Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1935
Question Number 8350 Answers: 1 Comments: 0
$${solve}: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{5}}{\mathrm{3}{x}+\mathrm{2}}+\frac{\mathrm{8}}{\mathrm{4}{x}+\mathrm{2}}=\frac{\mathrm{33}}{\mathrm{9}{x}+\mathrm{8}} \\ $$
Question Number 8347 Answers: 0 Comments: 5
$${a}_{\mathrm{1}} =\mathrm{2}\:,\:\:{a}_{{n}+\mathrm{1}} >{a}_{{n}} \\ $$$$\left({a}_{{n}+\mathrm{1}} −{a}_{{n}} \right)^{\mathrm{2}} =\:\mathrm{2}\left({a}_{{n}+\mathrm{1}} +{a}_{{n}} \right) \\ $$$$\:{a}_{{n}} =?? \\ $$$${help}\:{me}\:{please}. \\ $$
Question Number 8345 Answers: 1 Comments: 0
$${y}=\left({x}+\mathrm{2}\right)^{\mathrm{2}} −\mathrm{3} \\ $$$${Translation}\:{T}_{\mathrm{1}} =\begin{pmatrix}{{a}}\\{{b}}\end{pmatrix} \\ $$$${y}'={x}^{\mathrm{2}} \\ $$$${a}=?\:{b}=? \\ $$
Question Number 8341 Answers: 1 Comments: 0
$$\mathrm{What}\:\mathrm{are}\:\mathrm{necessary}\:\mathrm{and}\:\mathrm{sufficient}\:\mathrm{conditions} \\ $$$$\mathrm{that}\:\left(\mathrm{a}+\mathrm{ib}\right)^{\mathrm{n}} \:\mathrm{is}\:\mathrm{cyclic}\:\mathrm{for}\:\mathrm{an}\:\:\mathrm{n}\:\mathrm{not}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{0}? \\ $$
Question Number 8338 Answers: 1 Comments: 1
Question Number 8334 Answers: 0 Comments: 0
Question Number 8336 Answers: 0 Comments: 2
$$\mathrm{Determine}\:\mathrm{smallest}\:\mathrm{n}\left(\neq\mathrm{0}\right),\:\mathrm{for}\:\mathrm{which} \\ $$$$\left(\omega+\mathrm{i}\right)^{\mathrm{n}} =\mathrm{1}. \\ $$
Question Number 8311 Answers: 1 Comments: 1
$${Solve}\:{the}\:{equation}\:\mathrm{6}{cos}\mathrm{2}{a}−\mathrm{5}{sin}\mathrm{2}{a}=\mathrm{1}.\mathrm{8} \\ $$$${for}\mathrm{0}°\leqslant{a}\leqslant\mathrm{180}°. \\ $$
Question Number 8310 Answers: 1 Comments: 0
$${Given}\:{that}\:{cosecA}+{cotA}=\mathrm{3}\:{evaluate} \\ $$$${cosecA}−{cotA}\:{and}\:{cosA}. \\ $$$$ \\ $$
Question Number 8314 Answers: 2 Comments: 9
Question Number 8325 Answers: 0 Comments: 0
$${In}\:\Delta\:{ABC},\angle{A}=\mathrm{90}°\:,\:{AD}\bot{BC},\:{DE}\bot{AC}, \\ $$$${AF}\bot{FG},{GH}\bot{FC}. \\ $$$$\left({a}\right){How}\:{many}\:{triangles}\:{are}\:{there}? \\ $$$$\left({b}\right){If}\:{AB}=\frac{\mathrm{16}}{\mathrm{9}}\:,\:\angle{B}=\mathrm{60}°,{find}\:{the}\:{length} \\ $$$$\:\:\:\:\:\:{of}\:{GH}. \\ $$
Question Number 8305 Answers: 0 Comments: 3
Question Number 8296 Answers: 0 Comments: 2
$$\mathrm{Give}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{representation}\:\mathrm{of}\:\:\mathrm{2333}! \\ $$
Question Number 8289 Answers: 1 Comments: 2
$${what}\:{is}\:{value} \\ $$$${sin}\:\mathrm{36}° \\ $$$${plese}\:{give}\:{me}\:{answer} \\ $$
Question Number 8287 Answers: 1 Comments: 0
$${Show}\:{that}\:{tan}\left(\alpha+\beta\right)=\frac{{tan}\alpha+{tan}\beta}{\mathrm{1}−{tan}\alpha{tan}\beta}. \\ $$
Question Number 8297 Answers: 1 Comments: 0
$$\underset{} {{B}y}\:{expessing}\:{each}\:{side}\:{of}\:{the} \\ $$$${equation}\:{in}\:{terms}\:{of}\:{tanA}\:,{or}\: \\ $$$${otherwise}\:{show}\:{that} \\ $$$$\frac{{sin}\mathrm{2}{A}+{cos}\mathrm{2}{A}+\mathrm{1}}{{sin}\mathrm{2}{A}+{cos}\mathrm{2}{A}−\mathrm{1}}=\frac{{tan}\left(\mathrm{45}°+{A}\right)}{{tanA}} \\ $$
Question Number 8306 Answers: 0 Comments: 1
$${If}\:\mathrm{270}°<{x}<\mathrm{360}°,\:{simplify} \\ $$$$\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\mathrm{2}{cosx}}}. \\ $$
Question Number 8302 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{satisfying}\: \\ $$$$\mathrm{1}!\:+\:\mathrm{2}!\:+\:\mathrm{3}!\:+\:...\:+\:\mathrm{x}!\:=\:\mathrm{y}^{\mathrm{2}} \\ $$
Question Number 8300 Answers: 0 Comments: 2
Question Number 8301 Answers: 1 Comments: 1
$$\mathrm{Is}\:\:\left\{\:\left(\omega+\mathrm{i}\right)^{\mathrm{0}} ,\:\left(\omega+\mathrm{i}\right)^{\mathrm{1}} ,\:\left(\omega+\mathrm{i}\right)^{\mathrm{2}} ,\:....,\:\left(\omega+\mathrm{i}\right)^{\mathrm{n}} \:\right\} \\ $$$$\mathrm{cyclic}\:\mathrm{for}\:\mathrm{any}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n}? \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{such}\:\mathrm{n}\:\mathrm{if}\:\mathrm{it}\:\mathrm{exists}. \\ $$$$\omega\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{cuberoot}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{and} \\ $$$$\mathrm{i}=\sqrt{−\mathrm{1}} \\ $$
Question Number 8282 Answers: 1 Comments: 3
$$\mathrm{Find}\:\mathrm{x},\:\mathrm{y}\:\mathrm{in}\:\mathbb{R} \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{1}}\\{\mathrm{x}^{\mathrm{8}} \:+\:\mathrm{y}^{\mathrm{8}} \:=\:\mathrm{x}^{\mathrm{10}} \:+\:\mathrm{y}^{\mathrm{10}} }\end{cases} \\ $$
Question Number 8281 Answers: 1 Comments: 0
$$\int\frac{\mathrm{6}\:\mathrm{sinx}\:\mathrm{cosx}}{\mathrm{sinx}\:+\:\mathrm{cosx}}\:\mathrm{dx} \\ $$
Question Number 8277 Answers: 0 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{one}\:\mathrm{representation}\:\mathrm{for}\:\pi\approx\mathrm{3}.\mathrm{14}... \\ $$$$\mathrm{is}\:\pi=\mathrm{12cos}^{−\mathrm{1}} \left[\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{1}/\mathrm{4}} \left(\mathrm{1}+\underset{\mathrm{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{2r}} {\prod}}\left(\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{k}\right)}{\left(\mathrm{2r}\right)!}\left(\frac{−\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{r}} \right)\right]. \\ $$$$ \\ $$
Question Number 8275 Answers: 0 Comments: 2
$${Show}\:{that}\:{the}\:{followings} \\ $$$$\left({i}\right){sin}\left({a}+{b}\right)={sina}\:{cosb}\:+{cosa}\:{sinb} \\ $$$$\left({ii}\right){cos}\left({a}−{b}\right)={cosa}\:{cosb}\:+{sina}\:{sinb} \\ $$$$ \\ $$
Question Number 8273 Answers: 1 Comments: 0
$${Express}\:{sin}\alpha+\sqrt{\mathrm{3}}{cos}\alpha\:{in}\:{the}\:{form}\: \\ $$$${Rsin}\left(\alpha+\beta\right)\:{where}\:{R}>\mathrm{0}\:{and}\:\mathrm{0}°<\beta<\mathrm{90}°. \\ $$$${Hence}\:{solve}\:{the}\:{equation}\:{sin}\alpha+\sqrt{\mathrm{3}}{cos}\alpha=\mathrm{2} \\ $$$${for}\:\mathrm{0}°<\alpha<\mathrm{270}°. \\ $$
Question Number 8269 Answers: 1 Comments: 1
Pg 1930 Pg 1931 Pg 1932 Pg 1933 Pg 1934 Pg 1935 Pg 1936 Pg 1937 Pg 1938 Pg 1939
Terms of Service
Privacy Policy
Contact: info@tinkutara.com