Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1943

Question Number 11327    Answers: 0   Comments: 0

pl show me typing and shape drawing app for mobile.

$$\mathrm{pl}\:\mathrm{show}\:\mathrm{me}\:\mathrm{typing}\:\mathrm{and}\:\mathrm{shape}\:\mathrm{drawing}\:\mathrm{app}\:\mathrm{for}\:\mathrm{mobile}. \\ $$

Question Number 11321    Answers: 2   Comments: 2

How many solution {x, y, z} that fulfilled x + y + z = 99 ? x,y,z ∈ N

$$\mathrm{How}\:\mathrm{many}\:\mathrm{solution}\:\left\{{x},\:{y},\:{z}\right\}\:\mathrm{that}\:\mathrm{fulfilled} \\ $$$${x}\:+\:{y}\:+\:{z}\:=\:\mathrm{99}\:? \\ $$$${x},{y},{z}\:\in\:\mathbb{N} \\ $$

Question Number 11309    Answers: 0   Comments: 4

ax^2 +by^2 +cz^2 =r^2 Point P=(a, b, c) Point Q=(l, m, n) Both points lie on the curve what is the shortest path from point P to Q, along the outside of the curve?

$${ax}^{\mathrm{2}} +{by}^{\mathrm{2}} +{cz}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\: \\ $$$$\mathrm{Point}\:{P}=\left({a},\:{b},\:{c}\right) \\ $$$$\mathrm{Point}\:{Q}=\left({l},\:{m},\:{n}\right) \\ $$$$\mathrm{Both}\:\mathrm{points}\:\mathrm{lie}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\: \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{path}\:\mathrm{from}\:\mathrm{point} \\ $$$${P}\:\mathrm{to}\:{Q},\:\mathrm{along}\:\mathrm{the}\:\mathrm{outside}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve}? \\ $$

Question Number 11315    Answers: 0   Comments: 6

Question Number 11303    Answers: 2   Comments: 0

Find the equation and radius of the circumference of the triangle formed by the three lines. 2y − 9x + 26 = 0 9y + 2x + 32 = 0 11y − 7x − 27 = 0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{and}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circumference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{formed} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{three}\:\mathrm{lines}. \\ $$$$\mathrm{2y}\:−\:\mathrm{9x}\:+\:\mathrm{26}\:=\:\mathrm{0} \\ $$$$\mathrm{9y}\:+\:\mathrm{2x}\:+\:\mathrm{32}\:=\:\mathrm{0} \\ $$$$\mathrm{11y}\:−\:\mathrm{7x}\:−\:\mathrm{27}\:=\:\mathrm{0} \\ $$

Question Number 11302    Answers: 2   Comments: 0

((sin10x−sin6x−sin2x)/(sin9x−sin7x−sinx))=?

$$\frac{\mathrm{sin10x}−\mathrm{sin6x}−\mathrm{sin2x}}{\mathrm{sin9x}−\mathrm{sin7x}−\mathrm{sinx}}=? \\ $$

Question Number 11299    Answers: 0   Comments: 0

Define two partition p_1 and p_2 of [2,5] such that p_1 ⊂p_2 . Find the upper and lower product sums with respet to f ,?defined by f(x)=x , x<4 =1−x^2 , x ≥4 . Also verify the relationship between these 4 sums.

$$\mathrm{Define}\:\mathrm{two}\:\mathrm{partition}\:\mathrm{p}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{p}_{\mathrm{2}} \:\mathrm{of}\:\left[\mathrm{2},\mathrm{5}\right]\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{p}_{\mathrm{1}} \subset\mathrm{p}_{\mathrm{2}} \:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{upper}\:\mathrm{and}\:\mathrm{lower}\:\mathrm{product} \\ $$$$\mathrm{sums}\:\mathrm{with}\:\mathrm{respet}\:\mathrm{to}\:\mathrm{f}\:,?\mathrm{defined}\:\mathrm{by} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}\:,\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}<\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:=\mathrm{1}−\mathrm{x}^{\mathrm{2}} \:,\:\:\:\:\:\mathrm{x}\:\geqslant\mathrm{4}\:\:. \\ $$$$\mathrm{Also}\:\mathrm{verify}\:\mathrm{the}\:\mathrm{relationship}\:\mathrm{between}\:\mathrm{these} \\ $$$$\mathrm{4}\:\mathrm{sums}. \\ $$

Question Number 11301    Answers: 1   Comments: 1

ABCD is a cyclic quad and the diagonal AC and BD intersect at H. △DAC = 41° and △AHB = 70°. calulate △ACB

$$\mathrm{ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{cyclic}\:\mathrm{quad}\:\mathrm{and}\:\mathrm{the}\:\mathrm{diagonal}\:\mathrm{AC}\:\mathrm{and}\:\mathrm{BD}\:\mathrm{intersect}\:\mathrm{at}\:\mathrm{H}.\: \\ $$$$\bigtriangleup\mathrm{DAC}\:=\:\mathrm{41}°\:\mathrm{and}\:\bigtriangleup\mathrm{AHB}\:=\:\mathrm{70}°.\:\mathrm{calulate}\:\:\bigtriangleup\mathrm{ACB} \\ $$

Question Number 11288    Answers: 1   Comments: 0

Sketch the graph of the function f is defined by f(x)=x^4 +8x^3 , clearly giving all the properties used in it.

$$\mathrm{Sketch}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\:\mathrm{is}\:\mathrm{defined} \\ $$$$\mathrm{by}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{4}} +\mathrm{8x}^{\mathrm{3}} ,\:\mathrm{clearly}\:\mathrm{giving}\:\mathrm{all}\:\mathrm{the}\: \\ $$$$\mathrm{properties}\:\mathrm{used}\:\mathrm{in}\:\mathrm{it}. \\ $$

Question Number 11285    Answers: 1   Comments: 0

((sin20)/(cos80−tan30×sin80))=?

$$\frac{{sin}\mathrm{20}}{{cos}\mathrm{80}−{tan}\mathrm{30}×{sin}\mathrm{80}}=? \\ $$

Question Number 11284    Answers: 0   Comments: 0

a+2b+3c....(1) −3a−4b+2c....(2) 2a−b−c....(3) a=...?? b=...?? c=...??

$${a}+\mathrm{2}{b}+\mathrm{3}{c}....\left(\mathrm{1}\right) \\ $$$$−\mathrm{3}{a}−\mathrm{4}{b}+\mathrm{2}{c}....\left(\mathrm{2}\right) \\ $$$$\mathrm{2}{a}−{b}−{c}....\left(\mathrm{3}\right) \\ $$$${a}=...?? \\ $$$${b}=...?? \\ $$$${c}=...?? \\ $$

Question Number 11283    Answers: 0   Comments: 0

2a+b+4c....(1) a+3c....(2) −3a−4b−c....(4) a=..?? b=..?? c=..??

$$\mathrm{2}{a}+{b}+\mathrm{4}{c}....\left(\mathrm{1}\right) \\ $$$${a}+\mathrm{3}{c}....\left(\mathrm{2}\right) \\ $$$$−\mathrm{3}{a}−\mathrm{4}{b}−{c}....\left(\mathrm{4}\right) \\ $$$${a}=..?? \\ $$$${b}=..?? \\ $$$${c}=..?? \\ $$

Question Number 11278    Answers: 0   Comments: 2

please what is the meaning of I go go the go

$${please} \\ $$$${what}\:{is}\:{the}\:{meaning}\:{of} \\ $$$${I}\:{go}\:{go}\:{the}\:{go} \\ $$

Question Number 11274    Answers: 2   Comments: 0

((sin20+(√3)×cos20)/(cos10))=?

$$\frac{{sin}\mathrm{20}+\sqrt{\mathrm{3}}×{cos}\mathrm{20}}{{cos}\mathrm{10}}=? \\ $$

Question Number 11272    Answers: 1   Comments: 0

Question Number 11268    Answers: 1   Comments: 0

Solve x, y and z in terms of p, q and r yz = py + qz ........ (i) zx = qz + rx ....... (ii) xy = rx + py ....... (iii)

$$\mathrm{Solve}\:\mathrm{x},\:\mathrm{y}\:\mathrm{and}\:\mathrm{z}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{p},\:\mathrm{q}\:\mathrm{and}\:\mathrm{r} \\ $$$$\mathrm{yz}\:=\:\mathrm{py}\:+\:\mathrm{qz}\:\:\:\:\:........\:\left(\mathrm{i}\right) \\ $$$$\mathrm{zx}\:=\:\mathrm{qz}\:+\:\mathrm{rx}\:\:\:\:\:\:.......\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{xy}\:=\:\mathrm{rx}\:+\:\mathrm{py}\:\:\:\:\:.......\:\left(\mathrm{iii}\right) \\ $$

Question Number 11267    Answers: 1   Comments: 0

Sum of all 2 digit numbers which when divided by 4 yield unity as remainder is

$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{2}\:\mathrm{digit}\:\mathrm{numbers}\:\mathrm{which}\:\mathrm{when} \\ $$$$\mathrm{divided}\:\mathrm{by}\:\mathrm{4}\:\mathrm{yield}\:\mathrm{unity}\:\mathrm{as}\:\mathrm{remainder}\:\mathrm{is} \\ $$

Question Number 11266    Answers: 0   Comments: 1

Question Number 11263    Answers: 1   Comments: 0

Solve for x in the equation . 625^(x − 5) = 200(√x^3 )

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{equation}\:. \\ $$$$\mathrm{625}^{\mathrm{x}\:−\:\mathrm{5}} \:=\:\mathrm{200}\sqrt{\mathrm{x}^{\mathrm{3}} } \\ $$

Question Number 11262    Answers: 1   Comments: 0

The k^(th) term of a sequence is K, the m^(th) term of M and n^(th) term is N. Show that if it is a geometic, (m−n) log K + (n−k) log M + (k−m) log N = 0.

$$\mathrm{The}\:\mathrm{k}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{of}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{is}\:\mathrm{K},\:\mathrm{the}\:\mathrm{m}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{of}\:\:\mathrm{M}\:\mathrm{and}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{is}\:\mathrm{N}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{it}\:\mathrm{is}\:\mathrm{a}\:\mathrm{geometic}, \\ $$$$\left(\mathrm{m}−\mathrm{n}\right)\:\mathrm{log}\:\mathrm{K}\:+\:\left(\mathrm{n}−\mathrm{k}\right)\:\mathrm{log}\:\mathrm{M}\:+\:\left(\mathrm{k}−\mathrm{m}\right)\:\mathrm{log}\:\mathrm{N}\:=\:\mathrm{0}.\: \\ $$

Question Number 11261    Answers: 0   Comments: 0

The n^(th) term of a progression is np+q and the sum of n terms is denoted by S_n . Given that the 6^(th) term is 4 times 2^(nd) term and that S_3 =12, find the value of p and q. Express S_n in terms of n.

$$\mathrm{The}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{of}\:\mathrm{a}\:\mathrm{progression}\:\mathrm{is}\:\mathrm{np}+\mathrm{q}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{n}\:\mathrm{terms}\:\mathrm{is}\:\mathrm{denoted}\:\mathrm{by}\:\mathrm{S}_{\mathrm{n}} . \\ $$$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{6}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{is}\:\mathrm{4}\:\mathrm{times}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{term}\:\mathrm{and}\:\mathrm{that}\:\mathrm{S}_{\mathrm{3}} \:=\mathrm{12},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}. \\ $$$$\mathrm{Express}\:\mathrm{S}_{\mathrm{n}} \:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{n}. \\ $$

Question Number 11258    Answers: 1   Comments: 0

cos65=m ⇒ sin40=?

$${cos}\mathrm{65}={m}\:\:\Rightarrow\:{sin}\mathrm{40}=? \\ $$

Question Number 11256    Answers: 1   Comments: 0

In the arithmetic progression, u_(1 ) =1.Given that u_(7 ) , u_(11) and u_(17) are in geometric progression, find the value of each.

$$\mathrm{In}\:\mathrm{the}\:\mathrm{arithmetic}\:\mathrm{progression},\:\mathrm{u}_{\mathrm{1}\:} =\mathrm{1}.\mathrm{Given}\:\mathrm{that}\:\mathrm{u}_{\mathrm{7}\:} ,\:\mathrm{u}_{\mathrm{11}} \mathrm{and}\:\mathrm{u}_{\mathrm{17}} \:\mathrm{are}\:\mathrm{in}\:\mathrm{geometric}\: \\ $$$$\mathrm{progression},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{each}. \\ $$

Question Number 11255    Answers: 1   Comments: 0

If the sum of the first 4 terms of an A.P., is p, the sum of the first 8 terms is q and the sum of the first 12 terms is r, express (3p+r) in terms of q.

$$\mathrm{If}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{4}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{A}.\mathrm{P}.,\:\mathrm{is}\:\mathrm{p},\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{8}\:\mathrm{terms}\:\mathrm{is}\:\mathrm{q}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{12}\:\mathrm{terms}\:\mathrm{is}\:\mathrm{r},\:\mathrm{express}\:\left(\mathrm{3p}+\mathrm{r}\right)\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{q}. \\ $$

Question Number 11249    Answers: 2   Comments: 0

x∈(0,2π) 2cos^2 x +sinx−1=0 ⇒Σx=?

$${x}\in\left(\mathrm{0},\mathrm{2}\pi\right) \\ $$$$\mathrm{2cos}^{\mathrm{2}} {x}\:+{sinx}−\mathrm{1}=\mathrm{0}\:\Rightarrow\Sigma{x}=?\: \\ $$

Question Number 11246    Answers: 2   Comments: 0

The sum of the first n terms of the series (1/2) + (3/4) + (7/8) + ((15)/(16)) + ... is equal to

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:{n}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:+\:\frac{\mathrm{7}}{\mathrm{8}}\:+\:\frac{\mathrm{15}}{\mathrm{16}}\:+\:...\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

  Pg 1938      Pg 1939      Pg 1940      Pg 1941      Pg 1942      Pg 1943      Pg 1944      Pg 1945      Pg 1946      Pg 1947   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com