Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1950

Question Number 13200    Answers: 2   Comments: 0

(6)^(1/(5)^(1/(2)^(1/(√3)) ) ) = x How to write x in standard form?

$$\sqrt[{\sqrt[{\sqrt[{\sqrt{\mathrm{3}}}]{\mathrm{2}}}]{\mathrm{5}}}]{\mathrm{6}}\:=\:{x} \\ $$$$\mathrm{How}\:\mathrm{to}\:\mathrm{write}\:{x}\:\mathrm{in}\:\mathrm{standard}\:\mathrm{form}? \\ $$

Question Number 13194    Answers: 1   Comments: 0

Question Number 13191    Answers: 0   Comments: 4

Can we ask here Chemistry or Physics doubts because I am preparing for JEE?

$$\mathrm{Can}\:\mathrm{we}\:\mathrm{ask}\:\mathrm{here}\:\mathrm{Chemistry}\:\mathrm{or}\:\mathrm{Physics} \\ $$$$\mathrm{doubts}\:\mathrm{because}\:\mathrm{I}\:\mathrm{am}\:\mathrm{preparing}\:\mathrm{for}\:\mathrm{JEE}? \\ $$

Question Number 13166    Answers: 2   Comments: 0

Find the values of x and y x^2 − 2xy − y^2 = 14 ............ equation (i) 2x^2 + 3xy + y^2 = − 2 ............ equation (ii)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\:\mathrm{x}\:\:\mathrm{and}\:\:\mathrm{y} \\ $$$$ \\ $$$$\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{2xy}\:−\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{14}\:\:\:\:\:\:\:\:\:............\:\:\mathrm{equation}\:\left(\mathrm{i}\right) \\ $$$$\mathrm{2x}^{\mathrm{2}} \:+\:\mathrm{3xy}\:+\:\mathrm{y}^{\mathrm{2}} \:=\:−\:\mathrm{2}\:\:\:\:\:............\:\mathrm{equation}\:\left(\mathrm{ii}\right) \\ $$

Question Number 13155    Answers: 2   Comments: 0

Question Number 13154    Answers: 2   Comments: 0

Find the smallest number such that when divided by 18 the remainder is 17, When divided by 20 the remainder is 19. and when divided by 24 the remainder is 23.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{18}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{17}, \\ $$$$\mathrm{When}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{20}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{19}.\:\mathrm{and}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{24}\:\mathrm{the}\:\mathrm{remainder}\: \\ $$$$\mathrm{is}\:\mathrm{23}.\: \\ $$

Question Number 13153    Answers: 1   Comments: 3

Question Number 13152    Answers: 1   Comments: 0

Solve: 5^(log(x)) + logx^5 = 25

$$\mathrm{Solve}:\:\:\mathrm{5}^{\mathrm{log}\left(\mathrm{x}\right)} \:+\:\mathrm{logx}^{\mathrm{5}} \:=\:\mathrm{25} \\ $$

Question Number 13151    Answers: 1   Comments: 0

Question Number 13145    Answers: 1   Comments: 0

((64))^(1/(3)^(1/(√5)) ) = x How to write x into fraction exponent form?

$$\sqrt[{\sqrt[{\sqrt{\mathrm{5}}}]{\mathrm{3}}}]{\mathrm{64}}\:=\:{x} \\ $$$$\mathrm{How}\:\mathrm{to}\:\mathrm{write}\:{x}\:\mathrm{into}\:\mathrm{fraction}\:\mathrm{exponent}\:\mathrm{form}? \\ $$

Question Number 13143    Answers: 0   Comments: 1

Find the point (x,y) which lies 8 unit from the origin, along the terminal line of 155°.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{which}\:\mathrm{lies}\:\mathrm{8}\:\mathrm{unit}\:\mathrm{from}\:\mathrm{the}\:\mathrm{origin},\:\:\mathrm{along}\:\mathrm{the}\:\mathrm{terminal}\:\mathrm{line} \\ $$$$\mathrm{of}\:\mathrm{155}°.\: \\ $$

Question Number 13142    Answers: 0   Comments: 1

Find the height PQ of a tower of an observant at a point O, 135 m from the foot of the tower. Determine the angle of elevation of the tower.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{height}\:\mathrm{PQ}\:\mathrm{of}\:\mathrm{a}\:\mathrm{tower}\:\mathrm{of}\:\mathrm{an}\:\mathrm{observant}\:\mathrm{at}\:\mathrm{a}\:\mathrm{point}\:\mathrm{O},\:\mathrm{135}\:\mathrm{m}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{foot}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tower}.\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{elevation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tower}. \\ $$

Question Number 13141    Answers: 1   Comments: 3

Question Number 13140    Answers: 2   Comments: 1

Question Number 13223    Answers: 0   Comments: 1

If a, b, c are sides of triangle show that (1 + ((b−c)/a))^a (1 + ((c−a)/b))^b (1 + ((a−b)/c))^c < 1

$$\mathrm{If}\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{triangle}\:\mathrm{show}\:\mathrm{that} \\ $$$$\left(\mathrm{1}\:+\:\frac{{b}−{c}}{{a}}\right)^{{a}} \left(\mathrm{1}\:+\:\frac{{c}−{a}}{{b}}\right)^{{b}} \left(\mathrm{1}\:+\:\frac{{a}−{b}}{{c}}\right)^{{c}} \:<\:\mathrm{1} \\ $$

Question Number 13128    Answers: 0   Comments: 0

If [x] stands for the greatest integer function, the value of ∫_( 4) ^( 10) (([x^2 ])/([x^2 −28x+196]+[x^2 ])) dx is

$$\mathrm{If}\:\:\left[{x}\right]\:\mathrm{stands}\:\mathrm{for}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer} \\ $$$$\mathrm{function},\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\: \\ $$$$\underset{\:\mathrm{4}} {\overset{\:\:\:\:\mathrm{10}} {\int}}\:\frac{\left[{x}^{\mathrm{2}} \right]}{\left[{x}^{\mathrm{2}} −\mathrm{28}{x}+\mathrm{196}\right]+\left[{x}^{\mathrm{2}} \right]}\:{dx}\:\mathrm{is} \\ $$

Question Number 13127    Answers: 0   Comments: 0

Question Number 13121    Answers: 1   Comments: 0

Find the value of : (2/(15)) + (2/(35)) + (2/(63)) + (2/(99)) + ... + (2/(9999))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\::\:\:\frac{\mathrm{2}}{\mathrm{15}}\:+\:\frac{\mathrm{2}}{\mathrm{35}}\:+\:\frac{\mathrm{2}}{\mathrm{63}}\:+\:\frac{\mathrm{2}}{\mathrm{99}}\:+\:...\:+\:\frac{\mathrm{2}}{\mathrm{9999}} \\ $$

Question Number 13117    Answers: 1   Comments: 0

Question Number 13107    Answers: 1   Comments: 0

A man moves 20m north then 12m east and finally 15m south. His displacement from the starting point is ?

$$\mathrm{A}\:\mathrm{man}\:\mathrm{moves}\:\mathrm{20m}\:\mathrm{north}\:\mathrm{then}\:\mathrm{12m}\:\mathrm{east}\:\mathrm{and}\:\mathrm{finally}\:\mathrm{15m}\:\mathrm{south}.\:\:\mathrm{His}\:\mathrm{displacement} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{starting}\:\mathrm{point}\:\mathrm{is}\:? \\ $$

Question Number 13103    Answers: 2   Comments: 0

∫_( −1) ^2 (( ∣ x ∣ )/x) dx =

$$\:\underset{\:−\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\frac{\:\mid\:{x}\:\mid\:}{{x}}\:{dx}\:=\: \\ $$

Question Number 13102    Answers: 0   Comments: 4

Find the sum of the nth term : 1^6 + 2^6 + 3^6 + 4^6 + ... + n^6

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}\:\::\:\:\mathrm{1}^{\mathrm{6}} \:+\:\mathrm{2}^{\mathrm{6}} \:+\:\mathrm{3}^{\mathrm{6}} \:+\:\mathrm{4}^{\mathrm{6}} \:+\:...\:+\:\mathrm{n}^{\mathrm{6}} \\ $$

Question Number 13099    Answers: 2   Comments: 0

If f(x + 5) = g(2x −1) Find 2f^(−1) (x) (A) g^(−1) (x) + 11 (D) g^(−1) (x/2) + 6 (B) g^(−1) (x) + 9 (E) g^(−1) (2x) + 6 (C) g^(−1) (x) + 6

$$\mathrm{If}\:{f}\left({x}\:+\:\mathrm{5}\right)\:=\:{g}\left(\mathrm{2}{x}\:−\mathrm{1}\right) \\ $$$$\mathrm{Find}\:\mathrm{2}{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$ \\ $$$$\left(\mathrm{A}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{11}\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:{g}^{−\mathrm{1}} \left({x}/\mathrm{2}\right)\:+\:\mathrm{6} \\ $$$$\left(\mathrm{B}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{9}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{E}\right)\:{g}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)\:+\:\mathrm{6} \\ $$$$\left(\mathrm{C}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{6} \\ $$

Question Number 13098    Answers: 1   Comments: 0

Question Number 13097    Answers: 1   Comments: 0

S=Σ_(x_2 =1) ^x_1 Σ_(x_3 =1) ^x_2 ∙∙∙Σ_(x_n =1) ^x_(n−1) Σ_(t=1) ^x_n t Can you evaluate S?

$${S}=\underset{{x}_{\mathrm{2}} =\mathrm{1}} {\overset{{x}_{\mathrm{1}} } {\sum}}\underset{{x}_{\mathrm{3}} =\mathrm{1}} {\overset{{x}_{\mathrm{2}} } {\sum}}\centerdot\centerdot\centerdot\underset{{x}_{{n}} =\mathrm{1}} {\overset{{x}_{{n}−\mathrm{1}} } {\sum}}\underset{{t}=\mathrm{1}} {\overset{{x}_{{n}} } {\sum}}{t} \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{evaluate}\:{S}? \\ $$

Question Number 13091    Answers: 1   Comments: 0

A motor car moves with a velocity of 20m/s on a rough horizontal road and covers a displacement of 50m. Find the coefficient of dynamic friction between the tyre and the ground (g = 10m/s^2 ).

$$\mathrm{A}\:\mathrm{motor}\:\mathrm{car}\:\mathrm{moves}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{20m}/\mathrm{s}\:\mathrm{on}\:\mathrm{a}\:\mathrm{rough}\:\mathrm{horizontal}\:\mathrm{road}\:\mathrm{and} \\ $$$$\mathrm{covers}\:\mathrm{a}\:\mathrm{displacement}\:\mathrm{of}\:\mathrm{50m}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{dynamic}\:\mathrm{friction}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{tyre}\:\mathrm{and}\:\mathrm{the}\:\mathrm{ground}\:\:\left(\mathrm{g}\:=\:\mathrm{10m}/\mathrm{s}^{\mathrm{2}} \right). \\ $$

  Pg 1945      Pg 1946      Pg 1947      Pg 1948      Pg 1949      Pg 1950      Pg 1951      Pg 1952      Pg 1953      Pg 1954   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com