Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1950
Question Number 14030 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\mathrm{tan}\:{x}\:\mathrm{tan}\:\mathrm{4}{x}\:=\:\mathrm{1}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\left(\mathrm{2}{n}\:+\:\mathrm{1}\right)\frac{\pi}{\mathrm{10}}\:,\:{n}\:\in\:{Z}\:−\:\left\{{n}\::\:{n}\:=\:\mathrm{5}{k}\:+\mathrm{2};\:{k}\:\in\:{Z}\right\} \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{4}{n}\:−\:\mathrm{1}\right)\frac{\pi}{\mathrm{10}}\:,\:{n}\:\in\:{Z} \\ $$$$\left(\mathrm{3}\right)\:\frac{{n}\pi}{\mathrm{10}}\:,\:{n}\:\in\:{Z} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{2}{n}\pi\:+\:\frac{\pi}{\mathrm{10}}\:,\:{n}\:\in\:{Z} \\ $$
Question Number 14028 Answers: 0 Comments: 0
Question Number 14025 Answers: 0 Comments: 0
$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{number}\:\mathrm{of}\:\mathrm{orders}\:\mathrm{vissible}\:\mathrm{with}\:\mathrm{a}\:\mathrm{diffraction}\:\mathrm{grating} \\ $$$$\mathrm{of}\:\mathrm{500}\:\mathrm{lines}\:\mathrm{per}\:\mathrm{milimitres}\:\:\mathrm{using}\:\mathrm{light}\:\mathrm{of}\:\mathrm{wavelenght}\:\mathrm{600nm}\:. \\ $$
Question Number 14020 Answers: 1 Comments: 0
Question Number 14016 Answers: 0 Comments: 2
$$\mathrm{it}\:\mathrm{remains} \\ $$$$\mathrm{force}×\mathrm{distance}=\mathrm{ise} \\ $$
Question Number 14015 Answers: 0 Comments: 0
Question Number 14014 Answers: 2 Comments: 0
$$\int\mathrm{cos}^{\mathrm{n}} \left(\mathrm{x}\right)\:\:\mathrm{dx} \\ $$$$\mathrm{please}\:\mathrm{i}\:\mathrm{need}\:\mathrm{workings}. \\ $$
Question Number 14011 Answers: 0 Comments: 1
$$\mathrm{simplify}:\:\:\frac{\mathrm{4}\:−\:\mathrm{j5}}{\mathrm{1}\:+\:\mathrm{j2}} \\ $$
Question Number 14002 Answers: 2 Comments: 0
$$\mathrm{If}\:\sqrt{−\mathrm{1}}\:=\:{i},\:\mathrm{then}\: \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\sqrt{{i}}\:? \\ $$
Question Number 13998 Answers: 1 Comments: 1
Question Number 13988 Answers: 0 Comments: 3
Question Number 13986 Answers: 0 Comments: 4
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{system} \\ $$$$\mathrm{of}\:\mathrm{equations}. \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{x}^{\mathrm{2}} }{\sqrt{\mathrm{x}}}+\frac{\sqrt{\mathrm{y}}}{\mathrm{y}^{\mathrm{2}} }=\frac{\mathrm{1729}}{\mathrm{64}} \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{y}^{\mathrm{2}} }{\sqrt{\mathrm{x}}}−\frac{\sqrt{\mathrm{y}}}{\mathrm{x}^{\mathrm{2}} }=\frac{\mathrm{6908}}{\mathrm{81}} \\ $$$$ \\ $$
Question Number 13983 Answers: 0 Comments: 2
Question Number 13982 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{z}^{\mathrm{2}} \:−\:\mathrm{8}\left(\mathrm{1}\:−\:\mathrm{i}\right)\mathrm{z}\:+\:\mathrm{63}\:−\:\mathrm{16i}\:=\:\mathrm{0} \\ $$
Question Number 13978 Answers: 1 Comments: 0
Question Number 13977 Answers: 2 Comments: 1
Question Number 13976 Answers: 1 Comments: 0
$$\mathrm{Solve}: \\ $$$$\mathrm{x}^{\mathrm{2}} \left(\mathrm{y}\:+\:\mathrm{1}\right)\:+\:\mathrm{y}^{\mathrm{2}} \left(\mathrm{x}\:−\:\mathrm{1}\right)\mathrm{y}'\:=\:\mathrm{0} \\ $$
Question Number 13965 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{cathode}\:\mathrm{ray}\:\mathrm{beam}\:\mathrm{is}\:\mathrm{bent}\:\mathrm{in}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\:\mathrm{2cm}\:\mathrm{by}\:\mathrm{uniform}\:\mathrm{field}\:\mathrm{with} \\ $$$$\mathrm{B}\:=\:\mathrm{4}.\mathrm{5}\:×\:\mathrm{10}^{−\mathrm{3}} \:\mathrm{T}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{electrons}\:??. \\ $$
Question Number 13960 Answers: 1 Comments: 0
$$\int_{\:\:\:\mathrm{0}} ^{\:\frac{\mathrm{a}}{\mathrm{2}}} \:\:\:\mathrm{x}^{\mathrm{2}} \left(\mathrm{a}^{\mathrm{2}} \:−\:\mathrm{x}^{\mathrm{2}} \right)^{−\mathrm{3}/\mathrm{2}} \:\:\mathrm{dx} \\ $$
Question Number 13955 Answers: 0 Comments: 2
$${y}\left({x}\right)=\begin{cases}{\mathrm{4}+\mathrm{6}{x}−\mathrm{3}{x}^{\mathrm{2}} \:\:\:\:\:\:\:;\:\:{x}\:<\:\mathrm{2}}\\{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{14}{x}+\mathrm{20}\:\:;\:\:{x}\:\geqslant\:\mathrm{2}}\end{cases} \\ $$$${Is}\:{the}\:{function}\:{y}\left({x}\right)\: \\ $$$${differentiable}\:{with}\:{respect}\:{to}\:{x} \\ $$$${at}\:{x}=\mathrm{2}\:? \\ $$
Question Number 13942 Answers: 1 Comments: 0
$$\mathrm{for}\:\:\boldsymbol{{v}}=\begin{bmatrix}{{y}}\\{{x}}\end{bmatrix},\:\:\:\:\boldsymbol{{v}}\in\mathbb{R}^{\mathrm{2}} \\ $$$$\boldsymbol{{v}}\:\mathrm{has}\:\mathrm{basis}\:\mathrm{vectors}\:\hat {{i}}\:\mathrm{and}\:\hat {{j}} \\ $$$$\: \\ $$$$\mathrm{Assume}\:\mathrm{we}\:\mathrm{apply}\:\mathrm{a}\:\mathrm{basis}\:\mathrm{transform}\:\mathrm{to} \\ $$$$\mathrm{obtain}\:\mathrm{new}\:\mathrm{basis}\:\mathrm{vectors}\:\hat {{i}}'\:\mathrm{and}\:\hat {{j}}' \\ $$$$\: \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{new}\:\boldsymbol{{v}}'? \\ $$
Question Number 13934 Answers: 0 Comments: 0
Question Number 13929 Answers: 1 Comments: 0
$${prove}\:{for}\:{real}\:\boldsymbol{{x}},\boldsymbol{{y}}\:{and}\:\boldsymbol{{a}}\:{that} \\ $$$$\sqrt{\left(\boldsymbol{{x}}+\boldsymbol{{a}}\right)^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} }+\sqrt{\left(\boldsymbol{{x}}−\boldsymbol{{a}}\right)^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} }\geqslant\mathrm{2}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:. \\ $$$$ \\ $$
Question Number 13909 Answers: 4 Comments: 5
$$\mathrm{Solve}\:\mathrm{simutaneously}. \\ $$$$\mathrm{x}\sqrt{\mathrm{x}}\:+\:\mathrm{y}\sqrt{\mathrm{y}}\:=\:\mathrm{183} \\ $$$$\mathrm{x}\sqrt{\mathrm{y}}\:+\:\mathrm{y}\sqrt{\mathrm{x}}\:=\:\mathrm{185} \\ $$
Question Number 13904 Answers: 2 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\::\:\:\mathrm{sin}\left(\mathrm{50}\right)\:+\:\mathrm{sin}\left(\mathrm{40}\right)\:=\:\sqrt{\mathrm{2}}\:\mathrm{cos}\left(\mathrm{5}\right) \\ $$
Question Number 13903 Answers: 2 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{range}\:\mathrm{0}°\:\mathrm{to}\:\mathrm{360}°\:\mathrm{for}\:\mathrm{which}\: \\ $$$$\mathrm{sin}\left(\mathrm{3x}\right)\mathrm{sin}\left(\mathrm{x}\right)\:=\:\mathrm{2cos}\left(\mathrm{2x}\right)\:+\:\mathrm{1} \\ $$
Pg 1945 Pg 1946 Pg 1947 Pg 1948 Pg 1949 Pg 1950 Pg 1951 Pg 1952 Pg 1953 Pg 1954
Terms of Service
Privacy Policy
Contact: info@tinkutara.com