Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1931

Question Number 15216    Answers: 0   Comments: 0

[((z−2)/(z+2))]=6

$$\left[\frac{\mathrm{z}−\mathrm{2}}{\mathrm{z}+\mathrm{2}}\right]=\mathrm{6} \\ $$

Question Number 15194    Answers: 0   Comments: 2

The equation determinant (((x−a),(x−b),(x−c)),((x−b),(x−c),(x−a)),((x−c),(x−a),(x−b)))=0, where a, b, c are different, is satisfied by

$$\mathrm{The}\:\mathrm{equation}\:\begin{vmatrix}{{x}−{a}}&{{x}−{b}}&{{x}−{c}}\\{{x}−{b}}&{{x}−{c}}&{{x}−{a}}\\{{x}−{c}}&{{x}−{a}}&{{x}−{b}}\end{vmatrix}=\mathrm{0}, \\ $$$$\mathrm{where}\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{different},\:\mathrm{is}\:\mathrm{satisfied}\:\mathrm{by} \\ $$

Question Number 15193    Answers: 0   Comments: 0

The value of the determinant △= determinant ((( 2a_1 b_1 ),(a_1 b_2 +a_2 b_1 ),(a_1 b_3 +a_3 b_1 )),((a_1 b_2 +a_2 b_1 ),( 2a_2 b_2 ),(a_2 b_3 +a_3 b_2 )),((a_1 b_3 +a_3 b_1 ),(a_3 b_2 +a_2 b_3 ),( 2a_3 b_3 )))is

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{determinant} \\ $$$$\bigtriangleup=\begin{vmatrix}{\:\:\:\mathrm{2}{a}_{\mathrm{1}} {b}_{\mathrm{1}} }&{{a}_{\mathrm{1}} {b}_{\mathrm{2}} +{a}_{\mathrm{2}} {b}_{\mathrm{1}} }&{{a}_{\mathrm{1}} {b}_{\mathrm{3}} +{a}_{\mathrm{3}} {b}_{\mathrm{1}} }\\{{a}_{\mathrm{1}} {b}_{\mathrm{2}} +{a}_{\mathrm{2}} {b}_{\mathrm{1}} }&{\:\:\:\:\mathrm{2}{a}_{\mathrm{2}} {b}_{\mathrm{2}} }&{{a}_{\mathrm{2}} {b}_{\mathrm{3}} +{a}_{\mathrm{3}} {b}_{\mathrm{2}} }\\{{a}_{\mathrm{1}} {b}_{\mathrm{3}} +{a}_{\mathrm{3}} {b}_{\mathrm{1}} }&{{a}_{\mathrm{3}} {b}_{\mathrm{2}} +{a}_{\mathrm{2}} {b}_{\mathrm{3}} }&{\:\:\:\:\mathrm{2}{a}_{\mathrm{3}} {b}_{\mathrm{3}} }\end{vmatrix}\mathrm{is} \\ $$

Question Number 15192    Answers: 0   Comments: 0

Let D_r = determinant ((2^(r−1) ,(2 ∙ 3^(r−1) ),(4 ∙ 5^(r−1) )),(( α),( β),( γ)),((2^n −1),(3^n −1),( 5^n −1))). Then the value of Σ_(r=1) ^n D_r is

$$\mathrm{Let}\:{D}_{{r}} =\begin{vmatrix}{\mathrm{2}^{{r}−\mathrm{1}} }&{\mathrm{2}\:\centerdot\:\mathrm{3}^{{r}−\mathrm{1}} }&{\mathrm{4}\:\centerdot\:\mathrm{5}^{{r}−\mathrm{1}} }\\{\:\:\:\alpha}&{\:\:\:\beta}&{\:\:\:\:\:\gamma}\\{\mathrm{2}^{{n}} −\mathrm{1}}&{\mathrm{3}^{{n}} −\mathrm{1}}&{\:\:\mathrm{5}^{{n}} −\mathrm{1}}\end{vmatrix}. \\ $$$$\mathrm{Then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{D}_{{r}} \:\:\mathrm{is} \\ $$

Question Number 15191    Answers: 0   Comments: 1

If m is a positive integer and △_r = determinant ((( 2r−1),(^m C_r ),( 1)),(( m^2 −1),( 2^m ),( m+1)),((sin^2 (m^2 )),(sin^2 (m)),(sin^2 (m+1)))) then the value of Σ_(r=0) ^m △_r is

$$\mathrm{If}\:{m}\:\mathrm{is}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{and} \\ $$$$\bigtriangleup_{{r}} =\begin{vmatrix}{\:\:\:\mathrm{2}{r}−\mathrm{1}}&{\:^{{m}} {C}_{{r}} }&{\:\:\:\:\:\:\:\:\mathrm{1}}\\{\:\:{m}^{\mathrm{2}} −\mathrm{1}}&{\:\:\:\:\mathrm{2}^{{m}} }&{\:\:\:{m}+\mathrm{1}}\\{\mathrm{sin}^{\mathrm{2}} \left({m}^{\mathrm{2}} \right)}&{\mathrm{sin}^{\mathrm{2}} \left({m}\right)}&{\mathrm{sin}^{\mathrm{2}} \left({m}+\mathrm{1}\right)}\end{vmatrix} \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\:\underset{{r}=\mathrm{0}} {\overset{{m}} {\sum}}\bigtriangleup_{{r}} \:\:\:\mathrm{is} \\ $$

Question Number 15190    Answers: 0   Comments: 0

If I_3 is the identity matrix of order 3, then (I_3 )^(−1) =

$$\mathrm{If}\:\:\:{I}_{\mathrm{3}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{identity}\:\mathrm{matrix}\:\mathrm{of}\:\mathrm{order}\:\mathrm{3},\: \\ $$$$\mathrm{then}\:\:\left({I}_{\mathrm{3}} \right)^{−\mathrm{1}} = \\ $$

Question Number 15189    Answers: 0   Comments: 0

If A= [(a_(ij) ) ]_(m×n) is a matrix and B is a non−singular square submatrix of order r , then

$$\mathrm{If}\:{A}=\begin{bmatrix}{{a}_{{ij}} }\end{bmatrix}_{{m}×{n}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{matrix}\:\mathrm{and}\:{B}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{non}−\mathrm{singular}\:\mathrm{square}\:\mathrm{submatrix}\:\mathrm{of} \\ $$$$\mathrm{order}\:\:{r}\:,\:\mathrm{then}\: \\ $$

Question Number 15186    Answers: 0   Comments: 3

lim_(x→∞) (((x + 3)/(x −1)))^x

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{x}\:+\:\mathrm{3}}{{x}\:−\mathrm{1}}\right)^{{x}} \\ $$

Question Number 15184    Answers: 0   Comments: 4

If y = ln x and y = a^x have a solution then find the range of a. (1) (0, 1) (2) ((1/e), e) (3) (1, e) (4) (0, 1]

$$\mathrm{If}\:{y}\:=\:\mathrm{ln}\:{x}\:\mathrm{and}\:{y}\:=\:{a}^{{x}} \:\mathrm{have}\:\mathrm{a}\:\mathrm{solution} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{a}. \\ $$$$\left(\mathrm{1}\right)\:\left(\mathrm{0},\:\mathrm{1}\right) \\ $$$$\left(\mathrm{2}\right)\:\left(\frac{\mathrm{1}}{{e}},\:{e}\right) \\ $$$$\left(\mathrm{3}\right)\:\left(\mathrm{1},\:{e}\right) \\ $$$$\left(\mathrm{4}\right)\:\left(\mathrm{0},\:\mathrm{1}\right] \\ $$

Question Number 15181    Answers: 1   Comments: 0

f(x) = (((px + q) . sin 2x)/(ax + b)) lim_(x→0) f(x) = 2 and lim_(x→∞) f(x) = 0 Find a,b,p,q

$${f}\left({x}\right)\:=\:\frac{\left({px}\:+\:{q}\right)\:.\:\mathrm{sin}\:\mathrm{2}{x}}{{ax}\:+\:{b}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)\:=\:\mathrm{2}\:\:\:\mathrm{and}\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{f}\left({x}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{Find}\:{a},{b},{p},{q}\:\: \\ $$

Question Number 15180    Answers: 1   Comments: 0

If ω is a cube root of unity, then a root of the following polynomial is determinant (((x+1),( ω),( ω^2 )),(( ω),(x+ω^2 ),( 1)),(( ω^2 ),( 1),(x+ω)))

$$\mathrm{If}\:\:\:\omega\:\mathrm{is}\:\mathrm{a}\:\mathrm{cube}\:\mathrm{root}\:\mathrm{of}\:\mathrm{unity},\:\mathrm{then}\:\mathrm{a}\:\mathrm{root} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{polynomial}\:\mathrm{is} \\ $$$$\begin{vmatrix}{{x}+\mathrm{1}}&{\:\:\omega}&{\:\:\omega^{\mathrm{2}} }\\{\:\:\omega}&{{x}+\omega^{\mathrm{2}} }&{\:\:\mathrm{1}}\\{\:\:\omega^{\mathrm{2}} }&{\:\:\mathrm{1}}&{{x}+\omega}\end{vmatrix} \\ $$

Question Number 15179    Answers: 1   Comments: 0

If (d^2 y/dx^2 ) + 4y = 0 y(0) = 1 and y((π/6)) = ((√3)/2) + (1/2) How to find y(x) ?

$$\mathrm{If}\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{4}{y}\:=\:\mathrm{0}\: \\ $$$${y}\left(\mathrm{0}\right)\:=\:\mathrm{1}\:\mathrm{and}\:{y}\left(\frac{\pi}{\mathrm{6}}\right)\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{How}\:\mathrm{to}\:\mathrm{find}\:{y}\left({x}\right)\:? \\ $$

Question Number 15175    Answers: 2   Comments: 1

Question Number 15172    Answers: 0   Comments: 0

If z = x + jy, show that the locus arg{((z − 1)/(z − j))} = (π/6) is a circle . Find its centre and radius.

$$\mathrm{If}\:\:\mathrm{z}\:=\:\mathrm{x}\:+\:\mathrm{jy},\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{arg}\left\{\frac{\mathrm{z}\:−\:\mathrm{1}}{\mathrm{z}\:−\:\mathrm{j}}\right\}\:=\:\frac{\pi}{\mathrm{6}}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle}\:.\:\mathrm{Find}\:\mathrm{its}\:\mathrm{centre} \\ $$$$\mathrm{and}\:\mathrm{radius}.\: \\ $$

Question Number 15182    Answers: 0   Comments: 0

If a piece of iron gains 10% of its mass due to partial rusting into Fe_2 O_3 the percentage of total iron that has rusted is? [Answer is 23.3]

$$\mathrm{If}\:\mathrm{a}\:\mathrm{piece}\:\mathrm{of}\:\mathrm{iron}\:\mathrm{gains}\:\mathrm{10\%}\:\mathrm{of}\:\mathrm{its}\:\mathrm{mass} \\ $$$$\mathrm{due}\:\mathrm{to}\:\mathrm{partial}\:\mathrm{rusting}\:\mathrm{into}\:\mathrm{Fe}_{\mathrm{2}} \mathrm{O}_{\mathrm{3}} \:\mathrm{the} \\ $$$$\mathrm{percentage}\:\mathrm{of}\:\mathrm{total}\:\mathrm{iron}\:\mathrm{that}\:\mathrm{has}\:\mathrm{rusted} \\ $$$$\mathrm{is}?\:\left[\mathrm{Answer}\:\mathrm{is}\:\mathrm{23}.\mathrm{3}\right] \\ $$

Question Number 15170    Answers: 2   Comments: 2

Question Number 15623    Answers: 1   Comments: 0

Question Number 15158    Answers: 0   Comments: 3

In a third order determinant, each element of the first column consists of sum of 2 terms, each element of the second column consists of sum of 3 terms and each element of the third column consists of sum of 4 terms. Then it can be decomposed into n determinants, where n has the value Ans= 24

$$\mathrm{In}\:\mathrm{a}\:\mathrm{third}\:\mathrm{order}\:\mathrm{determinant},\:\mathrm{each} \\ $$$$\mathrm{element}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{column}\:\mathrm{consists}\:\mathrm{of} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{2}\:\mathrm{terms},\:\mathrm{each}\:\mathrm{element}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{second}\:\mathrm{column}\:\mathrm{consists}\:\mathrm{of}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{3}\:\mathrm{terms} \\ $$$$\mathrm{and}\:\mathrm{each}\:\mathrm{element}\:\mathrm{of}\:\mathrm{the}\:\mathrm{third}\:\mathrm{column} \\ $$$$\mathrm{consists}\:\mathrm{of}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{4}\:\mathrm{terms}.\:\mathrm{Then}\:\mathrm{it}\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{decomposed}\:\mathrm{into}\:{n}\:\mathrm{determinants}, \\ $$$$\mathrm{where}\:{n}\:\mathrm{has}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{Ans}=\:\mathrm{24} \\ $$

Question Number 15117    Answers: 1   Comments: 0

A Juggler is maintaining 4 balls in motion making each in term to rise to height of 20 m. Which of following position is not possible for the balls, when one ball is just leaving his hand? (1) 5 m (2) All position are possible (3) 15 m (4) 20 m

$$\mathrm{A}\:\mathrm{Juggler}\:\mathrm{is}\:\mathrm{maintaining}\:\mathrm{4}\:\mathrm{balls}\:\mathrm{in} \\ $$$$\mathrm{motion}\:\mathrm{making}\:\mathrm{each}\:\mathrm{in}\:\mathrm{term}\:\mathrm{to}\:\mathrm{rise}\:\mathrm{to} \\ $$$$\mathrm{height}\:\mathrm{of}\:\mathrm{20}\:\mathrm{m}.\:\mathrm{Which}\:\mathrm{of}\:\mathrm{following} \\ $$$$\mathrm{position}\:\mathrm{is}\:\mathrm{not}\:\mathrm{possible}\:\mathrm{for}\:\mathrm{the}\:\mathrm{balls}, \\ $$$$\mathrm{when}\:\mathrm{one}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{just}\:\mathrm{leaving}\:\mathrm{his}\:\mathrm{hand}? \\ $$$$\left(\mathrm{1}\right)\:\mathrm{5}\:\mathrm{m} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{All}\:\mathrm{position}\:\mathrm{are}\:\mathrm{possible} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{15}\:\mathrm{m} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{20}\:\mathrm{m} \\ $$

Question Number 15116    Answers: 2   Comments: 0

A balloon ascends vertically with a constant speed for 5 seconds, when a pebble falls from it reaching the ground in 5 s. The speed of the balloon is?

$$\mathrm{A}\:\mathrm{balloon}\:\mathrm{ascends}\:\mathrm{vertically}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{constant}\:\mathrm{speed}\:\mathrm{for}\:\mathrm{5}\:\mathrm{seconds},\:\mathrm{when}\:\mathrm{a} \\ $$$$\mathrm{pebble}\:\mathrm{falls}\:\mathrm{from}\:\mathrm{it}\:\mathrm{reaching}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\mathrm{in}\:\mathrm{5}\:\mathrm{s}.\:\mathrm{The}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{balloon}\:\mathrm{is}? \\ $$

Question Number 15115    Answers: 1   Comments: 0

Drops are falling regularly from a water tap at a height of 9 m from the ground. The 4^(th) drop is about to fall from the tap when the 1^(st) hit the ground. Find the distance between 2^(nd) and 3^(rd) drop.

$$\mathrm{Drops}\:\mathrm{are}\:\mathrm{falling}\:\mathrm{regularly}\:\mathrm{from}\:\mathrm{a}\:\mathrm{water} \\ $$$$\mathrm{tap}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height}\:\mathrm{of}\:\mathrm{9}\:\mathrm{m}\:\mathrm{from}\:\mathrm{the}\:\mathrm{ground}. \\ $$$$\mathrm{The}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{drop}\:\mathrm{is}\:\mathrm{about}\:\mathrm{to}\:\mathrm{fall}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{tap}\:\mathrm{when}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{hit}\:\mathrm{the}\:\mathrm{ground}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{and}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{drop}. \\ $$

Question Number 15102    Answers: 2   Comments: 1

Small steel balls falls from rest through the opening at A, at the steady rate of n balls per second. Find the vertical separation h of two consecutive balls when the lower one has dropped d meters.

$$\mathrm{Small}\:\mathrm{steel}\:\mathrm{balls}\:\mathrm{falls}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{through} \\ $$$$\mathrm{the}\:\mathrm{opening}\:\mathrm{at}\:{A},\:\mathrm{at}\:\mathrm{the}\:\mathrm{steady}\:\mathrm{rate}\:\mathrm{of} \\ $$$${n}\:\mathrm{balls}\:\mathrm{per}\:\mathrm{second}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{vertical} \\ $$$$\mathrm{separation}\:{h}\:\mathrm{of}\:\mathrm{two}\:\mathrm{consecutive}\:\mathrm{balls} \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{lower}\:\mathrm{one}\:\mathrm{has}\:\mathrm{dropped}\:{d} \\ $$$$\mathrm{meters}. \\ $$

Question Number 15100    Answers: 1   Comments: 2

A car A is travelling with a speed of 72 km/h on a straight horizontal road. It is followed by another car B which is moving with a velocity of 36 km/h. When the distance between them is 25 km, the car A is given a deceleration of 2 ms^(−2) . After how much time will B catch up with A?

$$\mathrm{A}\:\mathrm{car}\:{A}\:\mathrm{is}\:\mathrm{travelling}\:\mathrm{with}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{72} \\ $$$$\mathrm{km}/\mathrm{h}\:\mathrm{on}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{horizontal}\:\mathrm{road}.\:\mathrm{It} \\ $$$$\mathrm{is}\:\mathrm{followed}\:\mathrm{by}\:\mathrm{another}\:\mathrm{car}\:{B}\:\mathrm{which}\:\mathrm{is} \\ $$$$\mathrm{moving}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{36}\:\mathrm{km}/\mathrm{h}. \\ $$$$\mathrm{When}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{them}\:\mathrm{is}\:\mathrm{25} \\ $$$$\mathrm{km},\:\mathrm{the}\:\mathrm{car}\:{A}\:\mathrm{is}\:\mathrm{given}\:\mathrm{a}\:\mathrm{deceleration}\:\mathrm{of} \\ $$$$\mathrm{2}\:\mathrm{ms}^{−\mathrm{2}} .\:\mathrm{After}\:\mathrm{how}\:\mathrm{much}\:\mathrm{time}\:\mathrm{will}\:{B} \\ $$$$\mathrm{catch}\:\mathrm{up}\:\mathrm{with}\:{A}? \\ $$

Question Number 15098    Answers: 2   Comments: 0

∫ sin^8 (x) dx

$$\int\:\mathrm{sin}^{\mathrm{8}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 15097    Answers: 2   Comments: 2

If log_4 log_(1/2) log_3 (x) > 0 then x belongs to (1, a), then the value of a^2 is?

$$\mathrm{If}\:\mathrm{log}_{\mathrm{4}} \:\mathrm{log}_{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{log}_{\mathrm{3}} \:\left({x}\right)\:>\:\mathrm{0}\:\mathrm{then}\:{x}\:\mathrm{belongs} \\ $$$$\mathrm{to}\:\left(\mathrm{1},\:{a}\right),\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{a}^{\mathrm{2}} \:\mathrm{is}? \\ $$

Question Number 15094    Answers: 1   Comments: 0

Number of integers in the range of y = ((7^x − 7^(−x) )/(7^x + 7^(−x) )) are?

$$\mathrm{Number}\:\mathrm{of}\:\mathrm{integers}\:\mathrm{in}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of} \\ $$$${y}\:=\:\frac{\mathrm{7}^{{x}} \:−\:\mathrm{7}^{−{x}} }{\mathrm{7}^{{x}} \:+\:\mathrm{7}^{−{x}} }\:\mathrm{are}? \\ $$

  Pg 1926      Pg 1927      Pg 1928      Pg 1929      Pg 1930      Pg 1931      Pg 1932      Pg 1933      Pg 1934      Pg 1935   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com