Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1931

Question Number 15452    Answers: 1   Comments: 0

Question Number 15448    Answers: 0   Comments: 2

A vector A^→ of magnitude A is turned through an angle θ. Calculate the change in the magnitude of vector.

$$\mathrm{A}\:\mathrm{vector}\:\overset{\rightarrow} {{A}}\:\mathrm{of}\:\mathrm{magnitude}\:{A}\:\mathrm{is}\:\mathrm{turned} \\ $$$$\mathrm{through}\:\mathrm{an}\:\mathrm{angle}\:\theta.\:\mathrm{Calculate}\:\mathrm{the} \\ $$$$\mathrm{change}\:\mathrm{in}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{vector}. \\ $$

Question Number 15440    Answers: 3   Comments: 9

Question Number 15434    Answers: 1   Comments: 8

Question Number 15407    Answers: 1   Comments: 0

A ball is thrown vertically upward with velocity 20 m/s from a rail road car moving with a velocity 5 m/s horizontally. A person standing on the ground observes its motion as projectile. Find maximum height attained by the ball if point of projection is at a height 3 m from the ground.

$$\mathrm{A}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{vertically}\:\mathrm{upward} \\ $$$$\mathrm{with}\:\mathrm{velocity}\:\mathrm{20}\:\mathrm{m}/\mathrm{s}\:\mathrm{from}\:\mathrm{a}\:\mathrm{rail}\:\mathrm{road} \\ $$$$\mathrm{car}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{5}\:\mathrm{m}/\mathrm{s} \\ $$$$\mathrm{horizontally}.\:\mathrm{A}\:\mathrm{person}\:\mathrm{standing}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{ground}\:\mathrm{observes}\:\mathrm{its}\:\mathrm{motion}\:\mathrm{as}\:\mathrm{projectile}. \\ $$$$\mathrm{Find}\:\mathrm{maximum}\:\mathrm{height}\:\mathrm{attained}\:\mathrm{by}\:\mathrm{the} \\ $$$$\mathrm{ball}\:\mathrm{if}\:\mathrm{point}\:\mathrm{of}\:\mathrm{projection}\:\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height} \\ $$$$\mathrm{3}\:\mathrm{m}\:\mathrm{from}\:\mathrm{the}\:\mathrm{ground}. \\ $$

Question Number 15405    Answers: 1   Comments: 0

A body is projected at time t = 0 from a certain point on a planet surface with a certain velocity at a certain angle with the planet′s surface (assumed horizontal). The horizontal and vertical displacement x and y in metre are related to time as x = 10(√3)t and y = 10t − 4t^2 . Find vertical component of velocity of the particle when it is at a height half of the maximum height attained.

$$\mathrm{A}\:\mathrm{body}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{at}\:\mathrm{time}\:{t}\:=\:\mathrm{0}\:\mathrm{from}\:\mathrm{a} \\ $$$$\mathrm{certain}\:\mathrm{point}\:\mathrm{on}\:\mathrm{a}\:\mathrm{planet}\:\mathrm{surface}\:\mathrm{with} \\ $$$$\mathrm{a}\:\mathrm{certain}\:\mathrm{velocity}\:\mathrm{at}\:\mathrm{a}\:\mathrm{certain}\:\mathrm{angle} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{planet}'\mathrm{s}\:\mathrm{surface}\:\left(\mathrm{assumed}\right. \\ $$$$\left.\mathrm{horizontal}\right).\:\mathrm{The}\:\mathrm{horizontal}\:\mathrm{and}\:\mathrm{vertical} \\ $$$$\mathrm{displacement}\:{x}\:\mathrm{and}\:{y}\:\mathrm{in}\:\mathrm{metre}\:\mathrm{are} \\ $$$$\mathrm{related}\:\mathrm{to}\:\mathrm{time}\:\mathrm{as}\:{x}\:=\:\mathrm{10}\sqrt{\mathrm{3}}{t}\:\mathrm{and} \\ $$$${y}\:=\:\mathrm{10}{t}\:−\:\mathrm{4}{t}^{\mathrm{2}} .\:\mathrm{Find}\:\mathrm{vertical}\:\mathrm{component} \\ $$$$\mathrm{of}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{when}\:\mathrm{it}\:\mathrm{is}\:\mathrm{at}\:\mathrm{a} \\ $$$$\mathrm{height}\:\mathrm{half}\:\mathrm{of}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{height} \\ $$$$\mathrm{attained}. \\ $$

Question Number 15393    Answers: 1   Comments: 0

A man observes that when he moves up a distance c metres on a slope, the angle of depression of a point on the horizontal plane from the base of the slope is 30°, and when he moves up further a distance c metres, the angle of depression of that point is 45°. The angle of inclination of the slope with the horizontal is?

$$\mathrm{A}\:\mathrm{man}\:\mathrm{observes}\:\mathrm{that}\:\mathrm{when}\:\mathrm{he}\:\mathrm{moves}\:\mathrm{up} \\ $$$$\mathrm{a}\:\mathrm{distance}\:{c}\:\mathrm{metres}\:\mathrm{on}\:\mathrm{a}\:\mathrm{slope},\:\mathrm{the} \\ $$$$\mathrm{angle}\:\mathrm{of}\:\mathrm{depression}\:\mathrm{of}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{horizontal}\:\mathrm{plane}\:\mathrm{from}\:\mathrm{the}\:\mathrm{base}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{slope}\:\mathrm{is}\:\mathrm{30}°,\:\mathrm{and}\:\mathrm{when}\:\mathrm{he}\:\mathrm{moves}\:\mathrm{up} \\ $$$$\mathrm{further}\:\mathrm{a}\:\mathrm{distance}\:{c}\:\mathrm{metres},\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of} \\ $$$$\mathrm{depression}\:\mathrm{of}\:\mathrm{that}\:\mathrm{point}\:\mathrm{is}\:\mathrm{45}°.\:\mathrm{The} \\ $$$$\mathrm{angle}\:\mathrm{of}\:\mathrm{inclination}\:\mathrm{of}\:\mathrm{the}\:\mathrm{slope}\:\mathrm{with}\:\mathrm{the} \\ $$$$\mathrm{horizontal}\:\mathrm{is}? \\ $$

Question Number 15392    Answers: 1   Comments: 0

Each side of an equilateral triangle subtends angle of 60° at the top of a tower of height h standing at the centre of the triangle. If 2a be the length of the side of the triangle, then (a^2 /h^2 ) = ?

$$\mathrm{Each}\:\mathrm{side}\:\mathrm{of}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle} \\ $$$$\mathrm{subtends}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{60}°\:\mathrm{at}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{tower}\:\mathrm{of}\:\mathrm{height}\:{h}\:\mathrm{standing}\:\mathrm{at}\:\mathrm{the}\:\mathrm{centre} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}.\:\mathrm{If}\:\mathrm{2}{a}\:\mathrm{be}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{side}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle},\:\mathrm{then}\:\frac{{a}^{\mathrm{2}} }{{h}^{\mathrm{2}} }\:=\:? \\ $$

Question Number 15377    Answers: 1   Comments: 0

−39 mod 4 = ?

$$−\mathrm{39}\:\mathrm{mod}\:\mathrm{4}\:=\:? \\ $$

Question Number 15384    Answers: 1   Comments: 0

If a flagstaff subtends equal angles at 4 points A, B, C and D on the horizontal plane through the foot of the flagstaff, then A, B, C and D must be the vertices of (1) Square (2) Cyclic quadrilateral (3) Rectangle (4) Parallelogram

$$\mathrm{If}\:\mathrm{a}\:\mathrm{flagstaff}\:\mathrm{subtends}\:\mathrm{equal}\:\mathrm{angles}\:\mathrm{at}\:\mathrm{4} \\ $$$$\mathrm{points}\:{A},\:{B},\:{C}\:\mathrm{and}\:{D}\:\mathrm{on}\:\mathrm{the}\:\mathrm{horizontal} \\ $$$$\mathrm{plane}\:\mathrm{through}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the}\:\mathrm{flagstaff}, \\ $$$$\mathrm{then}\:{A},\:{B},\:{C}\:\mathrm{and}\:{D}\:\mathrm{must}\:\mathrm{be}\:\mathrm{the} \\ $$$$\mathrm{vertices}\:\mathrm{of} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Square} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Cyclic}\:\mathrm{quadrilateral} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Rectangle} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Parallelogram} \\ $$

Question Number 15418    Answers: 2   Comments: 0

A grasshopper can jump a maximum horizontal distance of 40 cm. If it spends negligible time on the ground then in this case its speed along the horizontal road will be?

$$\mathrm{A}\:\mathrm{grasshopper}\:\mathrm{can}\:\mathrm{jump}\:\mathrm{a}\:\mathrm{maximum} \\ $$$$\mathrm{horizontal}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{40}\:\mathrm{cm}.\:\mathrm{If}\:\mathrm{it} \\ $$$$\mathrm{spends}\:\mathrm{negligible}\:\mathrm{time}\:\mathrm{on}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\mathrm{then}\:\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{its}\:\mathrm{speed}\:\mathrm{along}\:\mathrm{the} \\ $$$$\mathrm{horizontal}\:\mathrm{road}\:\mathrm{will}\:\mathrm{be}? \\ $$

Question Number 15358    Answers: 1   Comments: 0

If a^→ , b^→ , c^→ are mutually perpendicular vectors of equal magnitudes, show that the vector a^→ + b^→ + c^→ is equally inclined to a^→ , b^→ and c^→ .

$$\mathrm{If}\:\overset{\rightarrow} {{a}},\:\overset{\rightarrow} {{b}},\:\overset{\rightarrow} {{c}}\:\mathrm{are}\:\mathrm{mutually}\:\mathrm{perpendicular} \\ $$$$\mathrm{vectors}\:\mathrm{of}\:\mathrm{equal}\:\mathrm{magnitudes},\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{vector}\:\overset{\rightarrow} {{a}}\:+\:\overset{\rightarrow} {{b}}\:+\:\overset{\rightarrow} {{c}}\:\mathrm{is}\:\mathrm{equally}\:\mathrm{inclined} \\ $$$$\mathrm{to}\:\overset{\rightarrow} {{a}},\:\overset{\rightarrow} {{b}}\:\mathrm{and}\:\overset{\rightarrow} {{c}}\:. \\ $$

Question Number 15352    Answers: 0   Comments: 4

Let a^→ = i^∧ + 4j^∧ + 2k^∧ , b^→ = 3i^∧ − 2j^∧ + 7k^∧ and c^→ = 2i^∧ − j^∧ + 4k^∧ . Find a vector d^→ which is perpendicular to both a^→ and b^→ , and c^→ ∙ d^→ = 15.

$$\mathrm{Let}\:\overset{\rightarrow} {{a}}\:=\:\overset{\wedge} {{i}}\:+\:\mathrm{4}\overset{\wedge} {{j}}\:+\:\mathrm{2}\overset{\wedge} {{k}},\:\overset{\rightarrow} {{b}}\:=\:\mathrm{3}\overset{\wedge} {{i}}\:−\:\mathrm{2}\overset{\wedge} {{j}}\:+\:\mathrm{7}\overset{\wedge} {{k}} \\ $$$$\mathrm{and}\:\overset{\rightarrow} {{c}}\:=\:\mathrm{2}\overset{\wedge} {{i}}\:−\:\overset{\wedge} {{j}}\:+\:\mathrm{4}\overset{\wedge} {{k}}\:.\:\mathrm{Find}\:\mathrm{a}\:\mathrm{vector}\:\overset{\rightarrow} {{d}} \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{both}\:\overset{\rightarrow} {{a}}\:\mathrm{and}\:\overset{\rightarrow} {{b}}, \\ $$$$\mathrm{and}\:\overset{\rightarrow} {{c}}\:\centerdot\:\overset{\rightarrow} {{d}}\:=\:\mathrm{15}. \\ $$

Question Number 15348    Answers: 2   Comments: 0

Solve the equation z^2 + 2(1 + j)z + 2 = 0, Givin each result in form a + jb with a and b correct to 2dp.

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\:\mathrm{z}^{\mathrm{2}} \:+\:\mathrm{2}\left(\mathrm{1}\:+\:\mathrm{j}\right)\mathrm{z}\:+\:\mathrm{2}\:=\:\mathrm{0},\:\mathrm{Givin}\:\mathrm{each}\:\mathrm{result}\:\mathrm{in}\:\mathrm{form}\:\:\mathrm{a}\:+\:\mathrm{jb} \\ $$$$\mathrm{with}\:\:\mathrm{a}\:\:\mathrm{and}\:\:\mathrm{b}\:\:\mathrm{correct}\:\mathrm{to}\:\:\mathrm{2dp}. \\ $$

Question Number 15343    Answers: 0   Comments: 0

Question Number 15344    Answers: 0   Comments: 0

Question Number 15328    Answers: 1   Comments: 0

Prove that. sec^4 (x) − cosec^4 (x) = ((sin^2 (x) − cos^2 (x))/(sec^4 (x)))

$$\mathrm{Prove}\:\mathrm{that}. \\ $$$$\mathrm{sec}^{\mathrm{4}} \left(\mathrm{x}\right)\:−\:\mathrm{cosec}^{\mathrm{4}} \left(\mathrm{x}\right)\:=\:\frac{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\:−\:\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{sec}^{\mathrm{4}} \left(\mathrm{x}\right)} \\ $$

Question Number 15322    Answers: 0   Comments: 6

Question Number 15318    Answers: 2   Comments: 6

Question Number 15311    Answers: 0   Comments: 0

In a toll-booth at a bridge , some cars can pass by paying a tax of Rs. 10 and some special vehicles are exempted from paying tax. The booth has to track number of vehicles and total tax collected. Define a class ′tollbooth′. It should contain two data items of type int to hold the number of cars and total tax connected. A constructor initalizes these two variable to zero. A memberfunction freecar() only increments the car total. Finally another memberfunction show() displays the two totals. Write a C++ program such that the user has to press the key ′T′ for printing number of taxable cars and total tax, ′F′ for printing number of free cars and ′Esc′ to exit.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{toll}-\mathrm{booth}\:\mathrm{at}\:\mathrm{a}\:\mathrm{bridge}\:,\:\mathrm{some}\:\mathrm{cars}\:\mathrm{can}\:\mathrm{pass}\:\mathrm{by}\:\mathrm{paying}\:\mathrm{a}\:\mathrm{tax}\:\mathrm{of}\:\mathrm{Rs}.\:\mathrm{10}\:\mathrm{and} \\ $$$$\mathrm{some}\:\mathrm{special}\:\mathrm{vehicles}\:\mathrm{are}\:\mathrm{exempted}\:\mathrm{from}\:\mathrm{paying}\:\mathrm{tax}.\:\mathrm{The}\:\mathrm{booth}\:\mathrm{has}\:\mathrm{to}\:\mathrm{track}\: \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{vehicles}\:\mathrm{and}\:\mathrm{total}\:\mathrm{tax}\:\mathrm{collected}.\:\mathrm{Define}\:\mathrm{a}\:\mathrm{class}\:'\mathrm{tollbooth}'.\:\mathrm{It}\:\mathrm{should}\:\mathrm{contain} \\ $$$$\mathrm{two}\:\mathrm{data}\:\mathrm{items}\:\mathrm{of}\:\mathrm{type}\:\mathrm{int}\:\mathrm{to}\:\mathrm{hold}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{cars}\:\mathrm{and}\:\mathrm{total}\:\mathrm{tax}\:\mathrm{connected}. \\ $$$$\mathrm{A}\:\mathrm{constructor}\:\mathrm{initalizes}\:\mathrm{these}\:\mathrm{two}\:\mathrm{variable}\:\mathrm{to}\:\mathrm{zero}.\:\mathrm{A}\:\mathrm{memberfunction}\:\mathrm{freecar}\left(\right)\:\mathrm{only} \\ $$$$\mathrm{increments}\:\mathrm{the}\:\mathrm{car}\:\mathrm{total}.\:\mathrm{Finally}\:\mathrm{another}\:\mathrm{memberfunction}\:\mathrm{show}\left(\right)\:\mathrm{displays}\:\mathrm{the} \\ $$$$\mathrm{two}\:\mathrm{totals}. \\ $$$$\:\:\:\mathrm{Write}\:\mathrm{a}\:\mathrm{C}++\:\mathrm{program}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{user}\:\mathrm{has}\:\mathrm{to}\:\mathrm{press}\:\mathrm{the}\:\mathrm{key}\:'\mathrm{T}'\:\mathrm{for} \\ $$$$\mathrm{printing}\:\mathrm{number}\:\mathrm{of}\:\mathrm{taxable}\:\mathrm{cars}\:\mathrm{and}\:\mathrm{total}\:\mathrm{tax},\:'\mathrm{F}'\:\mathrm{for}\:\mathrm{printing}\:\mathrm{number}\:\mathrm{of}\:\:\mathrm{free} \\ $$$$\mathrm{cars}\:\mathrm{and}\:'\mathrm{Esc}'\:\mathrm{to}\:\mathrm{exit}. \\ $$

Question Number 15302    Answers: 0   Comments: 0

Prove that number of commutative binary operations on a set having n elements is n^((n(n − 1))/2) .

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{number}\:\mathrm{of}\:\mathrm{commutative} \\ $$$$\mathrm{binary}\:\mathrm{operations}\:\mathrm{on}\:\mathrm{a}\:\mathrm{set}\:\mathrm{having}\:{n} \\ $$$$\mathrm{elements}\:\mathrm{is}\:{n}^{\frac{{n}\left({n}\:−\:\mathrm{1}\right)}{\mathrm{2}}} \:. \\ $$

Question Number 15301    Answers: 1   Comments: 0

With the help of graph, find the solution set of inequation tan x > −(√3) .

$$\mathrm{With}\:\mathrm{the}\:\mathrm{help}\:\mathrm{of}\:\mathrm{graph},\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\mathrm{inequation}\:\mathrm{tan}\:{x}\:>\:−\sqrt{\mathrm{3}}\:. \\ $$

Question Number 15300    Answers: 1   Comments: 3

Find the values of α and β, 0 < α, β < (π/2) satisfying the following equation cos α cos β cos (α + β) = −(1/8) .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\alpha\:\mathrm{and}\:\beta,\:\mathrm{0}\:<\:\alpha,\:\beta\:<\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\mathrm{following}\:\mathrm{equation} \\ $$$$\mathrm{cos}\:\alpha\:\mathrm{cos}\:\beta\:\mathrm{cos}\:\left(\alpha\:+\:\beta\right)\:=\:−\frac{\mathrm{1}}{\mathrm{8}}\:. \\ $$

Question Number 15298    Answers: 1   Comments: 4

Solve for x and y x^2 + 2x sin(xy) + 1 = 0

$$\mathrm{Solve}\:\mathrm{for}\:{x}\:\mathrm{and}\:{y} \\ $$$${x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:\mathrm{sin}\left({xy}\right)\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$

Question Number 15294    Answers: 0   Comments: 1

A straigth conductor of length L is charged with q charge. What will be the electric field in the equatorial line at a distance d ? Ans: ((2q)/(4Πε_0 d(√(L^2 +4d^2 ))))

$$\mathrm{A}\:\mathrm{straigth}\:\mathrm{conductor}\:\mathrm{of}\:\mathrm{length} \\ $$$$\mathrm{L}\:\mathrm{is}\:\mathrm{charged}\:\mathrm{with}\:\mathrm{q}\:\mathrm{charge}.\:\mathrm{What} \\ $$$$\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{electric}\:\mathrm{field}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{equatorial}\:\mathrm{line}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{d}\:? \\ $$$$\mathrm{Ans}:\:\frac{\mathrm{2q}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} \mathrm{d}\sqrt{\mathrm{L}^{\mathrm{2}} +\mathrm{4d}^{\mathrm{2}} }} \\ $$

Question Number 15288    Answers: 0   Comments: 1

  Pg 1926      Pg 1927      Pg 1928      Pg 1929      Pg 1930      Pg 1931      Pg 1932      Pg 1933      Pg 1934      Pg 1935   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com