ $$

Question Number 12489    Answers: 1   Comments: 0

log_2 x + log_(1/x) (1/2) ≥ 0 x = ?

$$\mathrm{log}_{\mathrm{2}} \:{x}\:+\:\mathrm{log}_{\mathrm{1}/{x}} \:\frac{\mathrm{1}}{\mathrm{2}}\:\geqslant\:\mathrm{0} \\ $$$${x}\:=\:? \\ $$

Question Number 12487    Answers: 0   Comments: 4

Someone has been solved Goldbach′s Conjecture??

$$\mathrm{Someone}\:\mathrm{has}\:\mathrm{been}\:\mathrm{solved}\:\mathrm{Goldbach}'\mathrm{s} \\ $$$$\mathrm{Conjecture}?? \\ $$

Question Number 12499    Answers: 1   Comments: 0

Water flows out of a tank through a hole of diameter 2cm above the hole (1) Determine the velocity of outflow (2) The rate of outflow when the level of the water in the tank is 2cm above the hole.

$$\mathrm{Water}\:\mathrm{flows}\:\mathrm{out}\:\mathrm{of}\:\mathrm{a}\:\mathrm{tank}\:\mathrm{through}\:\mathrm{a}\:\mathrm{hole}\:\mathrm{of}\:\mathrm{diameter}\:\mathrm{2cm}\:\mathrm{above}\:\mathrm{the}\:\mathrm{hole} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{outflow} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{The}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{outflow}\:\mathrm{when}\:\mathrm{the}\:\mathrm{level}\:\mathrm{of}\:\mathrm{the}\:\mathrm{water}\:\mathrm{in}\:\mathrm{the}\:\mathrm{tank}\:\mathrm{is}\:\mathrm{2cm}\:\mathrm{above} \\ $$$$\mathrm{the}\:\mathrm{hole}.\: \\ $$

Question Number 12470    Answers: 1   Comments: 0

((0.03125))^(1/5) =

$$\sqrt[{\mathrm{5}}]{\mathrm{0}.\mathrm{03125}}\:=\: \\ $$

Question Number 12464    Answers: 3   Comments: 0

∫ sin^3 (7x) dx

$$\int\:\mathrm{sin}^{\mathrm{3}} \left(\mathrm{7x}\right)\:\mathrm{dx} \\ $$

Question Number 12463    Answers: 1   Comments: 0

∫ ((x + 1)/((x^2 + 2x + 3)^(2/3) )) dx

$$\int\:\:\frac{\mathrm{x}\:+\:\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2x}\:+\:\mathrm{3}\right)^{\mathrm{2}/\mathrm{3}} }\:\:\mathrm{dx} \\ $$

Question Number 12446    Answers: 2   Comments: 1

find x (√x) = 8^x

$$\mathrm{find}\:\mathrm{x} \\ $$$$\sqrt{\mathrm{x}}\:\:=\:\:\mathrm{8}^{\mathrm{x}} \\ $$

Question Number 12445    Answers: 0   Comments: 0

Question Number 12442    Answers: 2   Comments: 0

Solve: z^4 = − 16

$$\mathrm{Solve}:\:\:\:\mathrm{z}^{\mathrm{4}} \:=\:−\:\mathrm{16} \\ $$

Question Number 12436    Answers: 0   Comments: 6

∫ (dx/x^x ) dx

$$\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{x}} }\:\mathrm{dx} \\ $$

Question Number 12435    Answers: 0   Comments: 1

Solve equation X_4 −3X_2 +2=0

$$\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{equation}} \\ $$$$\:\:\boldsymbol{{X}}_{\mathrm{4}} −\mathrm{3}\boldsymbol{{X}}_{\mathrm{2}} +\mathrm{2}=\mathrm{0} \\ $$

Question Number 12432    Answers: 0   Comments: 1

To Tinku Tara: it is not possible to post long and narrow images, since the button ′Submit′ is not visible. Can you please solve this problem?

$${To}\:{Tinku}\:{Tara}: \\ $$$${it}\:{is}\:{not}\:{possible}\:{to}\:{post}\:{long}\:{and}\:{narrow} \\ $$$${images},\:{since}\:{the}\:{button}\:'{Submit}'\:{is} \\ $$$${not}\:{visible}.\:{Can}\:{you}\:{please}\:{solve}\:{this}\:{problem}? \\ $$

Question Number 12422    Answers: 2   Comments: 1

Question Number 12419    Answers: 2   Comments: 0

If a body of 2kg mass is at a distance of 7200km from the centre of the earth . What would the acceleration due to gravity be at this point in the Earths field ? (a) 9.6m/s^2 (b) 10m/s^2 (c) 11.3m/s^2 (d) 12.7m/s^2 (e) 15.6m/s^2

$$\mathrm{If}\:\mathrm{a}\:\mathrm{body}\:\mathrm{of}\:\mathrm{2kg}\:\mathrm{mass}\:\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{7200km}\:\mathrm{from}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{earth}\:.\:\mathrm{What}\:\mathrm{would}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{due}\:\mathrm{to}\:\mathrm{gravity}\:\mathrm{be}\:\mathrm{at}\:\mathrm{this}\:\mathrm{point}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{Earths}\:\mathrm{field}\:? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{9}.\mathrm{6m}/\mathrm{s}^{\mathrm{2}} \:\left(\mathrm{b}\right)\:\mathrm{10m}/\mathrm{s}^{\mathrm{2}} \:\left(\mathrm{c}\right)\:\mathrm{11}.\mathrm{3m}/\mathrm{s}^{\mathrm{2}} \:\left(\mathrm{d}\right)\:\mathrm{12}.\mathrm{7m}/\mathrm{s}^{\mathrm{2}} \:\left(\mathrm{e}\right)\:\mathrm{15}.\mathrm{6m}/\mathrm{s}^{\mathrm{2}} \\ $$

  Pg 1950      Pg 1951      Pg 1952      Pg 1953      Pg 1954      Pg 1955      Pg 1956      Pg 1957      Pg 1958      Pg 1959   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com