Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1934

Question Number 14882    Answers: 0   Comments: 6

Two vectors a^→ and b^→ are parallel and have same magnitude. Then they (1) have same direction, but they are not equal (2) are equal (3) are not equal (4) may or may not be equal

$$\mathrm{Two}\:\mathrm{vectors}\:\overset{\rightarrow} {{a}}\:\mathrm{and}\:\overset{\rightarrow} {{b}}\:\mathrm{are}\:\mathrm{parallel}\:\mathrm{and} \\ $$$$\mathrm{have}\:\mathrm{same}\:\mathrm{magnitude}.\:\mathrm{Then}\:\mathrm{they} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{have}\:\mathrm{same}\:\mathrm{direction},\:\mathrm{but}\:\mathrm{they}\:\mathrm{are} \\ $$$$\mathrm{not}\:\mathrm{equal} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{are}\:\mathrm{equal} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{are}\:\mathrm{not}\:\mathrm{equal} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{may}\:\mathrm{or}\:\mathrm{may}\:\mathrm{not}\:\mathrm{be}\:\mathrm{equal} \\ $$

Question Number 14879    Answers: 1   Comments: 0

Find the value of x, satisfying sin^2 x + sin x − 2 ≥ 0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x},\:\mathrm{satisfying} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:{x}\:+\:\mathrm{sin}\:{x}\:−\:\mathrm{2}\:\geqslant\:\mathrm{0} \\ $$

Question Number 14878    Answers: 0   Comments: 3

Find the number of solution of equation x sin x = 2

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{equation} \\ $$$${x}\:\mathrm{sin}\:{x}\:=\:\mathrm{2} \\ $$

Question Number 14876    Answers: 0   Comments: 0

Question Number 14614    Answers: 1   Comments: 2

If 5 doesn′t divide any of n,n+1, n+2,n+3 then prove that n(n+1)(n+2)(n+3)≡24(mod100)

$$\mathrm{If}\:\:\mathrm{5}\:\:\mathrm{doesn}'\mathrm{t}\:\mathrm{divide}\:\mathrm{any}\:\mathrm{of}\:\mathrm{n},\mathrm{n}+\mathrm{1}, \\ $$$$\mathrm{n}+\mathrm{2},\mathrm{n}+\mathrm{3}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{2}\right)\left(\mathrm{n}+\mathrm{3}\right)\equiv\mathrm{24}\left(\mathrm{mod100}\right) \\ $$

Question Number 14758    Answers: 2   Comments: 4

Solve tan x + tan 2x + tan 3x = 0

$$\mathrm{Solve}\:\mathrm{tan}\:{x}\:+\:\mathrm{tan}\:\mathrm{2}{x}\:+\:\mathrm{tan}\:\mathrm{3}{x}\:=\:\mathrm{0} \\ $$

Question Number 14757    Answers: 1   Comments: 0

Solve: ((1000!)/(5×10×15×...1000))≡x(mod 10)

$$\mathrm{Solve}: \\ $$$$\frac{\mathrm{1000}!}{\mathrm{5}×\mathrm{10}×\mathrm{15}×...\mathrm{1000}}\equiv\mathrm{x}\left(\mathrm{mod}\:\mathrm{10}\right) \\ $$

Question Number 14759    Answers: 0   Comments: 2

Where is 123456 ? S/He was most senior of us and had a great knoledge of maths! S/He used to guide us when we were wrong.

$$\:\:\:\:\:\:\:\:\mathrm{Where}\:\mathrm{is} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{123456} \\ $$$$\:\:\:\:\:\:\:\:\:? \\ $$$$\mathrm{S}/\mathrm{He}\:\mathrm{was}\:\mathrm{most}\:\mathrm{senior}\:\mathrm{of}\:\mathrm{us}\: \\ $$$$\mathrm{and} \\ $$$$\mathrm{had}\:\mathrm{a}\:\mathrm{great}\:\mathrm{knoledge}\:\mathrm{of}\:\mathrm{maths}! \\ $$$$\mathrm{S}/\mathrm{He}\:\mathrm{used}\:\mathrm{to}\:\mathrm{guide}\:\mathrm{us}\:\mathrm{when} \\ $$$$\mathrm{we}\:\mathrm{were}\:\mathrm{wrong}. \\ $$$$ \\ $$

Question Number 14596    Answers: 0   Comments: 3

Question Number 14594    Answers: 1   Comments: 0

Question Number 14593    Answers: 1   Comments: 0

Question Number 14592    Answers: 0   Comments: 2

Question Number 14591    Answers: 1   Comments: 0

Question Number 14590    Answers: 1   Comments: 0

Question Number 14572    Answers: 0   Comments: 1

The number of possible pairs of successive prime numbers such that each of them is greater than 40 and their sum is atmost 100 is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{possible}\:\mathrm{pairs}\:\mathrm{of}\: \\ $$$$\mathrm{successive}\:\mathrm{prime}\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{each}\:\mathrm{of}\:\mathrm{them}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{40}\:\mathrm{and}\: \\ $$$$\mathrm{their}\:\mathrm{sum}\:\mathrm{is}\:\mathrm{atmost}\:\mathrm{100}\:\mathrm{is} \\ $$

Question Number 14588    Answers: 1   Comments: 0

Determine the fourth roots of − 16, giving the results in the form a + jb.

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{fourth}\:\mathrm{roots}\:\mathrm{of}\:\:\:−\:\mathrm{16},\:\:\:\mathrm{giving}\:\mathrm{the}\:\mathrm{results}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\:\mathrm{a}\:+\:\mathrm{jb}. \\ $$

Question Number 14587    Answers: 1   Comments: 0

Determine the roots of the equation x^3 + 64 = 0 in the polar form a + jb, Where a and b are real.

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{64}\:=\:\mathrm{0}\:\:\mathrm{in}\:\mathrm{the}\:\mathrm{polar}\:\mathrm{form}\:\:\mathrm{a}\:+\:\mathrm{jb}, \\ $$$$\mathrm{Where}\:\:\mathrm{a}\:\:\mathrm{and}\:\:\mathrm{b}\:\:\mathrm{are}\:\mathrm{real}. \\ $$

Question Number 14564    Answers: 0   Comments: 9

What is the last 2 digits of 2^(613)

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{last}\:\mathrm{2}\:\mathrm{digits}\:\mathrm{of}\:\:\:\:\:\:\mathrm{2}^{\mathrm{613}} \\ $$

Question Number 14560    Answers: 0   Comments: 0

Question Number 14559    Answers: 1   Comments: 0

Solve for x ((6x + 2a + 3b + c )/(6x + 2a − 3b − c)) = ((2x + 6a + b + 3c)/(2x + 6a − b − 3c))

$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x} \\ $$$$\frac{\mathrm{6x}\:+\:\mathrm{2a}\:+\:\mathrm{3b}\:+\:\mathrm{c}\:}{\mathrm{6x}\:+\:\mathrm{2a}\:−\:\mathrm{3b}\:−\:\mathrm{c}}\:=\:\frac{\mathrm{2x}\:+\:\mathrm{6a}\:+\:\mathrm{b}\:+\:\mathrm{3c}}{\mathrm{2x}\:+\:\mathrm{6a}\:−\:\mathrm{b}\:−\:\mathrm{3c}} \\ $$

Question Number 14544    Answers: 0   Comments: 0

Question Number 14543    Answers: 2   Comments: 1

An open box of area 486cm^2 .If the length is twice the breadth.Find the maximum volume of the box. hence,Show the volume is maximum.

$$\mathrm{An}\:\mathrm{open}\:\mathrm{box}\:\mathrm{of}\:\mathrm{area}\:\mathrm{486cm}^{\mathrm{2}} .\mathrm{If}\:\mathrm{the} \\ $$$$\mathrm{length}\:\mathrm{is}\:\mathrm{twice}\:\mathrm{the}\:\mathrm{breadth}.\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{maximum}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{box}. \\ $$$$\mathrm{hence},\mathrm{Show}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{is}\:\mathrm{maximum}. \\ $$

Question Number 14541    Answers: 0   Comments: 0

Question Number 14535    Answers: 2   Comments: 6

Question Number 14523    Answers: 2   Comments: 0

Question Number 14521    Answers: 0   Comments: 0

  Pg 1929      Pg 1930      Pg 1931      Pg 1932      Pg 1933      Pg 1934      Pg 1935      Pg 1936      Pg 1937      Pg 1938   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com