Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1931

Question Number 13904    Answers: 2   Comments: 0

Show that : sin(50) + sin(40) = (√2) cos(5)

$$\mathrm{Show}\:\mathrm{that}\:\::\:\:\mathrm{sin}\left(\mathrm{50}\right)\:+\:\mathrm{sin}\left(\mathrm{40}\right)\:=\:\sqrt{\mathrm{2}}\:\mathrm{cos}\left(\mathrm{5}\right) \\ $$

Question Number 13903    Answers: 2   Comments: 1

Find the values of x in the range 0° to 360° for which sin(3x)sin(x) = 2cos(2x) + 1

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{range}\:\mathrm{0}°\:\mathrm{to}\:\mathrm{360}°\:\mathrm{for}\:\mathrm{which}\: \\ $$$$\mathrm{sin}\left(\mathrm{3x}\right)\mathrm{sin}\left(\mathrm{x}\right)\:=\:\mathrm{2cos}\left(\mathrm{2x}\right)\:+\:\mathrm{1} \\ $$

Question Number 13893    Answers: 0   Comments: 3

Let n be an odd positive integer. On some field, n gunmen are placed such that all pairwise distances between them are different. At a signal, every gunman takes out his gun and shoots the closest gunman. Prove that: (a) at least one gunman survives; (b) no gunman is shot more than 5 times; (c) the trajectories of the bullets do not intersect.

$$\mathrm{Let}\:{n}\:\mathrm{be}\:\mathrm{an}\:\mathrm{odd}\:\mathrm{positive}\:\mathrm{integer}.\:\mathrm{On} \\ $$$$\mathrm{some}\:\mathrm{field},\:{n}\:\mathrm{gunmen}\:\mathrm{are}\:\mathrm{placed}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{all}\:\mathrm{pairwise}\:\mathrm{distances}\:\mathrm{between} \\ $$$$\mathrm{them}\:\mathrm{are}\:\mathrm{different}.\:\mathrm{At}\:\mathrm{a}\:\mathrm{signal},\:\mathrm{every} \\ $$$$\mathrm{gunman}\:\mathrm{takes}\:\mathrm{out}\:\mathrm{his}\:\mathrm{gun}\:\mathrm{and}\:\mathrm{shoots} \\ $$$$\mathrm{the}\:\mathrm{closest}\:\mathrm{gunman}.\:\mathrm{Prove}\:\mathrm{that}: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{gunman}\:\mathrm{survives}; \\ $$$$\left(\mathrm{b}\right)\:\mathrm{no}\:\mathrm{gunman}\:\mathrm{is}\:\mathrm{shot}\:\mathrm{more}\:\mathrm{than}\:\mathrm{5} \\ $$$$\mathrm{times}; \\ $$$$\left(\mathrm{c}\right)\:\mathrm{the}\:\mathrm{trajectories}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bullets}\:\mathrm{do} \\ $$$$\mathrm{not}\:\mathrm{intersect}. \\ $$

Question Number 13891    Answers: 0   Comments: 1

Consider n red and n blue points in the plane, no three of them being collinear. Prove that one can connect each red point to a blue one with a segment such that no two segments intersect.

$$\mathrm{Consider}\:{n}\:\mathrm{red}\:\mathrm{and}\:{n}\:\mathrm{blue}\:\mathrm{points}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{plane},\:\mathrm{no}\:\mathrm{three}\:\mathrm{of}\:\mathrm{them}\:\mathrm{being}\:\mathrm{collinear}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{one}\:\mathrm{can}\:\mathrm{connect}\:\mathrm{each}\:\mathrm{red} \\ $$$$\mathrm{point}\:\mathrm{to}\:\mathrm{a}\:\mathrm{blue}\:\mathrm{one}\:\mathrm{with}\:\mathrm{a}\:\mathrm{segment} \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{no}\:\mathrm{two}\:\mathrm{segments}\:\mathrm{intersect}. \\ $$

Question Number 13875    Answers: 0   Comments: 0

Question Number 13872    Answers: 1   Comments: 0

An alpha particle of mass 6.68 × 10^(−27) kg and charge q = +2, are accelerated from rest through the potential difference of 1kV. it then enters a magnetic field B = 0.2 T perpendicular to their direction of motion. Calculate the radius of their path.

$$\mathrm{An}\:\mathrm{alpha}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\:\mathrm{6}.\mathrm{68}\:×\:\mathrm{10}^{−\mathrm{27}} \:\mathrm{kg}\:\mathrm{and}\:\mathrm{charge}\:\:\mathrm{q}\:=\:+\mathrm{2},\:\mathrm{are}\: \\ $$$$\mathrm{accelerated}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{through}\:\mathrm{the}\:\mathrm{potential}\:\mathrm{difference}\:\mathrm{of}\:\:\mathrm{1kV}.\:\mathrm{it}\:\mathrm{then}\:\mathrm{enters} \\ $$$$\mathrm{a}\:\mathrm{magnetic}\:\mathrm{field}\:\mathrm{B}\:=\:\mathrm{0}.\mathrm{2}\:\mathrm{T}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{their}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{motion}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{their}\:\mathrm{path}. \\ $$

Question Number 13871    Answers: 0   Comments: 0

why the function,sin(x) is a power series??

$${why}\:{the}\:{function},{sin}\left({x}\right)\:{is}\:{a}\:{power} \\ $$$${series}?? \\ $$

Question Number 13842    Answers: 3   Comments: 0

Find the number of solutions of the equation sin 5x cos 3x = sin 6x cos 2x, x ∈ [0, π]

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{sin}\:\mathrm{5}{x}\:\mathrm{cos}\:\mathrm{3}{x}\:=\:\mathrm{sin}\:\mathrm{6}{x}\:\mathrm{cos}\:\mathrm{2}{x}, \\ $$$${x}\:\in\:\left[\mathrm{0},\:\pi\right] \\ $$

Question Number 13840    Answers: 1   Comments: 0

Solve: (a) tanx + secx = 2cosx (b) sinθ + tanθ − sin2θ = 0

$$\mathrm{Solve}: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{tan}{x}\:+\:\mathrm{sec}{x}\:=\:\mathrm{2cos}{x} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{sin}\theta\:+\:\mathrm{tan}\theta\:−\:\mathrm{sin2}\theta\:=\:\mathrm{0} \\ $$

Question Number 13849    Answers: 0   Comments: 2

Given below is a graph between speed and time for a particle. Is the particle undergoing positive displacement or negative displacement?

$$\mathrm{Given}\:\mathrm{below}\:\mathrm{is}\:\mathrm{a}\:\mathrm{graph}\:\mathrm{between}\:\mathrm{speed} \\ $$$$\mathrm{and}\:\mathrm{time}\:\mathrm{for}\:\mathrm{a}\:\mathrm{particle}.\:\mathrm{Is}\:\mathrm{the}\:\mathrm{particle} \\ $$$$\mathrm{undergoing}\:\mathrm{positive}\:\mathrm{displacement}\:\mathrm{or} \\ $$$$\mathrm{negative}\:\mathrm{displacement}? \\ $$

Question Number 13835    Answers: 1   Comments: 1

Question Number 13830    Answers: 1   Comments: 0

Question Number 13831    Answers: 1   Comments: 0

Question Number 13832    Answers: 1   Comments: 0

Question Number 13812    Answers: 1   Comments: 0

The domain of f(x) = (√(((4/3))^(4−x) −(((27)/(64)))^(x−5) )); is?

$$\mathrm{The}\:\mathrm{domain}\:\mathrm{of}\:{f}\left({x}\right)\:= \\ $$$$\sqrt{\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{4}−{x}} −\left(\frac{\mathrm{27}}{\mathrm{64}}\right)^{{x}−\mathrm{5}} };\:\mathrm{is}? \\ $$

Question Number 13811    Answers: 1   Comments: 1

The domain of f(x) = (√(2 − 2^x − 2^(2x) )) is?

$$\mathrm{The}\:\mathrm{domain}\:\mathrm{of}\:{f}\left({x}\right)\:=\:\sqrt{\mathrm{2}\:−\:\mathrm{2}^{{x}} \:−\:\mathrm{2}^{\mathrm{2}{x}} }\:\mathrm{is}? \\ $$

Question Number 13808    Answers: 1   Comments: 0

If f(x) defined over the domain [0, 1] then domain of function f(10^x ) is?

$$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{defined}\:\mathrm{over}\:\mathrm{the}\:\mathrm{domain}\:\left[\mathrm{0},\:\mathrm{1}\right] \\ $$$$\mathrm{then}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{function}\:{f}\left(\mathrm{10}^{{x}} \right)\:\mathrm{is}? \\ $$

Question Number 13806    Answers: 0   Comments: 1

Prove that for −(π/2)<x<(π/2) , (1/1^3 )cos x−(1/3^3 )cos 3x+(1/5^3 )cos 5x−....to infinity =(π/8)((π^2 /4)−x^2 ) .

$${Prove}\:{that}\:{for}\:−\frac{\pi}{\mathrm{2}}<{x}<\frac{\pi}{\mathrm{2}}\:, \\ $$$$\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }\mathrm{cos}\:{x}−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }\mathrm{cos}\:\mathrm{3}{x}+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} }\mathrm{cos}\:\mathrm{5}{x}−....{to}\:{infinity} \\ $$$$\:\:=\frac{\pi}{\mathrm{8}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}}−{x}^{\mathrm{2}} \right)\:. \\ $$

Question Number 13778    Answers: 0   Comments: 0

Question Number 13756    Answers: 1   Comments: 5

Question Number 13751    Answers: 1   Comments: 4

(ds/dt)=v,(dv/dt)=a,(da/dt)=b,(db/dt)=e,(de/dt)=f (df/dt)=g,(dg/dt)=h,(dh/dt)=i,(di/dt)=j,(dj/dt)=k,..... now if we continue this process to infinity..and if v_0 ,v,a,b,e,f,g,h,i, j,................=1 .then calculate the formula of v and s ...

$$\frac{{ds}}{{dt}}={v},\frac{{dv}}{{dt}}={a},\frac{{da}}{{dt}}={b},\frac{{db}}{{dt}}={e},\frac{{de}}{{dt}}={f} \\ $$$$\frac{{df}}{{dt}}={g},\frac{{dg}}{{dt}}={h},\frac{{dh}}{{dt}}={i},\frac{{di}}{{dt}}={j},\frac{{dj}}{{dt}}={k},..... \\ $$$${now}\:{if}\:{we}\:{continue}\:{this}\:{process}\:{to} \\ $$$${infinity}..{and}\:{if}\:{v}_{\mathrm{0}} ,{v},{a},{b},{e},{f},{g},{h},{i}, \\ $$$${j},................=\mathrm{1}\:.{then}\:{calculate} \\ $$$${the}\:{formula}\:{of}\:{v}\:{and}\:{s}\:... \\ $$$$ \\ $$

Question Number 13745    Answers: 2   Comments: 1

The velocity of a particle moving in straight line is given by the graph shown here. Draw the acceleration position graph.

$$\mathrm{The}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{moving}\:\mathrm{in} \\ $$$$\mathrm{straight}\:\mathrm{line}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{shown} \\ $$$$\mathrm{here}.\:\mathrm{Draw}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{position} \\ $$$$\mathrm{graph}. \\ $$

Question Number 13744    Answers: 1   Comments: 4

Solve the following 7^x ≡13(mod 18) Pl give complete process.

$${Solve}\:{the}\:{following} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{7}^{{x}} \equiv\mathrm{13}\left({mod}\:\mathrm{18}\right) \\ $$$${Pl}\:{give}\:{complete}\:{process}. \\ $$

Question Number 13738    Answers: 1   Comments: 1

P,Q,R,S are four locations on the same horizontal plane.Q is on a bearing of 041° from P and the distance is 40km. S is 28km from R on a bearing 074°, R is directly due north of P and the distance between Q and R is 38km. (a)the bearing of R from Q (b)the distance between Q and S (c)the distance between P and R

$$\mathrm{P},\mathrm{Q},\mathrm{R},\mathrm{S}\:\mathrm{are}\:\mathrm{four}\:\mathrm{locations}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{same}\:\mathrm{horizontal}\:\mathrm{plane}.\mathrm{Q}\:\mathrm{is}\:\mathrm{on}\:\mathrm{a}\: \\ $$$$\mathrm{bearing}\:\mathrm{of}\:\mathrm{041}°\:\mathrm{from}\:\mathrm{P}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{distance}\:\mathrm{is}\:\mathrm{40km}. \\ $$$$\mathrm{S}\:\mathrm{is}\:\mathrm{28km}\:\mathrm{from}\:\mathrm{R}\:\mathrm{on}\:\mathrm{a}\:\mathrm{bearing}\:\mathrm{074}°, \\ $$$$\mathrm{R}\:\mathrm{is}\:\mathrm{directly}\:\mathrm{due}\:\mathrm{north}\:\mathrm{of}\:\mathrm{P}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{Q}\:\mathrm{and}\:\mathrm{R}\:\mathrm{is} \\ $$$$\mathrm{38km}. \\ $$$$\left(\mathrm{a}\right)\mathrm{the}\:\mathrm{bearing}\:\mathrm{of}\:\mathrm{R}\:\mathrm{from}\:\mathrm{Q} \\ $$$$\left(\mathrm{b}\right)\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{Q}\:\mathrm{and}\:\mathrm{S} \\ $$$$\left(\mathrm{c}\right)\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{P}\:\mathrm{and}\:\mathrm{R} \\ $$

Question Number 13737    Answers: 1   Comments: 1

A platform and a building are on the same horizontal plane.The angle of depression of the bottom C of the building from the top A of the platform is 39°.The angle of elevation of the top D of the building from the top of the platform is 56°.Given that the distance between the foot of the platform and that of the building is 10m,calculate the height of the building to the nearest whole number.

$$\mathrm{A}\:\mathrm{platform}\:\mathrm{and}\:\mathrm{a}\:\mathrm{building}\:\mathrm{are}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{horizontal}\:\mathrm{plane}.\mathrm{The} \\ $$$$\mathrm{angle}\:\mathrm{of}\:\mathrm{depression}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bottom} \\ $$$$\mathrm{C}\:\mathrm{of}\:\mathrm{the}\:\mathrm{building}\:\mathrm{from}\:\mathrm{the}\:\mathrm{top}\:\mathrm{A}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{platform}\:\mathrm{is}\:\mathrm{39}°.\mathrm{The}\:\mathrm{angle}\:\mathrm{of}\: \\ $$$$\mathrm{elevation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{top}\:\mathrm{D}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{building}\:\mathrm{from}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{platform}\:\mathrm{is}\:\mathrm{56}°.\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{platform}\:\mathrm{and}\:\mathrm{that}\:\mathrm{of}\:\mathrm{the}\:\mathrm{building} \\ $$$$\mathrm{is}\:\mathrm{10m},\mathrm{calculate}\:\mathrm{the}\:\mathrm{height}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{building}\:\mathrm{to}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{whole} \\ $$$$\mathrm{number}. \\ $$

Question Number 13735    Answers: 2   Comments: 6

  Pg 1926      Pg 1927      Pg 1928      Pg 1929      Pg 1930      Pg 1931      Pg 1932      Pg 1933      Pg 1934      Pg 1935   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com