Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1933

Question Number 12328    Answers: 1   Comments: 0

if it′s correct solve plz lim_(x→0) ((x^x −1)/(xlnx))

$$\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{it}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{correct}}\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{plz}} \\ $$$$\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\boldsymbol{\mathrm{lim}}}\frac{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}} −\mathrm{1}}{\boldsymbol{\mathrm{xlnx}}} \\ $$

Question Number 12321    Answers: 0   Comments: 0

When a known standard resistor of 2.0 Ω is connected to the 0.0 cm end of a meter bridge. The balance point is found to be at 55.0cm. What is the value of the resistor.

$$\mathrm{When}\:\mathrm{a}\:\mathrm{known}\:\mathrm{standard}\:\mathrm{resistor}\:\mathrm{of}\:\mathrm{2}.\mathrm{0}\:\Omega\:\mathrm{is}\:\mathrm{connected}\:\mathrm{to}\:\mathrm{the}\:\mathrm{0}.\mathrm{0}\:\mathrm{cm}\:\mathrm{end}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{meter}\:\mathrm{bridge}.\:\mathrm{The}\:\mathrm{balance}\:\mathrm{point}\:\mathrm{is}\:\mathrm{found}\:\mathrm{to}\:\mathrm{be}\:\mathrm{at}\:\mathrm{55}.\mathrm{0cm}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\: \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{resistor}. \\ $$

Question Number 12319    Answers: 1   Comments: 0

Question Number 12316    Answers: 1   Comments: 0

What is the acceleration due to gravity , g, on the moon , if g is 10m/s^2 on the earth.

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{due}\:\mathrm{to}\:\mathrm{gravity}\:,\:\mathrm{g},\:\mathrm{on}\:\mathrm{the}\:\mathrm{moon}\:,\:\mathrm{if}\:\mathrm{g}\:\mathrm{is}\:\mathrm{10m}/\mathrm{s}^{\mathrm{2}} \:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{earth}. \\ $$

Question Number 12306    Answers: 1   Comments: 0

Two similar boxes B_i (i=1,2)contain (i+1)red and (5−i−1) black balls. One box is chosen at random and two balls are drawn randomly. what is the probability that both balls are of different colours? (a) 1/2 (b) 3/10 (c) 2/5 (d) 3/5

$${Two}\:{similar}\:{boxes}\:{B}_{{i}} \:\left({i}=\mathrm{1},\mathrm{2}\right){contain} \\ $$$$\left({i}+\mathrm{1}\right){red}\:{and}\:\left(\mathrm{5}−{i}−\mathrm{1}\right)\:{black}\:{balls}. \\ $$$${One}\:{box}\:{is}\:{chosen}\:{at}\:{random}\:{and} \\ $$$${two}\:{balls}\:{are}\:{drawn}\:{randomly}. \\ $$$${what}\:{is}\:{the}\:{probability}\:{that}\:{both} \\ $$$${balls}\:{are}\:{of}\:{different}\:{colours}? \\ $$$$\left({a}\right)\:\:\mathrm{1}/\mathrm{2} \\ $$$$\left({b}\right)\:\:\mathrm{3}/\mathrm{10} \\ $$$$\left({c}\right)\:\:\mathrm{2}/\mathrm{5} \\ $$$$\left({d}\right)\:\:\mathrm{3}/\mathrm{5} \\ $$

Question Number 12305    Answers: 1   Comments: 0

If c>0 and 4a+c<2b,then ax^2 −bx+c=0 has a root in which intervals? (a) (0,2) (b) (2,3) (c) (3,4) (d) (−2,0)

$${If}\:{c}>\mathrm{0}\:{and}\:\mathrm{4}{a}+{c}<\mathrm{2}{b},{then} \\ $$$${ax}^{\mathrm{2}} −{bx}+{c}=\mathrm{0}\:{has}\:{a}\:{root}\:{in}\:{which} \\ $$$${intervals}? \\ $$$$\left({a}\right)\:\:\left(\mathrm{0},\mathrm{2}\right) \\ $$$$\left({b}\right)\:\:\left(\mathrm{2},\mathrm{3}\right) \\ $$$$\left({c}\right)\:\:\left(\mathrm{3},\mathrm{4}\right) \\ $$$$\left({d}\right)\:\:\left(−\mathrm{2},\mathrm{0}\right) \\ $$

Question Number 12304    Answers: 1   Comments: 0

How many geometric progressions is/are possible contauning 27,8 and 12 as three of its/their terms? (a) 1 (b) 2 (c) 4 (d) infinitely many

$${How}\:{many}\:{geometric}\:{progressions} \\ $$$${is}/{are}\:{possible}\:{contauning}\:\mathrm{27},\mathrm{8} \\ $$$${and}\:\mathrm{12}\:{as}\:{three}\:{of}\:{its}/{their}\:{terms}? \\ $$$$\left({a}\right)\:\:\mathrm{1} \\ $$$$\left({b}\right)\:\:\mathrm{2} \\ $$$$\left({c}\right)\:\:\mathrm{4} \\ $$$$\left({d}\right)\:\:{infinitely}\:{many} \\ $$$$ \\ $$

Question Number 12303    Answers: 1   Comments: 0

What is∫_1 ^3 ∣1−x^4 ∣dx equal to? (a) −232/5 (b) −116/5 (c) 116/5 (d) 232/5

$${What}\:{is}\underset{\mathrm{1}} {\overset{\mathrm{3}} {\int}}\mid\mathrm{1}−{x}^{\mathrm{4}} \:\mid{dx}\:{equal}\:{to}? \\ $$$$\left({a}\right)\:\:−\mathrm{232}/\mathrm{5} \\ $$$$\left({b}\right)\:\:−\mathrm{116}/\mathrm{5} \\ $$$$\left({c}\right)\:\:\:\mathrm{116}/\mathrm{5} \\ $$$$\left({d}\right)\:\:\:\mathrm{232}/\mathrm{5} \\ $$

Question Number 12302    Answers: 1   Comments: 0

Let f(x) be a function such that f′(1/x)+x^3 f′(x)=0. What is ∫_(−1) ^1 f(x)dx equal to? (a) 2f(1) (b) 0 (c) 2f(−1) (d) 4f(1)

$${Let}\:{f}\left({x}\right)\:{be}\:{a}\:{function}\:{such}\:{that} \\ $$$${f}'\left(\mathrm{1}/{x}\right)+{x}^{\mathrm{3}} {f}'\left({x}\right)=\mathrm{0}. \\ $$$${What}\:{is}\:\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}{f}\left({x}\right){dx}\:{equal}\:{to}? \\ $$$$\left({a}\right)\:\:\mathrm{2}{f}\left(\mathrm{1}\right) \\ $$$$\left({b}\right)\:\:\mathrm{0} \\ $$$$\left({c}\right)\:\:\mathrm{2}{f}\left(−\mathrm{1}\right) \\ $$$$\left({d}\right)\:\:\mathrm{4}{f}\left(\mathrm{1}\right) \\ $$

Question Number 12300    Answers: 1   Comments: 0

{ ((x+y=5)),((2x−y=1)) :}

$$\begin{cases}{{x}+{y}=\mathrm{5}}\\{\mathrm{2}{x}−{y}=\mathrm{1}}\end{cases} \\ $$

Question Number 12292    Answers: 2   Comments: 0

Question Number 12284    Answers: 2   Comments: 0

Question Number 12279    Answers: 0   Comments: 4

i guess i posted this question but didnt really get much response. pls help out if 8log_2 x + (x−1)log_x 2 =3^x find x.

$$\mathrm{i}\:\mathrm{guess}\:\mathrm{i}\:\mathrm{posted}\:\mathrm{this}\:\mathrm{question}\:\mathrm{but} \\ $$$$\mathrm{didnt}\:\mathrm{really}\:\mathrm{get}\:\mathrm{much}\:\mathrm{response}. \\ $$$$\mathrm{pls}\:\mathrm{help}\:\mathrm{out} \\ $$$$ \\ $$$$\mathrm{if}\:\mathrm{8log}_{\mathrm{2}} \:\mathrm{x}\:+\:\left(\mathrm{x}−\mathrm{1}\right)\mathrm{log}_{\mathrm{x}} \:\mathrm{2}\:=\mathrm{3}^{\mathrm{x}} \: \\ $$$$\mathrm{find}\:\mathrm{x}. \\ $$

Question Number 12275    Answers: 0   Comments: 0

∮(x)=(x/(1−x)). ∮′(2)=?.

$$\oint\left(\boldsymbol{\mathrm{x}}\right)=\frac{\boldsymbol{\mathrm{x}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}}.\:\:\:\:\:\oint'\left(\mathrm{2}\right)=?. \\ $$

Question Number 12267    Answers: 2   Comments: 0

Find the nth term of the sequence 1) (1/3) , (1/(15)) , (1/(35)) , (1/(63)) , (1/(99)) 2) (1/2), (1/6), (1/(12)), (1/(20)), (1/(30))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sequence} \\ $$$$\left.\mathrm{1}\right)\:\:\:\frac{\mathrm{1}}{\mathrm{3}}\:,\:\frac{\mathrm{1}}{\mathrm{15}}\:,\:\frac{\mathrm{1}}{\mathrm{35}}\:,\:\frac{\mathrm{1}}{\mathrm{63}}\:,\:\frac{\mathrm{1}}{\mathrm{99}} \\ $$$$\left.\mathrm{2}\right)\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{1}}{\mathrm{6}},\:\frac{\mathrm{1}}{\mathrm{12}},\:\frac{\mathrm{1}}{\mathrm{20}},\:\frac{\mathrm{1}}{\mathrm{30}} \\ $$

Question Number 12265    Answers: 0   Comments: 2

Determinant method can be used to solve the system below?, if yes solve by determinant method and if no solve by another method x+y−z=8 2x+y−2z=3 (give clear reason for your answer)

$${Determinant}\:{method}\:{can}\:{be}\:{used}\:{to}\:{solve} \\ $$$${the}\:{system}\:{below}?,\:\mathrm{if}\:\mathrm{yes}\:\mathrm{solve}\:\mathrm{by}\:\mathrm{determinant}\:\mathrm{method}\:\mathrm{and} \\ $$$$\:\mathrm{if}\:\mathrm{no}\:\mathrm{solve}\:\mathrm{by}\:\mathrm{another}\:\mathrm{method} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$${x}+{y}−{z}=\mathrm{8} \\ $$$$\mathrm{2}{x}+{y}−\mathrm{2}{z}=\mathrm{3} \\ $$$$\left({give}\:{clear}\:{reason}\:{for}\:{your}\:{answer}\right) \\ $$

Question Number 12261    Answers: 1   Comments: 0

find the value of a b and c a+b+c=4 a^2 +b^2 +c^2 =66 a^3 +b^3 +c^3 =280

$${find}\:{the}\:{value}\:{of}\:{a}\:{b}\:{and}\:{c} \\ $$$$\:{a}+{b}+{c}=\mathrm{4} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{66} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} =\mathrm{280} \\ $$

Question Number 12257    Answers: 1   Comments: 0

Question Number 12255    Answers: 2   Comments: 0

Question Number 12254    Answers: 0   Comments: 0

Question Number 12246    Answers: 1   Comments: 0

Let g(x) be an ininitely differentiable function , such that g(2x + 6) = g^′ (3x − 1) for all x. given that g(((44)/3)) = 33 . find g′′(8)

$$\mathrm{Let}\:\:\mathrm{g}\left(\mathrm{x}\right)\:\mathrm{be}\:\mathrm{an}\:\mathrm{ininitely}\:\mathrm{differentiable}\:\mathrm{function}\:,\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{g}\left(\mathrm{2x}\:+\:\mathrm{6}\right)\:=\:\mathrm{g}^{'} \left(\mathrm{3x}\:−\:\mathrm{1}\right)\:\mathrm{for}\:\mathrm{all}\:\mathrm{x}. \\ $$$$\mathrm{given}\:\mathrm{that}\:\:\mathrm{g}\left(\frac{\mathrm{44}}{\mathrm{3}}\right)\:=\:\mathrm{33}\:.\:\:\mathrm{find}\:\:\:\mathrm{g}''\left(\mathrm{8}\right) \\ $$

Question Number 12245    Answers: 1   Comments: 0

Solve the differential equation (dy/dx) = ((4x + 2y − 3)/(8x − 4y + 5))

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{4x}\:+\:\mathrm{2y}\:−\:\mathrm{3}}{\mathrm{8x}\:−\:\mathrm{4y}\:+\:\mathrm{5}} \\ $$

Question Number 12228    Answers: 2   Comments: 0

Solve the differential equation (dy/dx) = ((2xy)/(x^2 + y^2 ))

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{2xy}}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} } \\ $$

Question Number 12226    Answers: 2   Comments: 0

Find the nth term of this sequence 3, 18, 45, 84, 135 ...

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}\:\mathrm{of}\:\mathrm{this}\:\mathrm{sequence} \\ $$$$\mathrm{3},\:\mathrm{18},\:\mathrm{45},\:\mathrm{84},\:\mathrm{135}\:... \\ $$

Question Number 12218    Answers: 1   Comments: 3

5!! = ?

$$\mathrm{5}!!\:=\:? \\ $$

Question Number 12209    Answers: 1   Comments: 1

For all n ≥ 1 , n ∈ Z, prove that, p(n) : 4 + 8 + ... + 4n = 2n(n + 1)

$$\mathrm{For}\:\mathrm{all}\:\mathrm{n}\:\geqslant\:\mathrm{1}\:,\:\:\mathrm{n}\:\in\:\mathrm{Z},\:\:\mathrm{prove}\:\mathrm{that},\: \\ $$$$\mathrm{p}\left(\mathrm{n}\right)\::\:\mathrm{4}\:+\:\mathrm{8}\:+\:...\:+\:\mathrm{4n}\:=\:\mathrm{2n}\left(\mathrm{n}\:+\:\mathrm{1}\right) \\ $$

  Pg 1928      Pg 1929      Pg 1930      Pg 1931      Pg 1932      Pg 1933      Pg 1934      Pg 1935      Pg 1936      Pg 1937   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com