Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1933

Question Number 10392    Answers: 1   Comments: 0

find the direction cosines and its angles on 2i − 3j

$${find}\:{the}\:{direction}\:{cosines}\: \\ $$$${and}\:{its}\:{angles}\:{on} \\ $$$$\mathrm{2}{i}\:−\:\mathrm{3}{j}\: \\ $$

Question Number 10391    Answers: 1   Comments: 0

Find the equation of the straight line through (2,3) (i)parallel to (ii)perpendicular to 2x−3y+6=0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{line}\:\mathrm{through}\:\left(\mathrm{2},\mathrm{3}\right)\: \\ $$$$\left(\mathrm{i}\right)\mathrm{parallel}\:\mathrm{to} \\ $$$$\left(\mathrm{ii}\right)\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{2x}−\mathrm{3y}+\mathrm{6}=\mathrm{0} \\ $$

Question Number 10387    Answers: 1   Comments: 0

6 people a, b, c, d, e, and f stand in a line. The number of ways they can stand arranged is equal to 6! If two people have to stand next to each other, but everyone else do not matter, how many combinations combinations are there? e.g. (ab)cdef or cd(ba)ef

$$\mathrm{6}\:\mathrm{people}\:{a},\:{b},\:{c},\:{d},\:{e},\:\mathrm{and}\:{f}\:\mathrm{stand}\:\mathrm{in}\:\mathrm{a}\:\mathrm{line}. \\ $$$$\: \\ $$$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{they}\:\mathrm{can}\:\mathrm{stand}\:\mathrm{arranged} \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{6}! \\ $$$$\: \\ $$$$\mathrm{If}\:\mathrm{two}\:\mathrm{people}\:\mathrm{have}\:\mathrm{to}\:\mathrm{stand}\:\mathrm{next}\:\mathrm{to}\:\mathrm{each}\:\mathrm{other}, \\ $$$$\mathrm{but}\:\mathrm{everyone}\:\mathrm{else}\:\mathrm{do}\:\mathrm{not}\:\mathrm{matter},\:\mathrm{how}\:\mathrm{many}\:\mathrm{combinations} \\ $$$$\mathrm{combinations}\:\mathrm{are}\:\mathrm{there}? \\ $$$$\: \\ $$$$\mathrm{e}.\mathrm{g}.\:\:\:\left({ab}\right){cdef}\:\:\:\:\mathrm{or}\:\:\:\:{cd}\left({ba}\right){ef} \\ $$

Question Number 10381    Answers: 1   Comments: 1

Question Number 10374    Answers: 3   Comments: 0

lim_(x→(π/4)) (((x−(π/4))sin(3x−3(π/4)))/(2(1−sin2x)))=...?

$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\frac{\left(\mathrm{x}−\frac{\pi}{\mathrm{4}}\right)\mathrm{sin}\left(\mathrm{3x}−\mathrm{3}\frac{\pi}{\mathrm{4}}\right)}{\mathrm{2}\left(\mathrm{1}−\mathrm{sin2x}\right)}=...? \\ $$

Question Number 10369    Answers: 1   Comments: 1

Find the sum of the series 2 + 5 + 8 + 12 ... n

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series} \\ $$$$\mathrm{2}\:+\:\mathrm{5}\:+\:\mathrm{8}\:+\:\mathrm{12}\:...\:\mathrm{n}\: \\ $$

Question Number 10364    Answers: 1   Comments: 0

1+2+3+4+5+6+7+8+9+10+11 = x^y The sum of all possible solutions of x and y is ...

$$\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}+\mathrm{8}+\mathrm{9}+\mathrm{10}+\mathrm{11}\:=\:{x}^{{y}} \\ $$$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{solutions}\:\mathrm{of}\:{x}\:\mathrm{and}\:{y}\:\mathrm{is}\:... \\ $$

Question Number 10363    Answers: 1   Comments: 0

ΔABC with AB = 5, BC = 7, CA = 8 Find the value of (sin A + sin B + sin C) . (cot (A/2) + cot (B/2) + cot (C/2))

$$\Delta{ABC}\:\mathrm{with}\:{AB}\:=\:\mathrm{5},\:{BC}\:=\:\mathrm{7},\:{CA}\:=\:\mathrm{8} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\left(\mathrm{sin}\:{A}\:+\:\mathrm{sin}\:{B}\:+\:\mathrm{sin}\:{C}\right)\:.\:\left(\mathrm{cot}\:\frac{{A}}{\mathrm{2}}\:+\:\mathrm{cot}\:\frac{{B}}{\mathrm{2}}\:+\:\mathrm{cot}\:\frac{{C}}{\mathrm{2}}\right) \\ $$

Question Number 10362    Answers: 0   Comments: 0

An helium atom has a mass of 6.64 × 10^(−27) kg and a charge Q is +2 electon. Compare the magnitude of the electric repulsion to that of the gravitational attraction between them.

$$\mathrm{An}\:\mathrm{helium}\:\mathrm{atom}\:\mathrm{has}\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{6}.\mathrm{64}\:×\:\mathrm{10}^{−\mathrm{27}} \mathrm{kg}\:\mathrm{and}\:\mathrm{a}\:\mathrm{charge} \\ $$$$\mathrm{Q}\:\mathrm{is}\:+\mathrm{2}\:\mathrm{electon}.\:\mathrm{Compare}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{the}\:\mathrm{electric}\: \\ $$$$\mathrm{repulsion}\:\mathrm{to}\:\mathrm{that}\:\mathrm{of}\:\mathrm{the}\:\mathrm{gravitational}\:\mathrm{attraction}\:\mathrm{between}\:\mathrm{them}. \\ $$

Question Number 11166    Answers: 1   Comments: 1

Question Number 10360    Answers: 3   Comments: 0

Solve for x in the equation. 3^x + 4^x + 5^x = 6^x

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{equation}. \\ $$$$\mathrm{3}^{\mathrm{x}} \:+\:\mathrm{4}^{\mathrm{x}} \:+\:\mathrm{5}^{\mathrm{x}} \:=\:\mathrm{6}^{\mathrm{x}} \\ $$

Question Number 10355    Answers: 1   Comments: 1

What is the escape velocity from the surface of a planet with two third of the earth′s gravity but the same radius.

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{escape}\:\mathrm{velocity}\:\mathrm{from}\:\mathrm{the}\:\mathrm{surface} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{planet}\:\mathrm{with}\:\mathrm{two}\:\mathrm{third}\:\mathrm{of}\:\mathrm{the}\:\mathrm{earth}'\mathrm{s} \\ $$$$\mathrm{gravity}\:\mathrm{but}\:\mathrm{the}\:\mathrm{same}\:\mathrm{radius}. \\ $$

Question Number 10353    Answers: 0   Comments: 0

show that α^4 =−3hα^2 −gα and deduce that Σα^4 =−3hΣα^2 −gΣα and find Σα^2 ,Σα^3 ,Σα^4 in term of g and h.

$$\mathrm{show}\:\mathrm{that}\:\alpha^{\mathrm{4}} =−\mathrm{3h}\alpha^{\mathrm{2}} −\mathrm{g}\alpha\:\mathrm{and}\:\mathrm{deduce} \\ $$$$\mathrm{that}\:\Sigma\alpha^{\mathrm{4}} =−\mathrm{3h}\Sigma\alpha^{\mathrm{2}} −\mathrm{g}\Sigma\alpha\:\mathrm{and}\:\mathrm{find}\: \\ $$$$\Sigma\alpha^{\mathrm{2}} ,\Sigma\alpha^{\mathrm{3}} ,\Sigma\alpha^{\mathrm{4}} \:\:\mathrm{in}\:\mathrm{term}\:\mathrm{of}\:\mathrm{g}\:\mathrm{and}\:\mathrm{h}. \\ $$

Question Number 10352    Answers: 0   Comments: 0

show that α^3 =−3hα−g and use the similar expression to α,γ to deduce that α^3 =−3hΣα −g

$$\mathrm{show}\:\mathrm{that}\:\alpha^{\mathrm{3}} =−\mathrm{3h}\alpha−\mathrm{g}\:\:\:\mathrm{and}\:\:\mathrm{use}\:\mathrm{the}\: \\ $$$$\mathrm{similar}\:\mathrm{expression}\:\mathrm{to}\:\:\alpha,\gamma\:\:\mathrm{to}\:\mathrm{deduce}\: \\ $$$$\mathrm{that}\:\alpha^{\mathrm{3}} =−\mathrm{3h}\Sigma\alpha\:−\mathrm{g} \\ $$

Question Number 10347    Answers: 2   Comments: 0

A=1+2+3+...+n−2 B=15+16+.....+n A−B=42⇒n=?

$$\mathrm{A}=\mathrm{1}+\mathrm{2}+\mathrm{3}+...+\mathrm{n}−\mathrm{2} \\ $$$$\mathrm{B}=\mathrm{15}+\mathrm{16}+.....+\mathrm{n} \\ $$$$\mathrm{A}−\mathrm{B}=\mathrm{42}\Rightarrow\mathrm{n}=? \\ $$

Question Number 10340    Answers: 0   Comments: 1

A=1×2 +2×4 +3×6+...+14×28 B=1×3 +2×3 +...+14×29 ⇒B=?

$$\mathrm{A}=\mathrm{1}×\mathrm{2}\:+\mathrm{2}×\mathrm{4}\:+\mathrm{3}×\mathrm{6}+...+\mathrm{14}×\mathrm{28} \\ $$$$\mathrm{B}=\mathrm{1}×\mathrm{3}\:+\mathrm{2}×\mathrm{3}\:+...+\mathrm{14}×\mathrm{29} \\ $$$$\Rightarrow\mathrm{B}=? \\ $$

Question Number 10339    Answers: 2   Comments: 0

A=1×2 + 2×3 +3×4+...+10×11 B=3×8 +6×12 +9×16+...+30×44 ⇒(A/B)=?

$$\mathrm{A}=\mathrm{1}×\mathrm{2}\:+\:\mathrm{2}×\mathrm{3}\:+\mathrm{3}×\mathrm{4}+...+\mathrm{10}×\mathrm{11} \\ $$$$\mathrm{B}=\mathrm{3}×\mathrm{8}\:+\mathrm{6}×\mathrm{12}\:+\mathrm{9}×\mathrm{16}+...+\mathrm{30}×\mathrm{44} \\ $$$$\Rightarrow\frac{\mathrm{A}}{\mathrm{B}}=? \\ $$

Question Number 10324    Answers: 1   Comments: 0

Question Number 10323    Answers: 1   Comments: 0

Question Number 10317    Answers: 2   Comments: 0

Solve for x. 3^(2x) = 18x please i need workings.

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}. \\ $$$$\mathrm{3}^{\mathrm{2x}} \:=\:\mathrm{18x} \\ $$$$\mathrm{please}\:\mathrm{i}\:\mathrm{need}\:\mathrm{workings}. \\ $$

Question Number 10318    Answers: 1   Comments: 0

If 12, x, y and 4 provides a sequence such that the first 3 of the numbers are in arithmetic progression. Calculate the (a) Possible values of x and y (b) The sum of the A.P (c) The product of the last 3 numbers of the G.P

$$\mathrm{If}\:\mathrm{12},\:\mathrm{x},\:\mathrm{y}\:\mathrm{and}\:\mathrm{4}\:\mathrm{provides}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{first}\:\mathrm{3}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{in}\:\mathrm{arithmetic} \\ $$$$\mathrm{progression}.\:\mathrm{Calculate}\:\mathrm{the}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Possible}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{A}.\mathrm{P} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{The}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{3}\:\mathrm{numbers}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{G}.\mathrm{P} \\ $$

Question Number 10309    Answers: 0   Comments: 0

An helium atom has a mass of 6.64×10^(−27) kg and a charge Q is +2 electron. Compare the magnitude of the electric repultion to that of the gravitational attraction between them.

$$\mathrm{An}\:\mathrm{helium}\:\mathrm{atom}\:\mathrm{has}\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{6}.\mathrm{64}×\mathrm{10}^{−\mathrm{27}} \mathrm{kg} \\ $$$$\mathrm{and}\:\mathrm{a}\:\mathrm{charge}\:\mathrm{Q}\:\mathrm{is}\:+\mathrm{2}\:\mathrm{electron}.\:\mathrm{Compare}\:\mathrm{the} \\ $$$$\mathrm{magnitude}\:\mathrm{of}\:\mathrm{the}\:\mathrm{electric}\:\mathrm{repultion}\:\mathrm{to}\:\mathrm{that} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{gravitational}\:\mathrm{attraction}\:\mathrm{between}\:\mathrm{them}. \\ $$

Question Number 10303    Answers: 0   Comments: 1

Question Number 10294    Answers: 3   Comments: 0

A student needs at least three notebooks and three pencils. Notebooks cost #60 and pencil #36 and the student has #360 to spend. The student decides to spend as much as possible of his #360. (a) How many ways can he spend his money (b) Does any of the ways give him change ??? if so, how much ?

$$\mathrm{A}\:\mathrm{student}\:\mathrm{needs}\:\mathrm{at}\:\mathrm{least}\:\mathrm{three}\:\mathrm{notebooks}\:\mathrm{and} \\ $$$$\mathrm{three}\:\mathrm{pencils}.\:\mathrm{Notebooks}\:\mathrm{cost}\:#\mathrm{60}\:\mathrm{and}\:\mathrm{pencil} \\ $$$$#\mathrm{36}\:\mathrm{and}\:\mathrm{the}\:\mathrm{student}\:\mathrm{has}\:#\mathrm{360}\:\mathrm{to}\:\mathrm{spend}.\:\mathrm{The} \\ $$$$\mathrm{student}\:\mathrm{decides}\:\mathrm{to}\:\mathrm{spend}\:\mathrm{as}\:\mathrm{much}\:\mathrm{as}\:\mathrm{possible} \\ $$$$\mathrm{of}\:\mathrm{his}\:#\mathrm{360}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{How}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{he}\:\mathrm{spend}\:\mathrm{his}\:\mathrm{money} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Does}\:\mathrm{any}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ways}\:\mathrm{give}\:\mathrm{him}\:\mathrm{change}\:??? \\ $$$$\mathrm{if}\:\mathrm{so},\:\mathrm{how}\:\mathrm{much}\:? \\ $$

Question Number 10290    Answers: 1   Comments: 0

3×3!+4×4!+...+12×12!=?

$$\mathrm{3}×\mathrm{3}!+\mathrm{4}×\mathrm{4}!+...+\mathrm{12}×\mathrm{12}!=? \\ $$

Question Number 10289    Answers: 1   Comments: 0

((9−x^2 )/x)+3=((x−3)/3)⇒Σx=?

$$\frac{\mathrm{9}−\mathrm{x}^{\mathrm{2}} }{\mathrm{x}}+\mathrm{3}=\frac{\mathrm{x}−\mathrm{3}}{\mathrm{3}}\Rightarrow\Sigma\mathrm{x}=? \\ $$$$ \\ $$

  Pg 1928      Pg 1929      Pg 1930      Pg 1931      Pg 1932      Pg 1933      Pg 1934      Pg 1935      Pg 1936      Pg 1937   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com