Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1931

Question Number 16137    Answers: 0   Comments: 0

For 2s orbital Ψ_r = (1/(√8))((z/a_0 ))^(3/2) (2 − ((zr)/a_0 ))e^(−((zr)/(2a_0 ))) then, hydrogen radial node will be at the distance of (1) a_0 (2) 2a_0 (3) (a_0 /2) (4) (a_0 /3)

$$\mathrm{For}\:\mathrm{2}{s}\:\mathrm{orbital}\:\Psi_{\mathrm{r}} \:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{8}}}\left(\frac{\mathrm{z}}{\mathrm{a}_{\mathrm{0}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\mathrm{2}\:−\:\frac{\mathrm{zr}}{\mathrm{a}_{\mathrm{0}} }\right)\mathrm{e}^{−\frac{\mathrm{zr}}{\mathrm{2a}_{\mathrm{0}} }} \\ $$$$\mathrm{then},\:\mathrm{hydrogen}\:\mathrm{radial}\:\mathrm{node}\:\mathrm{will}\:\mathrm{be}\:\mathrm{at} \\ $$$$\mathrm{the}\:\mathrm{distance}\:\mathrm{of} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{a}_{\mathrm{0}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2a}_{\mathrm{0}} \\ $$$$\left(\mathrm{3}\right)\:\frac{\mathrm{a}_{\mathrm{0}} }{\mathrm{2}} \\ $$$$\left(\mathrm{4}\right)\:\frac{\mathrm{a}_{\mathrm{0}} }{\mathrm{3}} \\ $$

Question Number 16136    Answers: 1   Comments: 0

Photoelectric emission is observed from a surface when lights of frequency n_1 and n_2 incident. If the ratio of maximum kinetic energy in two cases is K : 1 then (Assume n_1 > n_2 ) threshold frequency is (1) (K − 1) × (Kn_2 − n_1 ) (2) ((Kn_1 − n_2 )/(1 − K)) (3) ((K − 1)/(Kn_1 − n_2 )) (4) ((Kn_2 − n_1 )/(K − 1))

$$\mathrm{Photoelectric}\:\mathrm{emission}\:\mathrm{is}\:\mathrm{observed}\:\mathrm{from} \\ $$$$\mathrm{a}\:\mathrm{surface}\:\mathrm{when}\:\mathrm{lights}\:\mathrm{of}\:\mathrm{frequency}\:{n}_{\mathrm{1}} \\ $$$$\mathrm{and}\:{n}_{\mathrm{2}} \:\mathrm{incident}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{maximum} \\ $$$$\mathrm{kinetic}\:\mathrm{energy}\:\mathrm{in}\:\mathrm{two}\:\mathrm{cases}\:\mathrm{is}\:\mathrm{K}\::\:\mathrm{1} \\ $$$$\mathrm{then}\:\left(\mathrm{Assume}\:{n}_{\mathrm{1}} \:>\:{n}_{\mathrm{2}} \right)\:\mathrm{threshold} \\ $$$$\mathrm{frequency}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\left(\mathrm{K}\:−\:\mathrm{1}\right)\:×\:\left(\mathrm{K}{n}_{\mathrm{2}} \:−\:{n}_{\mathrm{1}} \right) \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{K}{n}_{\mathrm{1}} \:−\:{n}_{\mathrm{2}} }{\mathrm{1}\:−\:\mathrm{K}} \\ $$$$\left(\mathrm{3}\right)\:\frac{\mathrm{K}\:−\:\mathrm{1}}{\mathrm{K}{n}_{\mathrm{1}} \:−\:{n}_{\mathrm{2}} } \\ $$$$\left(\mathrm{4}\right)\:\frac{\mathrm{K}{n}_{\mathrm{2}} \:−\:{n}_{\mathrm{1}} }{\mathrm{K}\:−\:\mathrm{1}} \\ $$

Question Number 16135    Answers: 0   Comments: 0

An electron is moving in 3^(rd) orbit of Hydrogen atom. The frequency of moving electron is (1) 2.19 × 10^(14) rps (2) 7.3 × 10^(14) rps (3) 2.44 × 10^(14) rps (4) 7.3 × 10^(10) rps

$$\mathrm{An}\:\mathrm{electron}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{in}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{orbit}\:\mathrm{of} \\ $$$$\mathrm{Hydrogen}\:\mathrm{atom}.\:\mathrm{The}\:\mathrm{frequency}\:\mathrm{of} \\ $$$$\mathrm{moving}\:\mathrm{electron}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{2}.\mathrm{19}\:×\:\mathrm{10}^{\mathrm{14}} \:\mathrm{rps} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{7}.\mathrm{3}\:×\:\mathrm{10}^{\mathrm{14}} \:\mathrm{rps} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{2}.\mathrm{44}\:×\:\mathrm{10}^{\mathrm{14}} \:\mathrm{rps} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{7}.\mathrm{3}\:×\:\mathrm{10}^{\mathrm{10}} \:\mathrm{rps} \\ $$

Question Number 16134    Answers: 0   Comments: 0

The mathematical expression which is true for the uncertainty principle is (1) (Δx) (Δv) ≥ (h/(4π)) (2) (ΔE) (Δx) ≥ (h/(4π)) (3) (Δθ) (Δφ) ≥ (h/(4π)) (4) (Δx) (Δm) ≥ (h/(4π))

$$\mathrm{The}\:\mathrm{mathematical}\:\mathrm{expression}\:\mathrm{which} \\ $$$$\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{the}\:\mathrm{uncertainty}\:\mathrm{principle}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\left(\Delta{x}\right)\:\left(\Delta{v}\right)\:\geqslant\:\frac{\mathrm{h}}{\mathrm{4}\pi} \\ $$$$\left(\mathrm{2}\right)\:\left(\Delta\mathrm{E}\right)\:\left(\Delta{x}\right)\:\geqslant\:\frac{\mathrm{h}}{\mathrm{4}\pi} \\ $$$$\left(\mathrm{3}\right)\:\left(\Delta\theta\right)\:\left(\Delta\phi\right)\:\geqslant\:\frac{\mathrm{h}}{\mathrm{4}\pi} \\ $$$$\left(\mathrm{4}\right)\:\left(\Delta{x}\right)\:\left(\Delta\mathrm{m}\right)\:\geqslant\:\frac{\mathrm{h}}{\mathrm{4}\pi} \\ $$

Question Number 16133    Answers: 1   Comments: 0

H_α line of Balmer series is 6500 A^o . The wave length of Hγ is (1) 4815 A^o (2) 4298 A^o (3) 7800 A^o (4) 3800 A^o

$$\mathrm{H}_{\alpha} \:\mathrm{line}\:\mathrm{of}\:\mathrm{Balmer}\:\mathrm{series}\:\mathrm{is}\:\mathrm{6500}\:\overset{\mathrm{o}} {\mathrm{A}}.\:\mathrm{The} \\ $$$$\mathrm{wave}\:\mathrm{length}\:\mathrm{of}\:\mathrm{H}\gamma\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{4815}\:\overset{\mathrm{o}} {\mathrm{A}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{4298}\:\overset{\mathrm{o}} {\mathrm{A}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{7800}\:\overset{\mathrm{o}} {\mathrm{A}} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{3800}\:\overset{\mathrm{o}} {\mathrm{A}} \\ $$

Question Number 16116    Answers: 0   Comments: 0

Question Number 16115    Answers: 0   Comments: 0

Question Number 16110    Answers: 0   Comments: 1

let a_1 >a_2 >0 and a_(n+1) =(√(a_n a_(n−1 ) )) where n is greater than equal to 2 Then The sequence {a_(2n) } is (1) monotonic increasing (2)monotonic decreasing (3)non monotonic (4)unbounded

$$\mathrm{let}\:\mathrm{a}_{\mathrm{1}} >\mathrm{a}_{\mathrm{2}} >\mathrm{0}\:\mathrm{and}\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} =\sqrt{\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}−\mathrm{1}\:\:\:} } \\ $$$$\mathrm{where}\:\mathrm{n}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{2}\: \\ $$$$\mathrm{Then} \\ $$$$\mathrm{The}\:\mathrm{sequence}\:\left\{\mathrm{a}_{\mathrm{2n}} \right\}\:\mathrm{is}\: \\ $$$$\left(\mathrm{1}\right)\:\mathrm{monotonic}\:\mathrm{increasing} \\ $$$$\left(\mathrm{2}\right)\mathrm{monotonic}\:\mathrm{decreasing} \\ $$$$\left(\mathrm{3}\right)\mathrm{non}\:\mathrm{monotonic} \\ $$$$\left(\mathrm{4}\right)\mathrm{unbounded} \\ $$$$ \\ $$

Question Number 16108    Answers: 1   Comments: 1

Question Number 16107    Answers: 0   Comments: 0

∫ ((x+2)/((x^2 +3x+3)(√(x+1)))) dx =

$$\int\:\frac{{x}+\mathrm{2}}{\left({x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{3}\right)\sqrt{{x}+\mathrm{1}}}\:{dx}\:= \\ $$

Question Number 16102    Answers: 0   Comments: 0

Question Number 16093    Answers: 0   Comments: 2

The number of solutions of ∣sin x∣ = tan x in [0, 4π] is/are?

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of} \\ $$$$\mid\mathrm{sin}\:{x}\mid\:=\:\mathrm{tan}\:{x}\:\mathrm{in}\:\left[\mathrm{0},\:\mathrm{4}\pi\right]\:\mathrm{is}/\mathrm{are}? \\ $$

Question Number 16092    Answers: 0   Comments: 5

Find the set of values of x ∈ [0, 2π] which satisfy sin x > cos x. (1) ((π/4), ((3π)/4)) ∪ (((5π)/4), 2π) (2) (0, (π/4)) ∪ (((5π)/4), 2π) (3) ((π/4), ((5π)/4)) (4) (0, ((3π)/4)) ∪ (((5π)/4), 2π)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x}\:\in\:\left[\mathrm{0},\:\mathrm{2}\pi\right] \\ $$$$\mathrm{which}\:\mathrm{satisfy}\:\mathrm{sin}\:{x}\:>\:\mathrm{cos}\:{x}. \\ $$$$\left(\mathrm{1}\right)\:\left(\frac{\pi}{\mathrm{4}},\:\frac{\mathrm{3}\pi}{\mathrm{4}}\right)\:\cup\:\left(\frac{\mathrm{5}\pi}{\mathrm{4}},\:\mathrm{2}\pi\right) \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{4}}\right)\:\cup\:\left(\frac{\mathrm{5}\pi}{\mathrm{4}},\:\mathrm{2}\pi\right) \\ $$$$\left(\mathrm{3}\right)\:\left(\frac{\pi}{\mathrm{4}},\:\frac{\mathrm{5}\pi}{\mathrm{4}}\right) \\ $$$$\left(\mathrm{4}\right)\:\left(\mathrm{0},\:\frac{\mathrm{3}\pi}{\mathrm{4}}\right)\:\cup\:\left(\frac{\mathrm{5}\pi}{\mathrm{4}},\:\mathrm{2}\pi\right) \\ $$

Question Number 16090    Answers: 1   Comments: 0

The maximum value of the expression ∣(√(sin^2 x + 2a^2 )) − (√(2a^2 − 3 − cos^2 x))∣; where ′a′ and ′x′ are real numbers, is (1) 4 (2) 2 (3) (√2) (4) 0

$$\mathrm{The}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\mid\sqrt{\mathrm{sin}^{\mathrm{2}} \:{x}\:+\:\mathrm{2}{a}^{\mathrm{2}} }\:−\:\sqrt{\mathrm{2}{a}^{\mathrm{2}} \:−\:\mathrm{3}\:−\:\mathrm{cos}^{\mathrm{2}} \:{x}}\mid; \\ $$$$\mathrm{where}\:'{a}'\:\mathrm{and}\:'{x}'\:\mathrm{are}\:\mathrm{real}\:\mathrm{numbers},\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{4} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2} \\ $$$$\left(\mathrm{3}\right)\:\sqrt{\mathrm{2}} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{0} \\ $$

Question Number 16089    Answers: 0   Comments: 2

The range of function f(θ) = sin^2 θ + (1/(1 + sin^2 θ)) is (1) [1, ∞) (2) [2, ∞) (3) [1, (3/2)] (4) [(3/2), ∞)

$$\mathrm{The}\:\mathrm{range}\:\mathrm{of}\:\mathrm{function} \\ $$$${f}\left(\theta\right)\:=\:\mathrm{sin}^{\mathrm{2}} \:\theta\:+\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{sin}^{\mathrm{2}} \:\theta}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\left[\mathrm{1},\:\infty\right) \\ $$$$\left(\mathrm{2}\right)\:\left[\mathrm{2},\:\infty\right) \\ $$$$\left(\mathrm{3}\right)\:\left[\mathrm{1},\:\frac{\mathrm{3}}{\mathrm{2}}\right] \\ $$$$\left(\mathrm{4}\right)\:\left[\frac{\mathrm{3}}{\mathrm{2}},\:\infty\right) \\ $$

Question Number 16088    Answers: 0   Comments: 1

∫_( 0) ^(1000) e^(x−[x]) dx =

$$\:\underset{\:\mathrm{0}} {\overset{\mathrm{1000}} {\int}}{e}^{{x}−\left[{x}\right]} {dx}\:= \\ $$

Question Number 16087    Answers: 0   Comments: 1

Number of solution of equation 2[−x] + 3x = 7{x} is? (where [∙] = Greatest Integer Function & {∙} fractional function.)

$$\mathrm{Number}\:\mathrm{of}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\mathrm{2}\left[−{x}\right]\:+\:\mathrm{3}{x}\:=\:\mathrm{7}\left\{{x}\right\}\:\mathrm{is}?\:\left(\mathrm{where}\:\left[\centerdot\right]\:=\right. \\ $$$$\mathrm{Greatest}\:\mathrm{Integer}\:\mathrm{Function}\:\&\:\left\{\centerdot\right\} \\ $$$$\left.\mathrm{fractional}\:\mathrm{function}.\right) \\ $$

Question Number 16086    Answers: 0   Comments: 1

The number of values of x which are satisfying the equation ∣x + 4∣ = 8[x] + x − 4 is? (where [∙] Greatest Integer Function)

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{which}\:\mathrm{are} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\mathrm{equation}\:\mid{x}\:+\:\mathrm{4}\mid\:=\:\mathrm{8}\left[{x}\right] \\ $$$$+\:{x}\:−\:\mathrm{4}\:\mathrm{is}?\:\left(\mathrm{where}\:\left[\centerdot\right]\:\mathrm{Greatest}\:\mathrm{Integer}\right. \\ $$$$\left.\mathrm{Function}\right) \\ $$

Question Number 16085    Answers: 0   Comments: 1

Let f(sin x) + 2f(cos x) = 3 ∀ x ∈ (0, (π/2)). Then (1) f(sin x) = 1, x ∈ (0, (π/2)) (2) f(sin x) = 1, x ∈ (−1, 0) (3) f(cos x) = 1, x ∈ (0, 1) (4) f(x) = 1, x ∈ (0, 1)

$$\mathrm{Let}\:{f}\left(\mathrm{sin}\:{x}\right)\:+\:\mathrm{2}{f}\left(\mathrm{cos}\:{x}\right)\:=\:\mathrm{3}\:\forall\:{x}\:\in\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right). \\ $$$$\mathrm{Then} \\ $$$$\left(\mathrm{1}\right)\:{f}\left(\mathrm{sin}\:{x}\right)\:=\:\mathrm{1},\:{x}\:\in\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right) \\ $$$$\left(\mathrm{2}\right)\:{f}\left(\mathrm{sin}\:{x}\right)\:=\:\mathrm{1},\:{x}\:\in\:\left(−\mathrm{1},\:\mathrm{0}\right) \\ $$$$\left(\mathrm{3}\right)\:{f}\left(\mathrm{cos}\:{x}\right)\:=\:\mathrm{1},\:{x}\:\in\:\left(\mathrm{0},\:\mathrm{1}\right) \\ $$$$\left(\mathrm{4}\right)\:{f}\left({x}\right)\:=\:\mathrm{1},\:{x}\:\in\:\left(\mathrm{0},\:\mathrm{1}\right) \\ $$

Question Number 16082    Answers: 0   Comments: 2

Solution of equation 2[x] + 4{x} = 3x + 2 (where {∙} denotes fractional function and [∙] denotes G.I.F) is (1) {−2} (2) {−2, − (3/2)} (3) φ (4) R

$$\mathrm{Solution}\:\mathrm{of}\:\mathrm{equation}\:\mathrm{2}\left[{x}\right]\:+\:\mathrm{4}\left\{{x}\right\}\:=\:\mathrm{3}{x} \\ $$$$+\:\mathrm{2}\:\left(\mathrm{where}\:\left\{\centerdot\right\}\:\mathrm{denotes}\:\mathrm{fractional}\right. \\ $$$$\left.\mathrm{function}\:\mathrm{and}\:\left[\centerdot\right]\:\mathrm{denotes}\:\mathrm{G}.\mathrm{I}.\mathrm{F}\right)\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\left\{−\mathrm{2}\right\} \\ $$$$\left(\mathrm{2}\right)\:\left\{−\mathrm{2},\:−\:\frac{\mathrm{3}}{\mathrm{2}}\right\} \\ $$$$\left(\mathrm{3}\right)\:\phi \\ $$$$\left(\mathrm{4}\right)\:{R} \\ $$

Question Number 16077    Answers: 0   Comments: 0

Let ABCDE be an equiangular pentagon whose side lengths are rational numbers. Prove that the pentagon is regular.

$$\mathrm{Let}\:{ABCDE}\:\mathrm{be}\:\mathrm{an}\:\mathrm{equiangular} \\ $$$$\mathrm{pentagon}\:\mathrm{whose}\:\mathrm{side}\:\mathrm{lengths}\:\mathrm{are} \\ $$$$\mathrm{rational}\:\mathrm{numbers}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{pentagon}\:\mathrm{is}\:\mathrm{regular}. \\ $$

Question Number 16081    Answers: 2   Comments: 0

A spherical balloon of 21 cm diameter is to be filled with hydrogen at NTP from a cylinder containing the gas at 20 atmosphere at 27°C. If the cylinder can hold 2.82 litres of water, calculate the number of balloons that can be filled up.

$$\mathrm{A}\:\mathrm{spherical}\:\mathrm{balloon}\:\mathrm{of}\:\mathrm{21}\:\mathrm{cm}\:\mathrm{diameter} \\ $$$$\mathrm{is}\:\mathrm{to}\:\mathrm{be}\:\mathrm{filled}\:\mathrm{with}\:\mathrm{hydrogen}\:\mathrm{at}\:\mathrm{NTP} \\ $$$$\mathrm{from}\:\mathrm{a}\:\mathrm{cylinder}\:\mathrm{containing}\:\mathrm{the}\:\mathrm{gas}\:\mathrm{at} \\ $$$$\mathrm{20}\:\mathrm{atmosphere}\:\mathrm{at}\:\mathrm{27}°\mathrm{C}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{cylinder} \\ $$$$\mathrm{can}\:\mathrm{hold}\:\mathrm{2}.\mathrm{82}\:\mathrm{litres}\:\mathrm{of}\:\mathrm{water},\:\mathrm{calculate} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{balloons}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{filled}\:\mathrm{up}. \\ $$

Question Number 16075    Answers: 0   Comments: 0

Prove that the perpendiculars dropped from the midpoints of the sides of a cyclic quadrilateral to the opposite sides are concurrent.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{perpendiculars} \\ $$$$\mathrm{dropped}\:\mathrm{from}\:\mathrm{the}\:\mathrm{midpoints}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{cyclic}\:\mathrm{quadrilateral}\:\mathrm{to}\:\mathrm{the}\:\mathrm{opposite} \\ $$$$\mathrm{sides}\:\mathrm{are}\:\mathrm{concurrent}. \\ $$

Question Number 16074    Answers: 0   Comments: 0

Let K, L, M and N be the midpoints of the sides AB, BC, CD and DA, respectively, of a cyclic quadrilateral ABCD. Prove that the orthocenters of the triangles AKN, BKL, CLM and DMN are the vertices of a parallelogram.

$$\mathrm{Let}\:{K},\:{L},\:{M}\:\mathrm{and}\:{N}\:\mathrm{be}\:\mathrm{the}\:\mathrm{midpoints}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{sides}\:{AB},\:{BC},\:{CD}\:\mathrm{and}\:{DA}, \\ $$$$\mathrm{respectively},\:\mathrm{of}\:\mathrm{a}\:\mathrm{cyclic}\:\mathrm{quadrilateral} \\ $$$${ABCD}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{orthocenters} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{triangles}\:{AKN},\:{BKL},\:{CLM}\:\mathrm{and} \\ $$$${DMN}\:\mathrm{are}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{parallelogram}. \\ $$

Question Number 16072    Answers: 1   Comments: 3

Let ABCD be a convex quadrilateral. Prove that the orthocenters of the triangles ABC, BCD, CDA and DAB are the vertices of a quadrilateral congruent to ABCD and prove that the centroids of the same triangles are the vertices of a cyclic quadrilateral.

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{orthocenters}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{triangles}\:{ABC},\:{BCD},\:{CDA}\:\mathrm{and}\:{DAB} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{quadrilateral} \\ $$$$\mathrm{congruent}\:\mathrm{to}\:{ABCD}\:\mathrm{and}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{centroids}\:\mathrm{of}\:\mathrm{the}\:\mathrm{same}\:\mathrm{triangles}\:\mathrm{are}\:\mathrm{the} \\ $$$$\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{cyclic}\:\mathrm{quadrilateral}. \\ $$

Question Number 16071    Answers: 1   Comments: 0

Let A′, B′ and C′ be points on the sides BC, CA and AB of the triangle ABC. Prove that the circumcircles of the triangles AB′C′, BA′C′ and CA′B′ have a common point. Prove that the property holds even if the points A′, B′ and C′ are collinear.

$$\mathrm{Let}\:{A}',\:{B}'\:\mathrm{and}\:{C}'\:\mathrm{be}\:\mathrm{points}\:\mathrm{on}\:\mathrm{the}\:\mathrm{sides} \\ $$$${BC},\:{CA}\:\mathrm{and}\:{AB}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:{ABC}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{circumcircles}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{triangles}\:{AB}'{C}',\:{BA}'{C}'\:\mathrm{and}\:{CA}'{B}' \\ $$$$\mathrm{have}\:\mathrm{a}\:\mathrm{common}\:\mathrm{point}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{property}\:\mathrm{holds}\:\mathrm{even}\:\mathrm{if}\:\mathrm{the}\:\mathrm{points}\:{A}', \\ $$$${B}'\:\mathrm{and}\:{C}'\:\mathrm{are}\:\mathrm{collinear}. \\ $$

  Pg 1926      Pg 1927      Pg 1928      Pg 1929      Pg 1930      Pg 1931      Pg 1932      Pg 1933      Pg 1934      Pg 1935   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com