Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1934

Question Number 14682    Answers: 1   Comments: 0

Question Number 14677    Answers: 1   Comments: 0

A stone of mass 100g is tied to the end of a string of 50 cm long . The stone is whirled as a conical pendulum so that it rotates in horizontal circle radius 30 cm. Determine the angular speed and the tension in the string.

$$\mathrm{A}\:\mathrm{stone}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{100g}\:\mathrm{is}\:\mathrm{tied}\:\mathrm{to}\:\mathrm{the}\:\mathrm{end}\:\mathrm{of}\:\mathrm{a}\:\mathrm{string}\:\mathrm{of}\:\mathrm{50}\:\mathrm{cm}\:\mathrm{long}\:.\:\mathrm{The}\:\mathrm{stone}\:\mathrm{is} \\ $$$$\mathrm{whirled}\:\mathrm{as}\:\mathrm{a}\:\mathrm{conical}\:\mathrm{pendulum}\:\mathrm{so}\:\mathrm{that}\:\mathrm{it}\:\mathrm{rotates}\:\mathrm{in}\:\mathrm{horizontal}\:\mathrm{circle}\:\mathrm{radius} \\ $$$$\mathrm{30}\:\mathrm{cm}.\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{angular}\:\mathrm{speed}\:\mathrm{and}\:\mathrm{the}\:\mathrm{tension}\:\mathrm{in}\:\mathrm{the}\:\mathrm{string}. \\ $$

Question Number 14667    Answers: 1   Comments: 2

Question Number 14668    Answers: 2   Comments: 3

Question Number 14664    Answers: 1   Comments: 0

What is the transformed equation of a parabola given by y=2x^2 +(8/5)x−((109)/(50)) , if the coordinate axes is rotated anticlockwise by 𝛂=tan^(−1) (3/4) .

$$\:{What}\:{is}\:{the}\:{transformed}\: \\ $$$${equation}\:{of}\:{a}\:{parabola}\:{given}\:{by} \\ $$$$\:\:\boldsymbol{{y}}=\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\frac{\mathrm{8}}{\mathrm{5}}\boldsymbol{{x}}−\frac{\mathrm{109}}{\mathrm{50}}\:,\:{if}\:{the} \\ $$$${coordinate}\:{axes}\:{is}\:{rotated}\: \\ $$$$\:{anticlockwise}\:{by}\:\:\boldsymbol{\alpha}=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\:. \\ $$

Question Number 14661    Answers: 1   Comments: 1

Question Number 14658    Answers: 1   Comments: 0

Given that: x = ((√2) + 1)^(1/3) − ((√2) − 1)^(1/3) Show that , x^3 + 3x = 2

$$\mathrm{Given}\:\mathrm{that}: \\ $$$$\mathrm{x}\:=\:\left(\sqrt{\mathrm{2}}\:+\:\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} \:−\:\left(\sqrt{\mathrm{2}}\:−\:\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\mathrm{Show}\:\mathrm{that}\:,\:\:\:\:\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{3x}\:=\:\mathrm{2} \\ $$

Question Number 14660    Answers: 0   Comments: 2

Question Number 14646    Answers: 0   Comments: 0

Prove that: ∫_( 0) ^( 1) sin(x) cos^(−1) (x) dx > (1/e^2 )

$$\mathrm{Prove}\:\mathrm{that}:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{sin}\left(\mathrm{x}\right)\:\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{dx}\:>\:\frac{\mathrm{1}}{\mathrm{e}^{\mathrm{2}} } \\ $$

Question Number 14633    Answers: 3   Comments: 1

Solve the equation: (1 − tanθ)(1 + sin2θ) = 1 + tanθ

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\left(\mathrm{1}\:−\:\mathrm{tan}\theta\right)\left(\mathrm{1}\:+\:\mathrm{sin2}\theta\right)\:=\:\mathrm{1}\:+\:\mathrm{tan}\theta \\ $$

Question Number 14632    Answers: 2   Comments: 0

Find the general solution of the equation 3^(sin 2x + 2 cos^2 x) + 3^(1 − sin 2x + 2 sin^2 x) = 28

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation} \\ $$$$\mathrm{3}^{\mathrm{sin}\:\mathrm{2}{x}\:+\:\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:{x}} \:+\:\mathrm{3}^{\mathrm{1}\:−\:\mathrm{sin}\:\mathrm{2}{x}\:+\:\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:{x}} \:=\:\mathrm{28} \\ $$

Question Number 14630    Answers: 0   Comments: 2

solve the eqn dr/dθ=[r(a^2 −r^2 )/a^2 +r^2 ]cotθ hint. let a^2 +r^2 =a^2 −r^2 +2r^2 .

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{eqn} \\ $$$$\mathrm{dr}/\mathrm{d}\theta=\left[\mathrm{r}\left(\mathrm{a}^{\mathrm{2}} −\mathrm{r}^{\mathrm{2}} \right)/\mathrm{a}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} \right]\mathrm{cot}\theta \\ $$$$\mathrm{hint}.\:\mathrm{let}\:\mathrm{a}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} −\mathrm{r}^{\mathrm{2}} +\mathrm{2r}^{\mathrm{2}} . \\ $$

Question Number 14882    Answers: 0   Comments: 6

Two vectors a^→ and b^→ are parallel and have same magnitude. Then they (1) have same direction, but they are not equal (2) are equal (3) are not equal (4) may or may not be equal

$$\mathrm{Two}\:\mathrm{vectors}\:\overset{\rightarrow} {{a}}\:\mathrm{and}\:\overset{\rightarrow} {{b}}\:\mathrm{are}\:\mathrm{parallel}\:\mathrm{and} \\ $$$$\mathrm{have}\:\mathrm{same}\:\mathrm{magnitude}.\:\mathrm{Then}\:\mathrm{they} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{have}\:\mathrm{same}\:\mathrm{direction},\:\mathrm{but}\:\mathrm{they}\:\mathrm{are} \\ $$$$\mathrm{not}\:\mathrm{equal} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{are}\:\mathrm{equal} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{are}\:\mathrm{not}\:\mathrm{equal} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{may}\:\mathrm{or}\:\mathrm{may}\:\mathrm{not}\:\mathrm{be}\:\mathrm{equal} \\ $$

Question Number 14879    Answers: 1   Comments: 0

Find the value of x, satisfying sin^2 x + sin x − 2 ≥ 0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x},\:\mathrm{satisfying} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:{x}\:+\:\mathrm{sin}\:{x}\:−\:\mathrm{2}\:\geqslant\:\mathrm{0} \\ $$

Question Number 14878    Answers: 0   Comments: 3

Find the number of solution of equation x sin x = 2

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{equation} \\ $$$${x}\:\mathrm{sin}\:{x}\:=\:\mathrm{2} \\ $$

Question Number 14876    Answers: 0   Comments: 0

Question Number 14614    Answers: 1   Comments: 2

If 5 doesn′t divide any of n,n+1, n+2,n+3 then prove that n(n+1)(n+2)(n+3)≡24(mod100)

$$\mathrm{If}\:\:\mathrm{5}\:\:\mathrm{doesn}'\mathrm{t}\:\mathrm{divide}\:\mathrm{any}\:\mathrm{of}\:\mathrm{n},\mathrm{n}+\mathrm{1}, \\ $$$$\mathrm{n}+\mathrm{2},\mathrm{n}+\mathrm{3}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{2}\right)\left(\mathrm{n}+\mathrm{3}\right)\equiv\mathrm{24}\left(\mathrm{mod100}\right) \\ $$

Question Number 14758    Answers: 2   Comments: 4

Solve tan x + tan 2x + tan 3x = 0

$$\mathrm{Solve}\:\mathrm{tan}\:{x}\:+\:\mathrm{tan}\:\mathrm{2}{x}\:+\:\mathrm{tan}\:\mathrm{3}{x}\:=\:\mathrm{0} \\ $$

Question Number 14757    Answers: 1   Comments: 0

Solve: ((1000!)/(5×10×15×...1000))≡x(mod 10)

$$\mathrm{Solve}: \\ $$$$\frac{\mathrm{1000}!}{\mathrm{5}×\mathrm{10}×\mathrm{15}×...\mathrm{1000}}\equiv\mathrm{x}\left(\mathrm{mod}\:\mathrm{10}\right) \\ $$

Question Number 14759    Answers: 0   Comments: 2

Where is 123456 ? S/He was most senior of us and had a great knoledge of maths! S/He used to guide us when we were wrong.

$$\:\:\:\:\:\:\:\:\mathrm{Where}\:\mathrm{is} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{123456} \\ $$$$\:\:\:\:\:\:\:\:\:? \\ $$$$\mathrm{S}/\mathrm{He}\:\mathrm{was}\:\mathrm{most}\:\mathrm{senior}\:\mathrm{of}\:\mathrm{us}\: \\ $$$$\mathrm{and} \\ $$$$\mathrm{had}\:\mathrm{a}\:\mathrm{great}\:\mathrm{knoledge}\:\mathrm{of}\:\mathrm{maths}! \\ $$$$\mathrm{S}/\mathrm{He}\:\mathrm{used}\:\mathrm{to}\:\mathrm{guide}\:\mathrm{us}\:\mathrm{when} \\ $$$$\mathrm{we}\:\mathrm{were}\:\mathrm{wrong}. \\ $$$$ \\ $$

Question Number 14596    Answers: 0   Comments: 3

Question Number 14594    Answers: 1   Comments: 0

Question Number 14593    Answers: 1   Comments: 0

Question Number 14592    Answers: 0   Comments: 2

Question Number 14591    Answers: 1   Comments: 0

Question Number 14590    Answers: 1   Comments: 0

  Pg 1929      Pg 1930      Pg 1931      Pg 1932      Pg 1933      Pg 1934      Pg 1935      Pg 1936      Pg 1937      Pg 1938   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com