Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1936

Question Number 15045    Answers: 1   Comments: 0

In a curve the x and y co-ordinate is function of t is given by the equation x = cos t and y = sin t, then find the length of the curve for t = 0 to t = (π/2).

$$\mathrm{In}\:\mathrm{a}\:\mathrm{curve}\:\mathrm{the}\:{x}\:\mathrm{and}\:{y}\:\mathrm{co}-\mathrm{ordinate}\:\mathrm{is} \\ $$$$\mathrm{function}\:\mathrm{of}\:{t}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:\mathrm{the}\:\mathrm{equation} \\ $$$${x}\:=\:\mathrm{cos}\:{t}\:\mathrm{and}\:{y}\:=\:\mathrm{sin}\:{t},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{for}\:{t}\:=\:\mathrm{0}\:\mathrm{to}\:{t}\:=\:\frac{\pi}{\mathrm{2}}. \\ $$

Question Number 15039    Answers: 2   Comments: 0

The acceleration of an object is given by a(t) = cos(πt) ms^(−2) and its velocity at time t = 0 is (1/(2π)) m/s at origin. Its velocity at t = (3/2) s is? The object′s position at t = (3/2) s is?

$$\mathrm{The}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{an}\:\mathrm{object}\:\mathrm{is}\:\mathrm{given} \\ $$$$\mathrm{by}\:{a}\left({t}\right)\:=\:\mathrm{cos}\left(\pi{t}\right)\:\mathrm{ms}^{−\mathrm{2}} \:\mathrm{and}\:\mathrm{its}\:\mathrm{velocity} \\ $$$$\mathrm{at}\:\mathrm{time}\:{t}\:=\:\mathrm{0}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{2}\pi}\:\mathrm{m}/\mathrm{s}\:\mathrm{at}\:\mathrm{origin}.\:\mathrm{Its} \\ $$$$\mathrm{velocity}\:\mathrm{at}\:{t}\:=\:\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{s}\:\mathrm{is}? \\ $$$$\mathrm{The}\:\mathrm{object}'\mathrm{s}\:\mathrm{position}\:\mathrm{at}\:{t}\:=\:\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{s}\:\mathrm{is}? \\ $$

Question Number 15036    Answers: 1   Comments: 2

Rotating a curve y = (√x) about the x- axis produces a “head light” as shown below. What is the area of disc at any x?

$$\mathrm{Rotating}\:\mathrm{a}\:\mathrm{curve}\:{y}\:=\:\sqrt{{x}}\:\mathrm{about}\:\mathrm{the}\:{x}- \\ $$$$\mathrm{axis}\:\mathrm{produces}\:\mathrm{a}\:``\mathrm{head}\:\mathrm{light}''\:\mathrm{as}\:\mathrm{shown} \\ $$$$\mathrm{below}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{disc}\:\mathrm{at}\:\mathrm{any}\:{x}? \\ $$

Question Number 15019    Answers: 0   Comments: 0

1.00 Mol of a monoatomic gas initially at 3.00 × 10^2 K and occupying 2.00 × 10^(−3 ) m^3 is heated to 3.25 × 10^2 K and the final volume is 4.00 × 10^(−3) m^3 . Assuming ideal behaviour , Calculate the entropy change for the system.

$$\mathrm{1}.\mathrm{00}\:\mathrm{Mol}\:\mathrm{of}\:\mathrm{a}\:\mathrm{monoatomic}\:\mathrm{gas}\:\mathrm{initially}\:\mathrm{at}\:\mathrm{3}.\mathrm{00}\:×\:\mathrm{10}^{\mathrm{2}} \mathrm{K}\:\mathrm{and}\:\mathrm{occupying}\:\: \\ $$$$\mathrm{2}.\mathrm{00}\:×\:\mathrm{10}^{−\mathrm{3}\:} \mathrm{m}^{\mathrm{3}} \:\mathrm{is}\:\mathrm{heated}\:\mathrm{to}\:\mathrm{3}.\mathrm{25}\:×\:\mathrm{10}^{\mathrm{2}} \mathrm{K}\:\mathrm{and}\:\mathrm{the}\:\mathrm{final}\:\mathrm{volume}\:\mathrm{is}\:\mathrm{4}.\mathrm{00}\:×\:\mathrm{10}^{−\mathrm{3}} \mathrm{m}^{\mathrm{3}} .\: \\ $$$$\mathrm{Assuming}\:\mathrm{ideal}\:\mathrm{behaviour}\:,\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{entropy}\:\mathrm{change}\:\mathrm{for}\:\mathrm{the}\:\mathrm{system}. \\ $$

Question Number 15017    Answers: 0   Comments: 0

Calculate the heat neccessary to raise the temperature of 5.00 mol of butane from 290K to 593K at a constant pressure. where Cp(19.41 + 0.233T)J/mol/K

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{heat}\:\mathrm{neccessary}\:\mathrm{to}\:\mathrm{raise}\:\mathrm{the}\:\mathrm{temperature}\:\mathrm{of}\:\mathrm{5}.\mathrm{00}\:\mathrm{mol}\:\mathrm{of}\:\mathrm{butane} \\ $$$$\mathrm{from}\:\mathrm{290K}\:\mathrm{to}\:\mathrm{593K}\:\mathrm{at}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{pressure}.\:\mathrm{where}\:\mathrm{Cp}\left(\mathrm{19}.\mathrm{41}\:+\:\mathrm{0}.\mathrm{233T}\right)\mathrm{J}/\mathrm{mol}/\mathrm{K} \\ $$

Question Number 15006    Answers: 1   Comments: 8

Question Number 14988    Answers: 0   Comments: 2

Solve on Z_4 ax+b=[0]_4 a,b∈Z_4 ax^2 +bx+c=[0]_4 a,b,c∈Z_4

$${Solve}\:{on}\:\mathbb{Z}_{\mathrm{4}} \: \\ $$$${ax}+{b}=\left[\mathrm{0}\right]_{\mathrm{4}} \:\:{a},{b}\in\mathbb{Z}_{\mathrm{4}} \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}=\left[\mathrm{0}\right]_{\mathrm{4}} \:\:{a},{b},{c}\in\mathbb{Z}_{\mathrm{4}} \\ $$

Question Number 14977    Answers: 2   Comments: 2

Find the real roots of the equation cos^4 x + sin^7 x = 1 in the interval [−π, π].

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{cos}^{\mathrm{4}} \:{x}\:+\:\mathrm{sin}^{\mathrm{7}} \:{x}\:=\:\mathrm{1}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval}\:\left[−\pi,\:\pi\right]. \\ $$

Question Number 14999    Answers: 1   Comments: 0

A 20 kg box is released from the top of an inclined plane that is 5 m long and makes an angle of 20° to the horizontal. A 60N friction force impedes the motion of the box . How long will it take to reach the bottom of the box.

$$\mathrm{A}\:\mathrm{20}\:\mathrm{kg}\:\mathrm{box}\:\mathrm{is}\:\mathrm{released}\:\mathrm{from}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{an}\:\mathrm{inclined}\:\mathrm{plane}\:\mathrm{that}\:\mathrm{is}\:\mathrm{5}\:\mathrm{m}\:\mathrm{long}\:\mathrm{and} \\ $$$$\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{20}°\:\mathrm{to}\:\mathrm{the}\:\mathrm{horizontal}.\:\mathrm{A}\:\mathrm{60N}\:\mathrm{friction}\:\mathrm{force}\:\mathrm{impedes}\:\mathrm{the}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{box}\:.\:\mathrm{How}\:\mathrm{long}\:\mathrm{will}\:\mathrm{it}\:\mathrm{take}\:\mathrm{to}\:\mathrm{reach}\:\mathrm{the}\:\mathrm{bottom}\:\mathrm{of}\:\mathrm{the}\:\mathrm{box}. \\ $$

Question Number 14971    Answers: 0   Comments: 0

Question Number 14970    Answers: 0   Comments: 0

Question Number 14965    Answers: 2   Comments: 2

Question Number 14991    Answers: 2   Comments: 0

Question Number 14964    Answers: 0   Comments: 0

proof that ∀ x,y ∈N ∃ a,b,c ∈N ∍ (4/(x^2 +y^2 ))=(1/a) + (1/b) + (1/c)

$$\mathrm{proof}\:\mathrm{that}\: \\ $$$$\forall\:{x},{y}\:\in\mathbb{N}\:\:\exists\:{a},{b},{c}\:\in\mathbb{N}\:\backepsilon\:\frac{\mathrm{4}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}} \\ $$

Question Number 14963    Answers: 1   Comments: 0

A resistor R is connected in series with a parallel combination of two resistors of 24 and 8 ohms . The total power disipated in the circuit is 64 watt when the applied voltage is 24 volt.Find R

$$\mathrm{A}\:\mathrm{resistor}\:\mathrm{R}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{in}\:\mathrm{series}\:\mathrm{with}\:\mathrm{a}\:\mathrm{parallel}\:\mathrm{combination}\:\mathrm{of}\:\mathrm{two}\:\mathrm{resistors} \\ $$$$\mathrm{of}\:\mathrm{24}\:\mathrm{and}\:\mathrm{8}\:\mathrm{ohms}\:.\:\mathrm{The}\:\mathrm{total}\:\mathrm{power}\:\mathrm{disipated}\:\mathrm{in}\:\mathrm{the}\:\mathrm{circuit}\:\mathrm{is}\:\mathrm{64}\:\mathrm{watt}\:\mathrm{when}\:\mathrm{the} \\ $$$$\mathrm{applied}\:\mathrm{voltage}\:\mathrm{is}\:\mathrm{24}\:\mathrm{volt}.\mathrm{Find}\:\mathrm{R} \\ $$

Question Number 14962    Answers: 1   Comments: 0

Two 30 ohms resistor are connected in parallel, what should be the resistance to be connected in series with this parallel combination such that the power in each 30 ohms is (1/4) th of total power.

$$\mathrm{Two}\:\mathrm{30}\:\mathrm{ohms}\:\mathrm{resistor}\:\mathrm{are}\:\mathrm{connected}\:\mathrm{in}\:\mathrm{parallel},\:\mathrm{what}\:\mathrm{should}\:\mathrm{be}\:\mathrm{the}\:\mathrm{resistance} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{connected}\:\mathrm{in}\:\mathrm{series}\:\mathrm{with}\:\mathrm{this}\:\mathrm{parallel}\:\mathrm{combination}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{power} \\ $$$$\mathrm{in}\:\mathrm{each}\:\mathrm{30}\:\mathrm{ohms}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{th}\:\mathrm{of}\:\mathrm{total}\:\mathrm{power}. \\ $$

Question Number 15022    Answers: 1   Comments: 0

Evaluate: ∫_1 ^4 ((x^2 + x)/(√(2x + 1))) dx (Question ID: 53) How does the limits change in the solution of Q. No. 53?

$$\mathrm{Evaluate}:\:\int_{\mathrm{1}} ^{\mathrm{4}} \frac{{x}^{\mathrm{2}} \:+\:{x}}{\sqrt{\mathrm{2}{x}\:+\:\mathrm{1}}}\:{dx}\:\left(\mathrm{Question}\:\mathrm{ID}:\right. \\ $$$$\left.\mathrm{53}\right)\:\mathrm{How}\:\mathrm{does}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{change}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{solution}\:\mathrm{of}\:\mathrm{Q}.\:\mathrm{No}.\:\mathrm{53}? \\ $$

Question Number 15212    Answers: 1   Comments: 1

Question Number 15208    Answers: 1   Comments: 0

Question Number 15207    Answers: 1   Comments: 0

The value of (√3) cosec 20°−sec 20° is equal to ____.

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\:\sqrt{\mathrm{3}}\:\mathrm{cosec}\:\mathrm{20}°−\mathrm{sec}\:\mathrm{20}°\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\_\_\_\_. \\ $$

Question Number 15206    Answers: 0   Comments: 0

If z = x + jy, detemine the cartesian equation of the locus of the point z which moves in the Argrand diagram so that ∣z + j2∣^2 + ∣z − j2∣^(2 ) = 40

$$\mathrm{If}\:\:\:\mathrm{z}\:=\:\mathrm{x}\:+\:\mathrm{jy},\:\:\mathrm{detemine}\:\mathrm{the}\:\mathrm{cartesian}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point}\: \\ $$$$\mathrm{z}\:\mathrm{which}\:\mathrm{moves}\:\mathrm{in}\:\mathrm{the}\:\mathrm{Argrand}\:\mathrm{diagram}\:\mathrm{so}\:\mathrm{that} \\ $$$$\mid\mathrm{z}\:+\:\mathrm{j2}\mid^{\mathrm{2}} \:+\:\mid\mathrm{z}\:−\:\mathrm{j2}\mid^{\mathrm{2}\:} =\:\mathrm{40} \\ $$

Question Number 15202    Answers: 0   Comments: 0

if z = x + jy , find the equations of the two loci defined by: (a) ∣z − 4∣ = 3 (b) arg(z + 2) = (π/6)

$$\mathrm{if}\:\mathrm{z}\:=\:\mathrm{x}\:+\:\mathrm{jy}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{loci}\:\mathrm{defined}\:\mathrm{by}: \\ $$$$\left(\mathrm{a}\right)\:\mid\mathrm{z}\:−\:\mathrm{4}\mid\:=\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{b}\right)\:\mathrm{arg}\left(\mathrm{z}\:+\:\mathrm{2}\right)\:=\:\frac{\pi}{\mathrm{6}} \\ $$

Question Number 15201    Answers: 0   Comments: 0

If z = x + jy , where x and y are real, show that the locus ∣((z − 2)/(z + 1))∣ = 2 is a circle and determine its centre and radius.

$$\mathrm{If}\:\:\mathrm{z}\:=\:\mathrm{x}\:+\:\mathrm{jy}\:,\:\mathrm{where}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{are}\:\mathrm{real},\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{locus}\:\:\mid\frac{\mathrm{z}\:−\:\mathrm{2}}{\mathrm{z}\:+\:\mathrm{1}}\mid\:=\:\mathrm{2}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle} \\ $$$$\mathrm{and}\:\mathrm{determine}\:\mathrm{its}\:\mathrm{centre}\:\mathrm{and}\:\mathrm{radius}. \\ $$

Question Number 15195    Answers: 0   Comments: 3

lim_(x→∞) (((2x − 5)/(2x + 1)))^(x + 3)

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{2}{x}\:−\:\mathrm{5}}{\mathrm{2}{x}\:+\:\mathrm{1}}\right)^{{x}\:+\:\mathrm{3}} \\ $$

Question Number 14949    Answers: 0   Comments: 2

Find the largest prime factor of 203203. Anyone please suggest the method without calculators or log tables.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{prime}\:\mathrm{factor}\:\mathrm{of}\:\mathrm{203203}. \\ $$$$\mathrm{Anyone}\:\mathrm{please}\:\mathrm{suggest}\:\mathrm{the}\:\mathrm{method} \\ $$$$\mathrm{without}\:\mathrm{calculators}\:\mathrm{or}\:\mathrm{log}\:\mathrm{tables}. \\ $$

Question Number 14940    Answers: 2   Comments: 12

For those who are interested in Geometry: A triangle has an area of 1 unit. Each of its sides is divided into 4 equal parts through 3 points. The first and the last point of each side will be connected with each other to form 2 inscribed triangles and these 2 triangles form a hexagon. Find the area of the hexagon. What is the result, if each side is equally divided into 5 parts, or generally into n parts?

$${For}\:{those}\:{who}\:{are}\:{interested}\:{in}\: \\ $$$${Geometry}:\: \\ $$$${A}\:{triangle}\:{has}\:{an}\:{area}\:{of}\:\mathrm{1}\:{unit}.\:{Each} \\ $$$${of}\:{its}\:{sides}\:{is}\:{divided}\:{into}\:\mathrm{4}\:{equal}\:{parts} \\ $$$${through}\:\mathrm{3}\:{points}.\:{The}\:{first}\:{and}\:{the}\:{last} \\ $$$${point}\:{of}\:{each}\:{side}\:{will}\:{be}\:{connected} \\ $$$${with}\:{each}\:{other}\:{to}\:{form}\:\mathrm{2}\:{inscribed} \\ $$$${triangles}\:{and}\:{these}\:\mathrm{2}\:{triangles}\:{form} \\ $$$${a}\:{hexagon}.\:{Find}\:{the}\:{area}\:{of}\:{the}\:{hexagon}. \\ $$$$ \\ $$$${What}\:{is}\:{the}\:{result},\:{if}\:{each}\:{side}\:{is} \\ $$$${equally}\:{divided}\:{into}\:\mathrm{5}\:{parts},\:{or} \\ $$$${generally}\:{into}\:{n}\:{parts}? \\ $$

  Pg 1931      Pg 1932      Pg 1933      Pg 1934      Pg 1935      Pg 1936      Pg 1937      Pg 1938      Pg 1939      Pg 1940   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com