Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1934

Question Number 14544    Answers: 0   Comments: 0

Question Number 14543    Answers: 2   Comments: 1

An open box of area 486cm^2 .If the length is twice the breadth.Find the maximum volume of the box. hence,Show the volume is maximum.

$$\mathrm{An}\:\mathrm{open}\:\mathrm{box}\:\mathrm{of}\:\mathrm{area}\:\mathrm{486cm}^{\mathrm{2}} .\mathrm{If}\:\mathrm{the} \\ $$$$\mathrm{length}\:\mathrm{is}\:\mathrm{twice}\:\mathrm{the}\:\mathrm{breadth}.\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{maximum}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{box}. \\ $$$$\mathrm{hence},\mathrm{Show}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{is}\:\mathrm{maximum}. \\ $$

Question Number 14541    Answers: 0   Comments: 0

Question Number 14535    Answers: 2   Comments: 6

Question Number 14523    Answers: 2   Comments: 0

Question Number 14521    Answers: 0   Comments: 0

Question Number 14513    Answers: 2   Comments: 0

If y^2 (1 + x^2 ) = 1 − x^2 Show that, ((dy/dx))^2 = ((1 − y^4 )/(1 − x^4 ))

$$\mathrm{If}\:\:\mathrm{y}^{\mathrm{2}} \left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)\:=\:\mathrm{1}\:−\:\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{Show}\:\mathrm{that},\:\:\:\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{\mathrm{2}} \:=\:\frac{\mathrm{1}\:−\:\mathrm{y}^{\mathrm{4}} }{\mathrm{1}\:−\:\mathrm{x}^{\mathrm{4}} } \\ $$

Question Number 14510    Answers: 0   Comments: 0

∫ (1/((x^3 − 1)^3 )) dx

$$\int\:\:\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{3}} \:−\:\mathrm{1}\right)^{\mathrm{3}} }\:\mathrm{dx} \\ $$

Question Number 14507    Answers: 0   Comments: 0

Question Number 14502    Answers: 1   Comments: 3

Question Number 14491    Answers: 1   Comments: 0

(√(25))

$$\sqrt{\mathrm{25}} \\ $$$$ \\ $$

Question Number 14486    Answers: 0   Comments: 0

S=1−2+3−4+... ∴S=Σ_(n=1) ^∞ (−1)^(n+1) n S=lim_(s→0) (Σ_(n=1) ^∞ (−1)^(n+1) n^(1−s) ) Prove S=(1/4)

$${S}=\mathrm{1}−\mathrm{2}+\mathrm{3}−\mathrm{4}+... \\ $$$$\therefore{S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {n} \\ $$$$\: \\ $$$${S}=\underset{{s}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {n}^{\mathrm{1}−{s}} \right) \\ $$$$\: \\ $$$$\mathrm{Prove}\:{S}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Question Number 14483    Answers: 0   Comments: 8

x^y +y^x =3.....(1) x+y=3.....(2) solve the equation

$$\mathrm{x}^{\mathrm{y}} +\mathrm{y}^{\mathrm{x}} =\mathrm{3}.....\left(\mathrm{1}\right) \\ $$$$\mathrm{x}+\mathrm{y}=\mathrm{3}.....\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$

Question Number 14481    Answers: 0   Comments: 0

Question Number 14479    Answers: 1   Comments: 0

Question Number 14478    Answers: 2   Comments: 0

Solve: y′ = (y − x)^2

$$\mathrm{Solve}:\:\:\:\:\mathrm{y}'\:=\:\left(\mathrm{y}\:−\:\mathrm{x}\right)^{\mathrm{2}} \\ $$

Question Number 14470    Answers: 0   Comments: 4

Find the number of solution(s) of x^2 + x + sin x = 0, x ∈ [0, π]

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solution}\left(\mathrm{s}\right)\:\mathrm{of} \\ $$$${x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{sin}\:{x}\:=\:\mathrm{0},\:{x}\:\in\:\left[\mathrm{0},\:\pi\right] \\ $$

Question Number 14468    Answers: 0   Comments: 0

Question Number 14467    Answers: 0   Comments: 6

Question Number 14452    Answers: 1   Comments: 3

Question Number 14451    Answers: 2   Comments: 0

Question Number 14444    Answers: 1   Comments: 0

Solve the differential equation y′ = ((2x + 3y − 4)/(4x + 3y + 2))

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}\: \\ $$$$\mathrm{y}'\:=\:\frac{\mathrm{2x}\:+\:\mathrm{3y}\:−\:\mathrm{4}}{\mathrm{4x}\:+\:\mathrm{3y}\:+\:\mathrm{2}} \\ $$

Question Number 14440    Answers: 1   Comments: 0

Question Number 14438    Answers: 1   Comments: 3

x=((2a)/(√3))sin 𝛉, y=((2b)/(√3))sin 𝛗, and z=((2c)/(√3))sin 𝛙 ; where a,b, and c are sides of △ABC such that 𝛗−𝛙+(π/3)=∠A, 𝛙−𝛉+(π/3)=∠B, and 𝛉−𝛙+(π/3)=∠C . Find at least one feasible solution set of 𝛉,𝛗, and 𝛙 in terms of ∠A, ∠B, and ∠C such that all angles and sides are positive with a≠b≠c , and ∠A≠∠B≠∠C ≠ (𝛑/2) Find x,y, and z even if you you please..

$$\boldsymbol{{x}}=\frac{\mathrm{2}\boldsymbol{{a}}}{\sqrt{\mathrm{3}}}\mathrm{sin}\:\boldsymbol{\theta},\:\boldsymbol{{y}}=\frac{\mathrm{2}\boldsymbol{{b}}}{\sqrt{\mathrm{3}}}\mathrm{sin}\:\boldsymbol{\phi},\:{and} \\ $$$$\boldsymbol{{z}}=\frac{\mathrm{2}\boldsymbol{{c}}}{\sqrt{\mathrm{3}}}\mathrm{sin}\:\boldsymbol{\psi}\:;\:{where}\:\boldsymbol{{a}},\boldsymbol{{b}},\:{and}\:\boldsymbol{{c}} \\ $$$${are}\:{sides}\:{of}\:\bigtriangleup{ABC}\:{such}\:{that} \\ $$$$\boldsymbol{\phi}−\boldsymbol{\psi}+\frac{\pi}{\mathrm{3}}=\angle\boldsymbol{{A}}, \\ $$$$\boldsymbol{\psi}−\boldsymbol{\theta}+\frac{\pi}{\mathrm{3}}=\angle\boldsymbol{{B}},\:{and} \\ $$$$\boldsymbol{\theta}−\boldsymbol{\psi}+\frac{\pi}{\mathrm{3}}=\angle\boldsymbol{{C}}\:. \\ $$$${Find}\:{at}\:{least}\:{one}\:{feasible} \\ $$$${solution}\:{set}\:{of}\:\boldsymbol{\theta},\boldsymbol{\phi},\:{and}\:\boldsymbol{\psi}\:{in} \\ $$$${terms}\:{of}\:\angle\boldsymbol{{A}},\:\angle\boldsymbol{{B}},\:{and}\:\angle\boldsymbol{{C}} \\ $$$${such}\:{that}\:{all}\:{angles}\:{and}\:{sides} \\ $$$${are}\:{positive}\:{with}\:\boldsymbol{{a}}\neq\boldsymbol{{b}}\neq\boldsymbol{{c}}\:, \\ $$$${and}\:\angle\boldsymbol{{A}}\neq\angle\boldsymbol{{B}}\neq\angle\boldsymbol{{C}}\:\:\neq\:\frac{\boldsymbol{\pi}}{\mathrm{2}}\: \\ $$$${Find}\:\boldsymbol{{x}},\boldsymbol{{y}},\:{and}\:\boldsymbol{{z}}\:{even}\:{if}\:{you}\: \\ $$$${you}\:{please}.. \\ $$

Question Number 14435    Answers: 0   Comments: 0

∫e^(−x^2 ) dx=?

$$\int{e}^{−{x}^{\mathrm{2}} } {dx}=? \\ $$

Question Number 14431    Answers: 0   Comments: 0

∫ ((3x sin^(−1) (4x^2 ))/(√(1 − 16x^4 ))) dx

$$\int\:\:\frac{\mathrm{3x}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{4x}^{\mathrm{2}} \right)}{\sqrt{\mathrm{1}\:−\:\mathrm{16x}^{\mathrm{4}} }}\:\mathrm{dx} \\ $$

  Pg 1929      Pg 1930      Pg 1931      Pg 1932      Pg 1933      Pg 1934      Pg 1935      Pg 1936      Pg 1937      Pg 1938   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com