Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1932

Question Number 14962    Answers: 1   Comments: 0

Two 30 ohms resistor are connected in parallel, what should be the resistance to be connected in series with this parallel combination such that the power in each 30 ohms is (1/4) th of total power.

$$\mathrm{Two}\:\mathrm{30}\:\mathrm{ohms}\:\mathrm{resistor}\:\mathrm{are}\:\mathrm{connected}\:\mathrm{in}\:\mathrm{parallel},\:\mathrm{what}\:\mathrm{should}\:\mathrm{be}\:\mathrm{the}\:\mathrm{resistance} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{connected}\:\mathrm{in}\:\mathrm{series}\:\mathrm{with}\:\mathrm{this}\:\mathrm{parallel}\:\mathrm{combination}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{power} \\ $$$$\mathrm{in}\:\mathrm{each}\:\mathrm{30}\:\mathrm{ohms}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{th}\:\mathrm{of}\:\mathrm{total}\:\mathrm{power}. \\ $$

Question Number 15022    Answers: 1   Comments: 0

Evaluate: ∫_1 ^4 ((x^2 + x)/(√(2x + 1))) dx (Question ID: 53) How does the limits change in the solution of Q. No. 53?

$$\mathrm{Evaluate}:\:\int_{\mathrm{1}} ^{\mathrm{4}} \frac{{x}^{\mathrm{2}} \:+\:{x}}{\sqrt{\mathrm{2}{x}\:+\:\mathrm{1}}}\:{dx}\:\left(\mathrm{Question}\:\mathrm{ID}:\right. \\ $$$$\left.\mathrm{53}\right)\:\mathrm{How}\:\mathrm{does}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{change}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{solution}\:\mathrm{of}\:\mathrm{Q}.\:\mathrm{No}.\:\mathrm{53}? \\ $$

Question Number 15212    Answers: 1   Comments: 1

Question Number 15208    Answers: 1   Comments: 0

Question Number 15207    Answers: 1   Comments: 0

The value of (√3) cosec 20°−sec 20° is equal to ____.

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\:\sqrt{\mathrm{3}}\:\mathrm{cosec}\:\mathrm{20}°−\mathrm{sec}\:\mathrm{20}°\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\_\_\_\_. \\ $$

Question Number 15206    Answers: 0   Comments: 0

If z = x + jy, detemine the cartesian equation of the locus of the point z which moves in the Argrand diagram so that ∣z + j2∣^2 + ∣z − j2∣^(2 ) = 40

$$\mathrm{If}\:\:\:\mathrm{z}\:=\:\mathrm{x}\:+\:\mathrm{jy},\:\:\mathrm{detemine}\:\mathrm{the}\:\mathrm{cartesian}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point}\: \\ $$$$\mathrm{z}\:\mathrm{which}\:\mathrm{moves}\:\mathrm{in}\:\mathrm{the}\:\mathrm{Argrand}\:\mathrm{diagram}\:\mathrm{so}\:\mathrm{that} \\ $$$$\mid\mathrm{z}\:+\:\mathrm{j2}\mid^{\mathrm{2}} \:+\:\mid\mathrm{z}\:−\:\mathrm{j2}\mid^{\mathrm{2}\:} =\:\mathrm{40} \\ $$

Question Number 15202    Answers: 0   Comments: 0

if z = x + jy , find the equations of the two loci defined by: (a) ∣z − 4∣ = 3 (b) arg(z + 2) = (π/6)

$$\mathrm{if}\:\mathrm{z}\:=\:\mathrm{x}\:+\:\mathrm{jy}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{loci}\:\mathrm{defined}\:\mathrm{by}: \\ $$$$\left(\mathrm{a}\right)\:\mid\mathrm{z}\:−\:\mathrm{4}\mid\:=\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{b}\right)\:\mathrm{arg}\left(\mathrm{z}\:+\:\mathrm{2}\right)\:=\:\frac{\pi}{\mathrm{6}} \\ $$

Question Number 15201    Answers: 0   Comments: 0

If z = x + jy , where x and y are real, show that the locus ∣((z − 2)/(z + 1))∣ = 2 is a circle and determine its centre and radius.

$$\mathrm{If}\:\:\mathrm{z}\:=\:\mathrm{x}\:+\:\mathrm{jy}\:,\:\mathrm{where}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{are}\:\mathrm{real},\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{locus}\:\:\mid\frac{\mathrm{z}\:−\:\mathrm{2}}{\mathrm{z}\:+\:\mathrm{1}}\mid\:=\:\mathrm{2}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle} \\ $$$$\mathrm{and}\:\mathrm{determine}\:\mathrm{its}\:\mathrm{centre}\:\mathrm{and}\:\mathrm{radius}. \\ $$

Question Number 15195    Answers: 0   Comments: 3

lim_(x→∞) (((2x − 5)/(2x + 1)))^(x + 3)

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{2}{x}\:−\:\mathrm{5}}{\mathrm{2}{x}\:+\:\mathrm{1}}\right)^{{x}\:+\:\mathrm{3}} \\ $$

Question Number 14949    Answers: 0   Comments: 2

Find the largest prime factor of 203203. Anyone please suggest the method without calculators or log tables.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{prime}\:\mathrm{factor}\:\mathrm{of}\:\mathrm{203203}. \\ $$$$\mathrm{Anyone}\:\mathrm{please}\:\mathrm{suggest}\:\mathrm{the}\:\mathrm{method} \\ $$$$\mathrm{without}\:\mathrm{calculators}\:\mathrm{or}\:\mathrm{log}\:\mathrm{tables}. \\ $$

Question Number 14940    Answers: 2   Comments: 12

For those who are interested in Geometry: A triangle has an area of 1 unit. Each of its sides is divided into 4 equal parts through 3 points. The first and the last point of each side will be connected with each other to form 2 inscribed triangles and these 2 triangles form a hexagon. Find the area of the hexagon. What is the result, if each side is equally divided into 5 parts, or generally into n parts?

$${For}\:{those}\:{who}\:{are}\:{interested}\:{in}\: \\ $$$${Geometry}:\: \\ $$$${A}\:{triangle}\:{has}\:{an}\:{area}\:{of}\:\mathrm{1}\:{unit}.\:{Each} \\ $$$${of}\:{its}\:{sides}\:{is}\:{divided}\:{into}\:\mathrm{4}\:{equal}\:{parts} \\ $$$${through}\:\mathrm{3}\:{points}.\:{The}\:{first}\:{and}\:{the}\:{last} \\ $$$${point}\:{of}\:{each}\:{side}\:{will}\:{be}\:{connected} \\ $$$${with}\:{each}\:{other}\:{to}\:{form}\:\mathrm{2}\:{inscribed} \\ $$$${triangles}\:{and}\:{these}\:\mathrm{2}\:{triangles}\:{form} \\ $$$${a}\:{hexagon}.\:{Find}\:{the}\:{area}\:{of}\:{the}\:{hexagon}. \\ $$$$ \\ $$$${What}\:{is}\:{the}\:{result},\:{if}\:{each}\:{side}\:{is} \\ $$$${equally}\:{divided}\:{into}\:\mathrm{5}\:{parts},\:{or} \\ $$$${generally}\:{into}\:{n}\:{parts}? \\ $$

Question Number 14939    Answers: 1   Comments: 0

A point moves in x-y plane according to the law x = 4 sin 6t and y = 4(1 − cos 6t). Find distance traversed by the particle in 5 seconds, when x and y are in metres.

$$\mathrm{A}\:\mathrm{point}\:\mathrm{moves}\:\mathrm{in}\:{x}-{y}\:\mathrm{plane}\:\mathrm{according} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{law}\:{x}\:=\:\mathrm{4}\:\mathrm{sin}\:\mathrm{6}{t}\:\mathrm{and} \\ $$$${y}\:=\:\mathrm{4}\left(\mathrm{1}\:−\:\mathrm{cos}\:\mathrm{6}{t}\right).\:\mathrm{Find}\:\mathrm{distance}\:\mathrm{traversed} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{in}\:\mathrm{5}\:\mathrm{seconds},\:\mathrm{when}\:{x}\:\mathrm{and} \\ $$$${y}\:\mathrm{are}\:\mathrm{in}\:\mathrm{metres}. \\ $$

Question Number 14938    Answers: 0   Comments: 0

Question Number 14923    Answers: 1   Comments: 0

A plane is inclined at an angle of 30° with horizontal. Find the component of a force F^→ = −10k^∧ N perpendicular to the plane. Given that z-direction is vertically upwards.

$$\mathrm{A}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{inclined}\:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{30}° \\ $$$$\mathrm{with}\:\mathrm{horizontal}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{component} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{force}\:\overset{\rightarrow} {{F}}\:=\:−\mathrm{10}\overset{\wedge} {{k}}\mathrm{N}\:\mathrm{perpendicular}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{plane}.\:\mathrm{Given}\:\mathrm{that}\:{z}-\mathrm{direction}\:\mathrm{is} \\ $$$$\mathrm{vertically}\:\mathrm{upwards}. \\ $$

Question Number 14922    Answers: 1   Comments: 2

The velocity of particle P due East is 4 m/s, and that of Q is 3 m/s due South. What is the velocity of P w.r.t. Q?

$$\mathrm{The}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{particle}\:{P}\:\mathrm{due}\:\mathrm{East}\:\mathrm{is} \\ $$$$\mathrm{4}\:\mathrm{m}/\mathrm{s},\:\mathrm{and}\:\mathrm{that}\:\mathrm{of}\:{Q}\:\mathrm{is}\:\mathrm{3}\:\mathrm{m}/\mathrm{s}\:\mathrm{due} \\ $$$$\mathrm{South}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:{P}\:\mathrm{w}.\mathrm{r}.\mathrm{t}. \\ $$$${Q}? \\ $$

Question Number 14921    Answers: 1   Comments: 2

A car travelling at 36 km/h due North turns West in 5 seconds and maintains the same speed. What is the acceleration of the car?

$$\mathrm{A}\:\mathrm{car}\:\mathrm{travelling}\:\mathrm{at}\:\mathrm{36}\:\mathrm{km}/\mathrm{h}\:\mathrm{due}\:\mathrm{North} \\ $$$$\mathrm{turns}\:\mathrm{West}\:\mathrm{in}\:\mathrm{5}\:\mathrm{seconds}\:\mathrm{and}\:\mathrm{maintains} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{speed}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{acceleration} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{car}? \\ $$

Question Number 14920    Answers: 1   Comments: 0

A swimmer crosses a flowing river of width d to and fro in time t_1 . The time taken to cover the same distance up and down the stream is t_2 . If t_3 is the time the swimmer would take to swim a distance 2d in still water, then prove that t_1 ^2 = t_2 t_3 .

$$\mathrm{A}\:\mathrm{swimmer}\:\mathrm{crosses}\:\mathrm{a}\:\mathrm{flowing}\:\mathrm{river}\:\mathrm{of} \\ $$$$\mathrm{width}\:{d}\:\mathrm{to}\:\mathrm{and}\:\mathrm{fro}\:\mathrm{in}\:\mathrm{time}\:{t}_{\mathrm{1}} .\:\mathrm{The}\:\mathrm{time} \\ $$$$\mathrm{taken}\:\mathrm{to}\:\mathrm{cover}\:\mathrm{the}\:\mathrm{same}\:\mathrm{distance}\:\mathrm{up} \\ $$$$\mathrm{and}\:\mathrm{down}\:\mathrm{the}\:\mathrm{stream}\:\mathrm{is}\:{t}_{\mathrm{2}} .\:\mathrm{If}\:{t}_{\mathrm{3}} \:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{time}\:\mathrm{the}\:\mathrm{swimmer}\:\mathrm{would}\:\mathrm{take}\:\mathrm{to}\:\mathrm{swim} \\ $$$$\mathrm{a}\:\mathrm{distance}\:\mathrm{2}{d}\:\mathrm{in}\:\mathrm{still}\:\mathrm{water},\:\mathrm{then}\:\mathrm{prove} \\ $$$$\mathrm{that}\:{t}_{\mathrm{1}} ^{\mathrm{2}} \:=\:{t}_{\mathrm{2}} {t}_{\mathrm{3}} . \\ $$

Question Number 14905    Answers: 0   Comments: 5

Question Number 14863    Answers: 1   Comments: 8

Question Number 14853    Answers: 1   Comments: 0

Solve for x 3^(2x) = 18x

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x} \\ $$$$\mathrm{3}^{\mathrm{2x}} \:=\:\mathrm{18x} \\ $$

Question Number 14821    Answers: 1   Comments: 0

A room has dimensions 3 m × 4 m × 5 m. A fly starting at one corner ends up at the diametrically opposite corner. If the fly were to walks, what is the length of the shortest path it can take?

$$\mathrm{A}\:\mathrm{room}\:\mathrm{has}\:\mathrm{dimensions}\:\mathrm{3}\:\mathrm{m}\:×\:\mathrm{4}\:\mathrm{m}\:×\:\mathrm{5}\:\mathrm{m}. \\ $$$$\mathrm{A}\:\mathrm{fly}\:\mathrm{starting}\:\mathrm{at}\:\mathrm{one}\:\mathrm{corner}\:\mathrm{ends}\:\mathrm{up}\:\mathrm{at} \\ $$$$\mathrm{the}\:\mathrm{diametrically}\:\mathrm{opposite}\:\mathrm{corner}.\:\mathrm{If} \\ $$$$\mathrm{the}\:\mathrm{fly}\:\mathrm{were}\:\mathrm{to}\:\mathrm{walks},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{length} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{path}\:\mathrm{it}\:\mathrm{can}\:\mathrm{take}? \\ $$

Question Number 14816    Answers: 1   Comments: 0

Question Number 14811    Answers: 1   Comments: 0

why (√x^2 )=∣x∣ ?

$${why}\:\:\:\:\:\sqrt{{x}^{\mathrm{2}} }=\mid{x}\mid\:\:\:\:?\: \\ $$

Question Number 14810    Answers: 0   Comments: 0

7 real numbers are given in the interval (1, 13). Prove that atleast 3 of them are the lengths of a triangle′s sides.

$$\mathrm{7}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{given}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval} \\ $$$$\left(\mathrm{1},\:\mathrm{13}\right).\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{atleast}\:\mathrm{3}\:\mathrm{of}\:\mathrm{them} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}'\mathrm{s}\:\mathrm{sides}. \\ $$

Question Number 14809    Answers: 1   Comments: 2

Let ABC be an acute triangle. Find the positions of the points M, N, P on the sides BC, CA, AB, respectively, such that the perimeter of the triangle MNP is minimal.

$$\mathrm{Let}\:{ABC}\:\mathrm{be}\:\mathrm{an}\:\mathrm{acute}\:\mathrm{triangle}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{positions}\:\mathrm{of}\:\mathrm{the}\:\mathrm{points}\:{M},\:{N},\:{P}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{sides}\:{BC},\:{CA},\:{AB},\:\mathrm{respectively}, \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle} \\ $$$${MNP}\:\mathrm{is}\:\mathrm{minimal}. \\ $$

Question Number 14807    Answers: 0   Comments: 0

Prove that the medians of a given triangle can form a triangle.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{medians}\:\mathrm{of}\:\mathrm{a}\:\mathrm{given} \\ $$$$\mathrm{triangle}\:\mathrm{can}\:\mathrm{form}\:\mathrm{a}\:\mathrm{triangle}. \\ $$

  Pg 1927      Pg 1928      Pg 1929      Pg 1930      Pg 1931      Pg 1932      Pg 1933      Pg 1934      Pg 1935      Pg 1936   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com