Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1935

Question Number 14147    Answers: 0   Comments: 1

Determine: (a) e^ω (b) ω^e

$$\mathrm{Determine}: \\ $$$$\left({a}\right)\:\mathrm{e}^{\omega} \\ $$$$\left({b}\right)\:\omega^{\mathrm{e}} \\ $$

Question Number 14145    Answers: 1   Comments: 1

Question Number 14144    Answers: 1   Comments: 0

Question Number 14139    Answers: 1   Comments: 1

Question Number 14130    Answers: 1   Comments: 4

How to find maximum value of k if ((5 − cos 2θ)/(sin θ)) ≥ 2k 0 ≤ θ ≤ π

$$\mathrm{How}\:\mathrm{to}\:\mathrm{find}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:{k}\:\mathrm{if} \\ $$$$\frac{\mathrm{5}\:−\:\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{sin}\:\theta}\:\:\geqslant\:\mathrm{2}{k}\:\:\:\:\:\:\:\:\:\mathrm{0}\:\leqslant\:\theta\:\leqslant\:\pi \\ $$

Question Number 14128    Answers: 1   Comments: 0

If ((Px)/((b−c))) = ((Qy)/((c−a))) = ((Rz)/((a−b))) , then find Pax + Qby + Rcz.

$$\mathrm{If}\:\:\frac{\mathrm{P}{x}}{\left({b}−{c}\right)}\:=\:\frac{\mathrm{Q}{y}}{\left({c}−{a}\right)}\:=\:\frac{\mathrm{R}{z}}{\left({a}−{b}\right)}\:,\:\mathrm{then}\:\mathrm{find} \\ $$$$\mathrm{P}{ax}\:+\:\mathrm{Q}{by}\:+\:\mathrm{R}{cz}. \\ $$

Question Number 14119    Answers: 0   Comments: 10

For what values of n∈N, ω^(1/n) can be expressed as ω^m where m∈Z?

$$\mathrm{For}\:\mathrm{what}\:\mathrm{values}\:\mathrm{of}\:\mathrm{n}\in\mathbb{N}, \\ $$$$\omega^{\mathrm{1}/\mathrm{n}} \:\mathrm{can}\:\mathrm{be}\:\mathrm{expressed}\:\mathrm{as}\:\omega^{\mathrm{m}} \\ $$$$\mathrm{where}\:\mathrm{m}\in\mathbb{Z}? \\ $$

Question Number 14113    Answers: 0   Comments: 4

Is this incorrect: S=2×2×... S=2(2×2×...) S=2S S=0 Please explain why

$$\mathrm{Is}\:\mathrm{this}\:\mathrm{incorrect}: \\ $$$${S}=\mathrm{2}×\mathrm{2}×... \\ $$$${S}=\mathrm{2}\left(\mathrm{2}×\mathrm{2}×...\right) \\ $$$${S}=\mathrm{2}{S} \\ $$$${S}=\mathrm{0} \\ $$$$\: \\ $$$$\mathrm{Please}\:\mathrm{explain}\:\mathrm{why} \\ $$

Question Number 14109    Answers: 0   Comments: 3

(a^p −a) mod p = 0 when is this true? a,p∈Z

$$\left({a}^{{p}} −{a}\right)\:\mathrm{mod}\:{p}\:=\:\mathrm{0} \\ $$$$\mathrm{when}\:\mathrm{is}\:\mathrm{this}\:\mathrm{true}? \\ $$$${a},{p}\in\mathbb{Z} \\ $$

Question Number 14104    Answers: 0   Comments: 0

Question Number 18672    Answers: 0   Comments: 0

Question Number 14100    Answers: 0   Comments: 0

Slove ▽Φ

$${Slove}\:\bigtriangledown\Phi \\ $$

Question Number 14079    Answers: 0   Comments: 2

Question Number 14078    Answers: 3   Comments: 4

Question Number 14077    Answers: 2   Comments: 0

Question Number 14073    Answers: 1   Comments: 4

Question Number 14071    Answers: 2   Comments: 1

Solve the Partial fraction ((3x^4 − 9x^3 + 16x^2 + 9x + 13)/((x − 1)^2 (x^2 + 2x − 2)^2 ))

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{Partial}\:\mathrm{fraction}\: \\ $$$$\frac{\mathrm{3x}^{\mathrm{4}} \:−\:\mathrm{9x}^{\mathrm{3}} \:+\:\mathrm{16x}^{\mathrm{2}} \:+\:\mathrm{9x}\:+\:\mathrm{13}}{\left(\mathrm{x}\:−\:\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2x}\:−\:\mathrm{2}\right)^{\mathrm{2}} } \\ $$

Question Number 14047    Answers: 0   Comments: 13

S=1+i−1−i+1+... (1/i)=−i S=i(−i+1+i−1−i+1+...) S=i(−i+S) S=1+iS S(1−i)=1 ∴ S=(1/(1−i)) a) Is this correct? b) Do there exist any other sequences in the form of: S=(a_1 +...+a_n )+(a_1 +...+a_n )+... S=(a_1 +...+a_n )(1+1+...+1_(m times) ) ⇒S=Σ_(i=1) ^(m→∞) Σ_(j=1) ^n a_j where a_(t+1) =ba_t , a_1 =ba_n I′m very interested in these sequences

$${S}=\mathrm{1}+{i}−\mathrm{1}−{i}+\mathrm{1}+... \\ $$$$\frac{\mathrm{1}}{{i}}=−{i} \\ $$$${S}={i}\left(−{i}+\mathrm{1}+{i}−\mathrm{1}−{i}+\mathrm{1}+...\right) \\ $$$${S}={i}\left(−{i}+{S}\right) \\ $$$${S}=\mathrm{1}+{iS} \\ $$$${S}\left(\mathrm{1}−{i}\right)=\mathrm{1} \\ $$$$\therefore\:{S}=\frac{\mathrm{1}}{\mathrm{1}−{i}} \\ $$$$\: \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Is}\:\mathrm{this}\:\mathrm{correct}? \\ $$$$\left.\mathrm{b}\right)\:\mathrm{Do}\:\mathrm{there}\:\mathrm{exist}\:\mathrm{any}\:\mathrm{other}\:\mathrm{sequences} \\ $$$$\:\:\:\:\:\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\mathrm{of}: \\ $$$${S}=\left({a}_{\mathrm{1}} +...+{a}_{{n}} \right)+\left({a}_{\mathrm{1}} +...+{a}_{{n}} \right)+... \\ $$$${S}=\left({a}_{\mathrm{1}} +...+{a}_{{n}} \right)\left(\underset{{m}\:\mathrm{times}} {\mathrm{1}+\mathrm{1}+...+\mathrm{1}}\right) \\ $$$$\Rightarrow{S}=\underset{{i}=\mathrm{1}} {\overset{{m}\rightarrow\infty} {\sum}}\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{j}} \\ $$$$\mathrm{where}\:{a}_{{t}+\mathrm{1}} ={ba}_{{t}} ,\:\:{a}_{\mathrm{1}} ={ba}_{{n}} \\ $$$$\: \\ $$$$\mathrm{I}'\mathrm{m}\:\mathrm{very}\:\mathrm{interested}\:\mathrm{in}\:\mathrm{these}\:\mathrm{sequences} \\ $$

Question Number 14046    Answers: 2   Comments: 0

Calculate: (√ω)

$$\mathrm{Calculate}:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\sqrt{\omega} \\ $$

Question Number 14042    Answers: 0   Comments: 2

Can we express ω^(1/2) in terms of whole powers of ω?

$$\mathrm{Can}\:\mathrm{we}\:\mathrm{express}\:\:\omega^{\mathrm{1}/\mathrm{2}} \:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\mathrm{whole}\:\mathrm{powers}\:\mathrm{of}\:\omega? \\ $$

Question Number 14030    Answers: 1   Comments: 0

The general solution of equation tan x tan 4x = 1 is (1) (2n + 1)(π/(10)) , n ∈ Z − {n : n = 5k +2; k ∈ Z} (2) (4n − 1)(π/(10)) , n ∈ Z (3) ((nπ)/(10)) , n ∈ Z (4) 2nπ + (π/(10)) , n ∈ Z

$$\mathrm{The}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\mathrm{tan}\:{x}\:\mathrm{tan}\:\mathrm{4}{x}\:=\:\mathrm{1}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\left(\mathrm{2}{n}\:+\:\mathrm{1}\right)\frac{\pi}{\mathrm{10}}\:,\:{n}\:\in\:{Z}\:−\:\left\{{n}\::\:{n}\:=\:\mathrm{5}{k}\:+\mathrm{2};\:{k}\:\in\:{Z}\right\} \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{4}{n}\:−\:\mathrm{1}\right)\frac{\pi}{\mathrm{10}}\:,\:{n}\:\in\:{Z} \\ $$$$\left(\mathrm{3}\right)\:\frac{{n}\pi}{\mathrm{10}}\:,\:{n}\:\in\:{Z} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{2}{n}\pi\:+\:\frac{\pi}{\mathrm{10}}\:,\:{n}\:\in\:{Z} \\ $$

Question Number 14028    Answers: 0   Comments: 0

Question Number 14025    Answers: 0   Comments: 0

Calculate the maximum number of orders vissible with a diffraction grating of 500 lines per milimitres using light of wavelenght 600nm .

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{number}\:\mathrm{of}\:\mathrm{orders}\:\mathrm{vissible}\:\mathrm{with}\:\mathrm{a}\:\mathrm{diffraction}\:\mathrm{grating} \\ $$$$\mathrm{of}\:\mathrm{500}\:\mathrm{lines}\:\mathrm{per}\:\mathrm{milimitres}\:\:\mathrm{using}\:\mathrm{light}\:\mathrm{of}\:\mathrm{wavelenght}\:\mathrm{600nm}\:. \\ $$

Question Number 14020    Answers: 1   Comments: 0

Question Number 14016    Answers: 0   Comments: 2

it remains force×distance=ise

$$\mathrm{it}\:\mathrm{remains} \\ $$$$\mathrm{force}×\mathrm{distance}=\mathrm{ise} \\ $$

Question Number 14015    Answers: 0   Comments: 0

  Pg 1930      Pg 1931      Pg 1932      Pg 1933      Pg 1934      Pg 1935      Pg 1936      Pg 1937      Pg 1938      Pg 1939   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com