Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1939

Question Number 12830    Answers: 1   Comments: 0

the LCM and HCF of 30 and a certain number are 150 and 5 respectively. find the number please help

$$\mathrm{the}\:\mathrm{LCM}\:\mathrm{and}\:\mathrm{HCF}\:\mathrm{of}\:\mathrm{30}\:\mathrm{and}\:\mathrm{a}\: \\ $$$$\mathrm{certain}\:\mathrm{number}\:\mathrm{are}\:\mathrm{150}\:\mathrm{and}\:\mathrm{5}\: \\ $$$$\mathrm{respectively}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{number} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help} \\ $$

Question Number 12829    Answers: 2   Comments: 0

Question Number 12828    Answers: 1   Comments: 0

The value of the infinite product (√3) ∙ (9)^(1/4) ∙ ((27))^(1/8) ∙ ((81))^(1/(16)) ...to ∞ is equal to ____.

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{infinite}\:\mathrm{product} \\ $$$$\sqrt{\mathrm{3}}\:\centerdot\:\sqrt[{\mathrm{4}}]{\mathrm{9}}\:\centerdot\:\sqrt[{\mathrm{8}}]{\mathrm{27}}\:\centerdot\:\sqrt[{\mathrm{16}}]{\mathrm{81}}\:...\mathrm{to}\:\infty\:\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\_\_\_\_. \\ $$

Question Number 12827    Answers: 2   Comments: 0

Sum of three numbers in GP be 14. If one is added to first and second and 1 is subtracted from the third, the new numbers are in AP. The smallest of them is

$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{three}\:\mathrm{numbers}\:\mathrm{in}\:\mathrm{GP}\:\mathrm{be}\:\mathrm{14}.\:\mathrm{If}\:\mathrm{one}\:\mathrm{is} \\ $$$$\mathrm{added}\:\mathrm{to}\:\mathrm{first}\:\mathrm{and}\:\mathrm{second}\:\mathrm{and}\:\mathrm{1}\:\mathrm{is}\:\mathrm{subtracted} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{third},\:\mathrm{the}\:\mathrm{new}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{in}\:\mathrm{AP}. \\ $$$$\mathrm{The}\:\mathrm{smallest}\:\mathrm{of}\:\mathrm{them}\:\mathrm{is} \\ $$

Question Number 12826    Answers: 0   Comments: 0

prove that 1: 0<∫_0 ^(π/4) x(√(tan x)) dx< (π^2 /(32)) 2: (1/2)<∫_(π/4) ^(π/2) ((sin x)/x) dx <((√2)/2) 3: 0<∫_(100π) ^(200π) ((cos x)/x) dx <(1/(100π))

$$\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{1}:\:\:\mathrm{0}<\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{x}\sqrt{\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}<\:\frac{\pi^{\mathrm{2}} }{\mathrm{32}} \\ $$$$\mathrm{2}:\:\frac{\mathrm{1}}{\mathrm{2}}<\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}\:\mathrm{dx}\:<\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\mathrm{3}:\:\mathrm{0}<\int_{\mathrm{100}\pi} ^{\mathrm{200}\pi} \:\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{x}}\:\mathrm{dx}\:<\frac{\mathrm{1}}{\mathrm{100}\pi} \\ $$

Question Number 12822    Answers: 1   Comments: 0

prove by contradiction 9+13(√(3 )) is irrational

$${prove}\:{by}\:{contradiction}\:\mathrm{9}+\mathrm{13}\sqrt{\mathrm{3}\:} \\ $$$${is}\:{irrational} \\ $$

Question Number 12814    Answers: 1   Comments: 2

Question Number 12812    Answers: 1   Comments: 0

Question Number 12804    Answers: 1   Comments: 3

Question Number 12801    Answers: 1   Comments: 0

Question Number 12797    Answers: 1   Comments: 2

1 + x + x^2 + ... x^(49) = (1/2)(x^(49) − (1/x)) Find the value of x

$$\mathrm{1}\:+\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{2}} \:+\:...\:\mathrm{x}^{\mathrm{49}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{x}^{\mathrm{49}} \:−\:\frac{\mathrm{1}}{\mathrm{x}}\right) \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$

Question Number 12796    Answers: 1   Comments: 0

The sum of two positive numbers is 20. find the numbers (i) If their product is maximum (ii) If the sum of their square is maximum (iii) If the product of the square of one and the cube of the other is maximum

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{positive}\:\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{20}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{numbers} \\ $$$$\left(\mathrm{i}\right)\:\:\mathrm{If}\:\mathrm{their}\:\mathrm{product}\:\mathrm{is}\:\mathrm{maximum} \\ $$$$\left(\mathrm{ii}\right)\:\:\mathrm{If}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{square}\:\mathrm{is}\:\mathrm{maximum} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{If}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}\:\mathrm{of}\:\mathrm{one}\:\mathrm{and}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{is}\:\mathrm{maximum} \\ $$

Question Number 12794    Answers: 0   Comments: 0

Let R be a cummutative ring with 1, and a,b∈R. suppose a is ivertible and b is nilpotent. Show that a + b is ivertible.

$$\mathrm{Let}\:\mathrm{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{cummutative}\:\mathrm{ring}\:\mathrm{with}\:\mathrm{1},\:\mathrm{and}\:\:\mathrm{a},\mathrm{b}\in\mathrm{R}.\:\mathrm{suppose}\:\mathrm{a}\:\mathrm{is}\:\mathrm{ivertible}\:\mathrm{and} \\ $$$$\mathrm{b}\:\mathrm{is}\:\mathrm{nilpotent}.\:\mathrm{Show}\:\mathrm{that}\:\:\mathrm{a}\:+\:\mathrm{b}\:\:\mathrm{is}\:\mathrm{ivertible}. \\ $$

Question Number 12773    Answers: 1   Comments: 0

Question Number 12768    Answers: 1   Comments: 0

∫ ((sec x)/(tan^2 x)) dx

$$\int\:\frac{\mathrm{sec}\:{x}}{\mathrm{tan}^{\mathrm{2}} \:{x}}\:{dx} \\ $$

Question Number 12766    Answers: 1   Comments: 0

∫ (dx/(1 + tan x))

$$\int\:\frac{{dx}}{\mathrm{1}\:+\:\mathrm{tan}\:{x}} \\ $$

Question Number 12763    Answers: 0   Comments: 0

Solve simultaneously 2x + y − z = 8 ........... equation (i) x^2 − y^2 + 2z^2 = 14 .......... equation (ii) 3x^3 + 4y^3 + z^3 = 195 ........... equation (iii)

$$\mathrm{Solve}\:\mathrm{simultaneously} \\ $$$$\mathrm{2x}\:+\:\mathrm{y}\:−\:\mathrm{z}\:=\:\mathrm{8}\:\:\:\:\:\:\:\:...........\:\mathrm{equation}\:\left(\mathrm{i}\right) \\ $$$$\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{2z}^{\mathrm{2}} \:=\:\mathrm{14}\:\:\:\:\:\:\:..........\:\mathrm{equation}\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{3x}^{\mathrm{3}} \:+\:\mathrm{4y}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{3}} \:=\:\mathrm{195}\:\:\:\:\:\:\:\:\:...........\:\mathrm{equation}\:\left(\mathrm{iii}\right) \\ $$

Question Number 12760    Answers: 2   Comments: 0

Question Number 12753    Answers: 1   Comments: 0

evaluate ∫(√((sin x)))dx

$${evaluate}\:\int\sqrt{\left(\mathrm{sin}\:{x}\right)}{dx} \\ $$

Question Number 12752    Answers: 0   Comments: 0

Let V and W be 4 dimensional subspaces of a 7 dimensional vector space X. Which of the following CANNOT be the dimension of the subspace V∩W. (A) 0 (B) 1 (C) 2 (D) 3 (E) 4

$$\mathrm{Let}\:\mathrm{V}\:\mathrm{and}\:\mathrm{W}\:\mathrm{be}\:\mathrm{4}\:\mathrm{dimensional}\:\mathrm{subspaces}\:\mathrm{of}\:\mathrm{a}\:\mathrm{7}\:\mathrm{dimensional}\:\mathrm{vector}\:\mathrm{space}\:\mathrm{X}. \\ $$$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{CANNOT}\:\mathrm{be}\:\mathrm{the}\:\mathrm{dimension}\:\mathrm{of}\:\mathrm{the}\:\mathrm{subspace}\:\mathrm{V}\cap\mathrm{W}. \\ $$$$\left(\mathrm{A}\right)\:\mathrm{0}\:\left(\mathrm{B}\right)\:\mathrm{1}\:\left(\mathrm{C}\right)\:\mathrm{2}\:\left(\mathrm{D}\right)\:\mathrm{3}\:\left(\mathrm{E}\right)\:\mathrm{4} \\ $$

Question Number 12744    Answers: 1   Comments: 0

∫_( e^(−3) ) ^( e^(−2) ) (1/((x)log(x))) dx = ?

$$\int_{\:\mathrm{e}^{−\mathrm{3}} } ^{\:\mathrm{e}^{−\mathrm{2}} } \:\:\frac{\mathrm{1}}{\left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{x}\right)}\:\mathrm{dx}\:\:=\:\:? \\ $$

Question Number 12743    Answers: 2   Comments: 0

What is the area of eqilateral triangle whose inscribed circle has a radius 2

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{eqilateral}\:\mathrm{triangle}\:\mathrm{whose}\:\mathrm{inscribed}\:\mathrm{circle}\:\mathrm{has}\:\mathrm{a}\:\mathrm{radius}\:\mathrm{2} \\ $$

Question Number 12742    Answers: 1   Comments: 0

Prove that ∫ (dx/((x +1)^2 (√(x^2 + 2x +2)))) = ((−(√(x^2 + 2x + 2)))/(x + 1)) + C

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\int\:\frac{{dx}}{\left({x}\:+\mathrm{1}\right)^{\mathrm{2}} \:\sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\mathrm{2}}}\:=\:\frac{−\sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\:\mathrm{2}}}{{x}\:+\:\mathrm{1}}\:+\:{C} \\ $$

Question Number 12740    Answers: 1   Comments: 0

∫∣x∣ dx

$$\int\mid\mathrm{x}\mid\:\mathrm{dx} \\ $$

Question Number 12732    Answers: 4   Comments: 0

lim_(x→0) (((√x) − x)/((√x) + x))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{x}}\:−\:{x}}{\sqrt{{x}}\:+\:{x}} \\ $$

Question Number 12728    Answers: 0   Comments: 0

x^n + ca^x = k c, a, n, k constant x = F(n, a, c, k) (solve for x) I will try make x^n = k − θ and ca^x = θ, but, if someone can help, please!

$${x}^{{n}} \:+\:{ca}^{{x}} \:=\:{k}\:\:\:\:\:\:\:\:\:\:{c},\:{a},\:{n},\:{k}\:\mathrm{constant} \\ $$$${x}\:=\:{F}\left({n},\:{a},\:{c},\:{k}\right)\:\:\left(\boldsymbol{{solve}}\:\boldsymbol{{for}}\:\boldsymbol{{x}}\right) \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{try}\:\mathrm{make}\:{x}^{{n}} \:=\:{k}\:−\:\theta\:\mathrm{and}\:{ca}^{{x}} \:=\:\theta, \\ $$$$\mathrm{but},\:\mathrm{if}\:\mathrm{someone}\:\mathrm{can}\:\mathrm{help},\:{please}! \\ $$

  Pg 1934      Pg 1935      Pg 1936      Pg 1937      Pg 1938      Pg 1939      Pg 1940      Pg 1941      Pg 1942      Pg 1943   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com