Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1931

Question Number 15098    Answers: 2   Comments: 0

∫ sin^8 (x) dx

$$\int\:\mathrm{sin}^{\mathrm{8}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 15097    Answers: 2   Comments: 2

If log_4 log_(1/2) log_3 (x) > 0 then x belongs to (1, a), then the value of a^2 is?

$$\mathrm{If}\:\mathrm{log}_{\mathrm{4}} \:\mathrm{log}_{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{log}_{\mathrm{3}} \:\left({x}\right)\:>\:\mathrm{0}\:\mathrm{then}\:{x}\:\mathrm{belongs} \\ $$$$\mathrm{to}\:\left(\mathrm{1},\:{a}\right),\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{a}^{\mathrm{2}} \:\mathrm{is}? \\ $$

Question Number 15094    Answers: 1   Comments: 0

Number of integers in the range of y = ((7^x − 7^(−x) )/(7^x + 7^(−x) )) are?

$$\mathrm{Number}\:\mathrm{of}\:\mathrm{integers}\:\mathrm{in}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of} \\ $$$${y}\:=\:\frac{\mathrm{7}^{{x}} \:−\:\mathrm{7}^{−{x}} }{\mathrm{7}^{{x}} \:+\:\mathrm{7}^{−{x}} }\:\mathrm{are}? \\ $$

Question Number 15093    Answers: 2   Comments: 0

The range of f(x) = (({x}^2 − {x} + 1)/({x}^2 + {x} + 1)); (where {∙} denotes fractional function) is?

$$\mathrm{The}\:\mathrm{range}\:\mathrm{of}\:{f}\left({x}\right)\:=\:\frac{\left\{{x}\right\}^{\mathrm{2}} \:−\:\left\{{x}\right\}\:+\:\mathrm{1}}{\left\{{x}\right\}^{\mathrm{2}} \:+\:\left\{{x}\right\}\:+\:\mathrm{1}}; \\ $$$$\left(\mathrm{where}\:\left\{\centerdot\right\}\:\mathrm{denotes}\:\mathrm{fractional}\:\mathrm{function}\right) \\ $$$$\mathrm{is}? \\ $$

Question Number 15095    Answers: 1   Comments: 0

Solve: (1 − x)(dy/dx) = y(1 + x)

$$\mathrm{Solve}: \\ $$$$\left(\mathrm{1}\:−\:\mathrm{x}\right)\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{y}\left(\mathrm{1}\:+\:\mathrm{x}\right) \\ $$

Question Number 15086    Answers: 1   Comments: 0

The range of f(x) = (√((10^x − 10^4 )/(10^x + 10^2 ))) is?

$$\mathrm{The}\:\mathrm{range}\:\mathrm{of}\:{f}\left({x}\right)\:=\:\sqrt{\frac{\mathrm{10}^{{x}} \:−\:\mathrm{10}^{\mathrm{4}} }{\mathrm{10}^{{x}} \:+\:\mathrm{10}^{\mathrm{2}} }}\:\mathrm{is}? \\ $$

Question Number 15084    Answers: 1   Comments: 0

The domain of f(x) = (1/(√(−x^2 + {x}))); (where {∙} denotes fractional part of x) is?

$$\mathrm{The}\:\mathrm{domain}\:\mathrm{of}\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\sqrt{−{x}^{\mathrm{2}} \:+\:\left\{{x}\right\}}}; \\ $$$$\left(\mathrm{where}\:\left\{\centerdot\right\}\:\mathrm{denotes}\:\mathrm{fractional}\:\mathrm{part}\:\mathrm{of}\:{x}\right) \\ $$$$\mathrm{is}? \\ $$

Question Number 15082    Answers: 1   Comments: 0

The domain of f(x) = (√(x − 2{x})). (where {∙} denotes fractional part of x) is?

$$\mathrm{The}\:\mathrm{domain}\:\mathrm{of}\:{f}\left({x}\right)\:=\:\sqrt{{x}\:−\:\mathrm{2}\left\{{x}\right\}}.\:\left(\mathrm{where}\right. \\ $$$$\left.\left\{\centerdot\right\}\:\mathrm{denotes}\:\mathrm{fractional}\:\mathrm{part}\:\mathrm{of}\:{x}\right)\:\mathrm{is}? \\ $$

Question Number 15052    Answers: 2   Comments: 4

Gravitational potential of a ring of radius R and mass M on the axis at a distance x from the center is given by v(x) = − ((GM)/(√(R^2 + x^2 ))) Nm/kg Using the above expression find the gravitational potential of the disc of mass M and radius R on the axis at a distance x from the center of the disc.

$$\mathrm{Gravitational}\:\mathrm{potential}\:\mathrm{of}\:\mathrm{a}\:\mathrm{ring}\:\mathrm{of} \\ $$$$\mathrm{radius}\:{R}\:\mathrm{and}\:\mathrm{mass}\:{M}\:\mathrm{on}\:\mathrm{the}\:\mathrm{axis}\:\mathrm{at}\:\mathrm{a} \\ $$$$\mathrm{distance}\:{x}\:\mathrm{from}\:\mathrm{the}\:\mathrm{center}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by} \\ $$$${v}\left({x}\right)\:=\:−\:\frac{{GM}}{\sqrt{{R}^{\mathrm{2}} \:+\:{x}^{\mathrm{2}} }}\:\mathrm{Nm}/\mathrm{kg} \\ $$$$\mathrm{Using}\:\mathrm{the}\:\mathrm{above}\:\mathrm{expression}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{gravitational}\:\mathrm{potential}\:\mathrm{of}\:\mathrm{the}\:\mathrm{disc}\:\mathrm{of} \\ $$$$\mathrm{mass}\:{M}\:\mathrm{and}\:\mathrm{radius}\:{R}\:\mathrm{on}\:\mathrm{the}\:\mathrm{axis}\:\mathrm{at}\:\mathrm{a} \\ $$$$\mathrm{distance}\:{x}\:\mathrm{from}\:\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{the}\:\mathrm{disc}. \\ $$

Question Number 15051    Answers: 1   Comments: 0

Solve simultaneously x + y + z = 6 ............ equation (i) x^3 + y^3 + z^3 = 92 .......... equation (ii) x − y = z ........... equation (iii)

$$\mathrm{Solve}\:\mathrm{simultaneously} \\ $$$$ \\ $$$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\:\:............\:\mathrm{equation}\:\left(\mathrm{i}\right) \\ $$$$\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{3}} \:=\:\mathrm{92}\:\:\:\:\:\:\:\:\:..........\:\mathrm{equation}\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{x}\:−\:\mathrm{y}\:=\:\mathrm{z}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...........\:\mathrm{equation}\:\left(\mathrm{iii}\right) \\ $$

Question Number 15045    Answers: 1   Comments: 0

In a curve the x and y co-ordinate is function of t is given by the equation x = cos t and y = sin t, then find the length of the curve for t = 0 to t = (π/2).

$$\mathrm{In}\:\mathrm{a}\:\mathrm{curve}\:\mathrm{the}\:{x}\:\mathrm{and}\:{y}\:\mathrm{co}-\mathrm{ordinate}\:\mathrm{is} \\ $$$$\mathrm{function}\:\mathrm{of}\:{t}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:\mathrm{the}\:\mathrm{equation} \\ $$$${x}\:=\:\mathrm{cos}\:{t}\:\mathrm{and}\:{y}\:=\:\mathrm{sin}\:{t},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{for}\:{t}\:=\:\mathrm{0}\:\mathrm{to}\:{t}\:=\:\frac{\pi}{\mathrm{2}}. \\ $$

Question Number 15039    Answers: 2   Comments: 0

The acceleration of an object is given by a(t) = cos(πt) ms^(−2) and its velocity at time t = 0 is (1/(2π)) m/s at origin. Its velocity at t = (3/2) s is? The object′s position at t = (3/2) s is?

$$\mathrm{The}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{an}\:\mathrm{object}\:\mathrm{is}\:\mathrm{given} \\ $$$$\mathrm{by}\:{a}\left({t}\right)\:=\:\mathrm{cos}\left(\pi{t}\right)\:\mathrm{ms}^{−\mathrm{2}} \:\mathrm{and}\:\mathrm{its}\:\mathrm{velocity} \\ $$$$\mathrm{at}\:\mathrm{time}\:{t}\:=\:\mathrm{0}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{2}\pi}\:\mathrm{m}/\mathrm{s}\:\mathrm{at}\:\mathrm{origin}.\:\mathrm{Its} \\ $$$$\mathrm{velocity}\:\mathrm{at}\:{t}\:=\:\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{s}\:\mathrm{is}? \\ $$$$\mathrm{The}\:\mathrm{object}'\mathrm{s}\:\mathrm{position}\:\mathrm{at}\:{t}\:=\:\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{s}\:\mathrm{is}? \\ $$

Question Number 15036    Answers: 1   Comments: 2

Rotating a curve y = (√x) about the x- axis produces a “head light” as shown below. What is the area of disc at any x?

$$\mathrm{Rotating}\:\mathrm{a}\:\mathrm{curve}\:{y}\:=\:\sqrt{{x}}\:\mathrm{about}\:\mathrm{the}\:{x}- \\ $$$$\mathrm{axis}\:\mathrm{produces}\:\mathrm{a}\:``\mathrm{head}\:\mathrm{light}''\:\mathrm{as}\:\mathrm{shown} \\ $$$$\mathrm{below}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{disc}\:\mathrm{at}\:\mathrm{any}\:{x}? \\ $$

Question Number 15019    Answers: 0   Comments: 0

1.00 Mol of a monoatomic gas initially at 3.00 × 10^2 K and occupying 2.00 × 10^(−3 ) m^3 is heated to 3.25 × 10^2 K and the final volume is 4.00 × 10^(−3) m^3 . Assuming ideal behaviour , Calculate the entropy change for the system.

$$\mathrm{1}.\mathrm{00}\:\mathrm{Mol}\:\mathrm{of}\:\mathrm{a}\:\mathrm{monoatomic}\:\mathrm{gas}\:\mathrm{initially}\:\mathrm{at}\:\mathrm{3}.\mathrm{00}\:×\:\mathrm{10}^{\mathrm{2}} \mathrm{K}\:\mathrm{and}\:\mathrm{occupying}\:\: \\ $$$$\mathrm{2}.\mathrm{00}\:×\:\mathrm{10}^{−\mathrm{3}\:} \mathrm{m}^{\mathrm{3}} \:\mathrm{is}\:\mathrm{heated}\:\mathrm{to}\:\mathrm{3}.\mathrm{25}\:×\:\mathrm{10}^{\mathrm{2}} \mathrm{K}\:\mathrm{and}\:\mathrm{the}\:\mathrm{final}\:\mathrm{volume}\:\mathrm{is}\:\mathrm{4}.\mathrm{00}\:×\:\mathrm{10}^{−\mathrm{3}} \mathrm{m}^{\mathrm{3}} .\: \\ $$$$\mathrm{Assuming}\:\mathrm{ideal}\:\mathrm{behaviour}\:,\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{entropy}\:\mathrm{change}\:\mathrm{for}\:\mathrm{the}\:\mathrm{system}. \\ $$

Question Number 15017    Answers: 0   Comments: 0

Calculate the heat neccessary to raise the temperature of 5.00 mol of butane from 290K to 593K at a constant pressure. where Cp(19.41 + 0.233T)J/mol/K

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{heat}\:\mathrm{neccessary}\:\mathrm{to}\:\mathrm{raise}\:\mathrm{the}\:\mathrm{temperature}\:\mathrm{of}\:\mathrm{5}.\mathrm{00}\:\mathrm{mol}\:\mathrm{of}\:\mathrm{butane} \\ $$$$\mathrm{from}\:\mathrm{290K}\:\mathrm{to}\:\mathrm{593K}\:\mathrm{at}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{pressure}.\:\mathrm{where}\:\mathrm{Cp}\left(\mathrm{19}.\mathrm{41}\:+\:\mathrm{0}.\mathrm{233T}\right)\mathrm{J}/\mathrm{mol}/\mathrm{K} \\ $$

Question Number 15006    Answers: 1   Comments: 8

Question Number 14988    Answers: 0   Comments: 2

Solve on Z_4 ax+b=[0]_4 a,b∈Z_4 ax^2 +bx+c=[0]_4 a,b,c∈Z_4

$${Solve}\:{on}\:\mathbb{Z}_{\mathrm{4}} \: \\ $$$${ax}+{b}=\left[\mathrm{0}\right]_{\mathrm{4}} \:\:{a},{b}\in\mathbb{Z}_{\mathrm{4}} \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}=\left[\mathrm{0}\right]_{\mathrm{4}} \:\:{a},{b},{c}\in\mathbb{Z}_{\mathrm{4}} \\ $$

Question Number 14977    Answers: 2   Comments: 2

Find the real roots of the equation cos^4 x + sin^7 x = 1 in the interval [−π, π].

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{cos}^{\mathrm{4}} \:{x}\:+\:\mathrm{sin}^{\mathrm{7}} \:{x}\:=\:\mathrm{1}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval}\:\left[−\pi,\:\pi\right]. \\ $$

Question Number 14999    Answers: 1   Comments: 0

A 20 kg box is released from the top of an inclined plane that is 5 m long and makes an angle of 20° to the horizontal. A 60N friction force impedes the motion of the box . How long will it take to reach the bottom of the box.

$$\mathrm{A}\:\mathrm{20}\:\mathrm{kg}\:\mathrm{box}\:\mathrm{is}\:\mathrm{released}\:\mathrm{from}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{an}\:\mathrm{inclined}\:\mathrm{plane}\:\mathrm{that}\:\mathrm{is}\:\mathrm{5}\:\mathrm{m}\:\mathrm{long}\:\mathrm{and} \\ $$$$\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{20}°\:\mathrm{to}\:\mathrm{the}\:\mathrm{horizontal}.\:\mathrm{A}\:\mathrm{60N}\:\mathrm{friction}\:\mathrm{force}\:\mathrm{impedes}\:\mathrm{the}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{box}\:.\:\mathrm{How}\:\mathrm{long}\:\mathrm{will}\:\mathrm{it}\:\mathrm{take}\:\mathrm{to}\:\mathrm{reach}\:\mathrm{the}\:\mathrm{bottom}\:\mathrm{of}\:\mathrm{the}\:\mathrm{box}. \\ $$

Question Number 14971    Answers: 0   Comments: 0

Question Number 14970    Answers: 0   Comments: 0

Question Number 14965    Answers: 2   Comments: 2

Question Number 14991    Answers: 2   Comments: 0

Question Number 14964    Answers: 0   Comments: 0

proof that ∀ x,y ∈N ∃ a,b,c ∈N ∍ (4/(x^2 +y^2 ))=(1/a) + (1/b) + (1/c)

$$\mathrm{proof}\:\mathrm{that}\: \\ $$$$\forall\:{x},{y}\:\in\mathbb{N}\:\:\exists\:{a},{b},{c}\:\in\mathbb{N}\:\backepsilon\:\frac{\mathrm{4}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}} \\ $$

Question Number 14963    Answers: 1   Comments: 0

A resistor R is connected in series with a parallel combination of two resistors of 24 and 8 ohms . The total power disipated in the circuit is 64 watt when the applied voltage is 24 volt.Find R

$$\mathrm{A}\:\mathrm{resistor}\:\mathrm{R}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{in}\:\mathrm{series}\:\mathrm{with}\:\mathrm{a}\:\mathrm{parallel}\:\mathrm{combination}\:\mathrm{of}\:\mathrm{two}\:\mathrm{resistors} \\ $$$$\mathrm{of}\:\mathrm{24}\:\mathrm{and}\:\mathrm{8}\:\mathrm{ohms}\:.\:\mathrm{The}\:\mathrm{total}\:\mathrm{power}\:\mathrm{disipated}\:\mathrm{in}\:\mathrm{the}\:\mathrm{circuit}\:\mathrm{is}\:\mathrm{64}\:\mathrm{watt}\:\mathrm{when}\:\mathrm{the} \\ $$$$\mathrm{applied}\:\mathrm{voltage}\:\mathrm{is}\:\mathrm{24}\:\mathrm{volt}.\mathrm{Find}\:\mathrm{R} \\ $$

Question Number 14962    Answers: 1   Comments: 0

Two 30 ohms resistor are connected in parallel, what should be the resistance to be connected in series with this parallel combination such that the power in each 30 ohms is (1/4) th of total power.

$$\mathrm{Two}\:\mathrm{30}\:\mathrm{ohms}\:\mathrm{resistor}\:\mathrm{are}\:\mathrm{connected}\:\mathrm{in}\:\mathrm{parallel},\:\mathrm{what}\:\mathrm{should}\:\mathrm{be}\:\mathrm{the}\:\mathrm{resistance} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{connected}\:\mathrm{in}\:\mathrm{series}\:\mathrm{with}\:\mathrm{this}\:\mathrm{parallel}\:\mathrm{combination}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{power} \\ $$$$\mathrm{in}\:\mathrm{each}\:\mathrm{30}\:\mathrm{ohms}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{th}\:\mathrm{of}\:\mathrm{total}\:\mathrm{power}. \\ $$

  Pg 1926      Pg 1927      Pg 1928      Pg 1929      Pg 1930      Pg 1931      Pg 1932      Pg 1933      Pg 1934      Pg 1935   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com