Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1950

Question Number 6799    Answers: 0   Comments: 2

What is the probability that 3 customers waiting in bank will be served in sequence of their arrival.

$${What}\:{is}\:{the}\:{probability}\:{that}\:\mathrm{3}\:{customers}\:{waiting}\:{in}\:{bank}\:{will}\: \\ $$$${be}\:{served}\:{in}\:{sequence}\:{of}\:{their}\:{arrival}. \\ $$

Question Number 6792    Answers: 0   Comments: 2

When the price of egg was raised by #2 an egg, the number of eggs which can be bought for #120 is reduced by #5. What is the present price of the egg.

$${When}\:{the}\:{price}\:{of}\:{egg}\:\:{was}\:{raised}\:{by}\:#\mathrm{2}\:{an}\:{egg},\:\:{the}\:{number}\:{of}\:{eggs} \\ $$$${which}\:{can}\:{be}\:{bought}\:{for}\:#\mathrm{120}\:{is}\:{reduced}\:{by}\:#\mathrm{5}.\:{What}\:{is}\:{the} \\ $$$${present}\:{price}\:{of}\:{the}\:{egg}. \\ $$

Question Number 6791    Answers: 1   Comments: 2

Question Number 6790    Answers: 0   Comments: 0

∫_0 ^1 ∫_y ^1 x^(−3/2) cos((πy)/(2x)) dx dy=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\int_{{y}} ^{\mathrm{1}} \:{x}^{−\mathrm{3}/\mathrm{2}} {cos}\frac{\pi{y}}{\mathrm{2}{x}}\:{dx}\:{dy}=? \\ $$

Question Number 6788    Answers: 0   Comments: 2

Question Number 6786    Answers: 0   Comments: 2

Three Arabs A,B and C were traveling together. On the lunch time A and B produce m and n loaves of bread respectively for eating but C have no loaf of bread. All the three ate together. After completing lunch C gave A and B m+n darhams. How shoud they divide this sum?

$${Three}\:{Arabs}\:{A},{B}\:{and}\:{C}\:{were}\:{traveling} \\ $$$${together}.\:{On}\:{the}\:{lunch}\:{time}\:{A}\:{and}\:\:{B} \\ $$$${produce}\:{m}\:{and}\:\:{n}\:{loaves}\:{of}\:{bread}\:{respectively} \\ $$$${for}\:{eating}\:{but}\:{C}\:{have}\:{no}\:{loaf}\:{of}\:{bread}.\:{All} \\ $$$${the}\:{three}\:{ate}\:{together}.\:\:{After}\:{completing} \\ $$$${lunch}\:{C}\:\:{gave}\:{A}\:{and}\:{B}\:{m}+{n}\:{darhams}. \\ $$$${How}\:{shoud}\:{they}\:{divide}\:{this}\:{sum}? \\ $$$$ \\ $$

Question Number 6775    Answers: 1   Comments: 0

∫_0 ^∞ e^t^2 e^(−st) dt please help

$$\int_{\mathrm{0}} ^{\infty} {e}^{{t}^{\mathrm{2}} } {e}^{−{st}} \:\:{dt} \\ $$$$ \\ $$$${please}\:{help} \\ $$

Question Number 6772    Answers: 0   Comments: 3

What is the smallest even number greater than 3 that cannot be expressed as the sum of two prime numbers ?

$${What}\:{is}\:{the}\:{smallest}\:{even}\:{number}\:{greater}\:{than}\:\mathrm{3}\:{that}\:{cannot} \\ $$$${be}\:{expressed}\:{as}\:{the}\:{sum}\:{of}\:{two}\:{prime}\:{numbers}\:? \\ $$

Question Number 6767    Answers: 0   Comments: 0

A molten plastic flows out of a tube that is 8.0cm long at a rate of 13cm^3 /min, when the pressure differential between the two ends of the tube is 18cm mercury. find the viscousity of the plastic. The internal diameter of the tube is 1.30mm. the density of mercury is 13.6g/cm^3

$${A}\:{molten}\:\:{plastic}\:{flows}\:{out}\:{of}\:{a}\:{tube}\:{that}\:{is}\:\mathrm{8}.\mathrm{0}{cm}\:{long} \\ $$$${at}\:{a}\:{rate}\:{of}\:\mathrm{13}{cm}^{\mathrm{3}} /{min},\:{when}\:{the}\:{pressure}\:{differential} \\ $$$${between}\:{the}\:{two}\:{ends}\:{of}\:{the}\:{tube}\:{is}\:\mathrm{18}{cm}\:{mercury}. \\ $$$${find}\:{the}\:{viscousity}\:{of}\:{the}\:{plastic}.\: \\ $$$${The}\:{internal}\:{diameter}\:{of}\:{the}\:{tube}\:{is}\:\:\mathrm{1}.\mathrm{30}{mm}.\: \\ $$$${the}\:{density}\:{of}\:{mercury}\:{is}\:\mathrm{13}.\mathrm{6}{g}/{cm}^{\mathrm{3}} \\ $$

Question Number 6778    Answers: 0   Comments: 1

If two forces P and Q acting at 0 are represented by line OA and OB with φ being the angle between the two forces . find their resultant in R in terms of P

$${If}\:{two}\:{forces}\:{P}\:{and}\:{Q}\:{acting}\:{at}\:\mathrm{0}\:{are}\:{represented}\:{by}\:{line}\:{OA} \\ $$$${and}\:{OB}\:{with}\:\phi\:{being}\:{the}\:{angle}\:{between}\:{the}\:{two}\:{forces}\:. \\ $$$${find}\:{their}\:{resultant}\:{in}\:{R}\:{in}\:{terms}\:{of}\:{P} \\ $$

Question Number 6762    Answers: 1   Comments: 2

Question Number 6758    Answers: 0   Comments: 4

A circle of radius r has a point O as its centre. Points A and B are points on the circumference. For △OAB, OA^(−) =OB^(−) =r, AB^(−) =d, ∠AOB=θ. What is (r/d)?

$$\mathrm{A}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:{r}\:\mathrm{has}\:\mathrm{a}\:\mathrm{point}\:{O}\:\mathrm{as}\:\mathrm{its} \\ $$$$\mathrm{centre}.\:\mathrm{Points}\:{A}\:\mathrm{and}\:{B}\:\mathrm{are}\:\mathrm{points}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{circumference}. \\ $$$$ \\ $$$$\mathrm{For}\:\bigtriangleup{OAB},\:\overline {{OA}}=\overline {{OB}}={r},\:\overline {{AB}}={d},\:\angle{AOB}=\theta. \\ $$$$\mathrm{What}\:\mathrm{is}\:\frac{{r}}{{d}}? \\ $$

Question Number 6750    Answers: 3   Comments: 0

Question Number 6748    Answers: 1   Comments: 0

Question Number 6746    Answers: 1   Comments: 0

Evaluate I = ∫_1 ^2 ∫_2 ^4 (x + 2y) dx dy

$${Evaluate}\: \\ $$$$ \\ $$$${I}\:=\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\int_{\mathrm{2}} ^{\mathrm{4}} \:\:\:\left({x}\:+\:\mathrm{2}{y}\right)\:\:{dx}\:{dy}\: \\ $$

Question Number 6743    Answers: 1   Comments: 0

P and Q are partners in a venture, P contributed #20,000 for nine month, and Q contributed #50,000 for one year. find each person share of profit of #6,300

$${P}\:{and}\:{Q}\:{are}\:{partners}\:{in}\:{a}\:{venture},\:\:{P}\:\:{contributed}\:#\mathrm{20},\mathrm{000}\:{for} \\ $$$${nine}\:{month},\:{and}\:{Q}\:{contributed}\:#\mathrm{50},\mathrm{000}\:{for}\:{one}\:{year}.\:{find}\:{each} \\ $$$${person}\:{share}\:{of}\:\:{profit}\:{of}\:#\mathrm{6},\mathrm{300} \\ $$$$ \\ $$

Question Number 6739    Answers: 1   Comments: 0

Find the 102rd term of f(x) = e^(2x^3 ) at x = 0

$${Find}\:{the}\:\mathrm{102}{rd}\:{term}\:{of}\:\:\:{f}\left({x}\right)\:=\:{e}^{\mathrm{2}{x}^{\mathrm{3}} } \:\:\:{at}\:\:{x}\:=\:\mathrm{0} \\ $$

Question Number 6737    Answers: 0   Comments: 1

If z(x) is a complex function, is the following true: ∫zdx=∫ℜ(z)dx+i∫ℑ(z)dx

$$\mathrm{If}\:{z}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{function}, \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{following}\:\mathrm{true}: \\ $$$$\int{zdx}=\int\Re\left({z}\right){dx}+{i}\int\Im\left({z}\right){dx} \\ $$

Question Number 6736    Answers: 0   Comments: 0

Question Number 6733    Answers: 1   Comments: 0

Question Number 6726    Answers: 1   Comments: 0

Find the value of x x^2 = 16^x please help with workings.

$${Find}\:{the}\:{value}\:{of}\:{x} \\ $$$$ \\ $$$${x}^{\mathrm{2}} \:=\:\mathrm{16}^{{x}} \\ $$$$ \\ $$$${please}\:{help}\:{with}\:{workings}. \\ $$

Question Number 6725    Answers: 0   Comments: 1

a+b=c a+a=ac c−a=b b+b=bc a^2 +b=c^3 a+D=b^2 b+D=a^2 a′b′+D=c′D ab+D=c_D ab+c=abc a′b′c′+D=D_(abc) abc+D=abc_D a^2 +b^± =Dab^(±2) (√(a^b +b^+_− ))=D^± (((a/b)+D))^(1/∂) =cot^(−1) a′b′

$${a}+{b}={c} \\ $$$${a}+{a}={ac} \\ $$$${c}−{a}={b} \\ $$$${b}+{b}={bc} \\ $$$${a}^{\mathrm{2}} +{b}={c}^{\mathrm{3}} \\ $$$${a}+{D}={b}^{\mathrm{2}} \\ $$$${b}+{D}={a}^{\mathrm{2}} \\ $$$${a}'{b}'+{D}={c}'{D} \\ $$$${ab}+{D}={c}_{{D}} \\ $$$${ab}+{c}={abc} \\ $$$${a}'{b}'{c}'+{D}={D}_{{abc}} \\ $$$${abc}+{D}={abc}_{{D}} \\ $$$${a}^{\mathrm{2}} +{b}^{\pm} ={Dab}^{\pm\mathrm{2}} \\ $$$$\sqrt{{a}^{{b}} +{b}^{+_{−} } }={D}^{\pm} \\ $$$$\sqrt[{\partial}]{\frac{{a}}{{b}}+{D}}=\mathrm{cot}^{−\mathrm{1}} {a}'{b}' \\ $$

Question Number 6723    Answers: 0   Comments: 1

An MTN mask is erected at a point P in ilaro town. At a point B due west, The angle of elevation of its top is β and at point C due south, the angle of elevation is α. With the aid of an appropriate diagam. show that the angle of elevation of the top from a point due south of B and due west of C is cot^(−1) [cot^2 (β) + cot^2 (α)]^(1/2)

$${An}\:{MTN}\:{mask}\:{is}\:{erected}\:{at}\:{a}\:{point}\:{P}\:\:{in}\:{ilaro}\:{town}.\:{At}\:{a}\:{point} \\ $$$${B}\:{due}\:{west},\:{The}\:{angle}\:{of}\:{elevation}\:{of}\:{its}\:{top}\:{is}\:\beta\:{and}\:{at}\:{point}\: \\ $$$${C}\:{due}\:{south},\:{the}\:{angle}\:{of}\:{elevation}\:{is}\:\alpha.\:{With}\:{the}\:{aid}\:{of}\:{an}\: \\ $$$${appropriate}\:{diagam}.\:{show}\:{that}\:{the}\:{angle}\:{of}\:{elevation}\:{of}\:{the}\:{top} \\ $$$${from}\:{a}\:{point}\:{due}\:{south}\:{of}\:{B}\:{and}\:{due}\:{west}\:{of}\:{C}\:{is}\: \\ $$$$ \\ $$$${cot}^{−\mathrm{1}} \left[{cot}^{\mathrm{2}} \left(\beta\right)\:+\:{cot}^{\mathrm{2}} \left(\alpha\right)\right]^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$

Question Number 6722    Answers: 0   Comments: 0

If 8789=89 7690=79 5478=69 then 5230=?

$${If}\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{8789}=\mathrm{89} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{7690}=\mathrm{79} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{5478}=\mathrm{69} \\ $$$${then} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{5230}=? \\ $$

Question Number 6716    Answers: 1   Comments: 0

Prove that the locus of a point which moves its distance from the point (−b, 0) is p times its distance from the point (b, 0) is (p^2 − 1)(x^2 + y^2 + b^2 ) − 2b(p^2 + 1)x = 0 Show that this locus is a circle and find its radius.

$${Prove}\:{that}\:{the}\:{locus}\:{of}\:{a}\:{point}\:{which}\:{moves}\:{its}\:{distance}\:{from}\: \\ $$$${the}\:{point}\:\left(−{b},\:\mathrm{0}\right)\:{is}\:{p}\:{times}\:{its}\:{distance}\:{from}\:{the}\:{point}\:\left({b},\:\mathrm{0}\right)\:{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({p}^{\mathrm{2}} \:−\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \right)\:−\:\mathrm{2}{b}\left({p}^{\mathrm{2}} \:+\:\mathrm{1}\right){x}\:=\:\mathrm{0} \\ $$$${Show}\:{that}\:{this}\:{locus}\:{is}\:{a}\:{circle}\:{and}\:{find}\:{its}\:{radius}. \\ $$

Question Number 6715    Answers: 1   Comments: 0

Solve the following equation for 0 < Θ < 360^o cosx + cos3x + cos5x + cos7x = 0

$${Solve}\:{the}\:{following}\:{equation}\:{for}\:\mathrm{0}\:<\:\Theta\:<\:\mathrm{360}^{{o}} \\ $$$${cosx}\:+\:{cos}\mathrm{3}{x}\:+\:{cos}\mathrm{5}{x}\:+\:{cos}\mathrm{7}{x}\:=\:\mathrm{0} \\ $$

  Pg 1945      Pg 1946      Pg 1947      Pg 1948      Pg 1949      Pg 1950      Pg 1951      Pg 1952      Pg 1953      Pg 1954   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com