Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1927

Question Number 15384    Answers: 1   Comments: 0

If a flagstaff subtends equal angles at 4 points A, B, C and D on the horizontal plane through the foot of the flagstaff, then A, B, C and D must be the vertices of (1) Square (2) Cyclic quadrilateral (3) Rectangle (4) Parallelogram

$$\mathrm{If}\:\mathrm{a}\:\mathrm{flagstaff}\:\mathrm{subtends}\:\mathrm{equal}\:\mathrm{angles}\:\mathrm{at}\:\mathrm{4} \\ $$$$\mathrm{points}\:{A},\:{B},\:{C}\:\mathrm{and}\:{D}\:\mathrm{on}\:\mathrm{the}\:\mathrm{horizontal} \\ $$$$\mathrm{plane}\:\mathrm{through}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the}\:\mathrm{flagstaff}, \\ $$$$\mathrm{then}\:{A},\:{B},\:{C}\:\mathrm{and}\:{D}\:\mathrm{must}\:\mathrm{be}\:\mathrm{the} \\ $$$$\mathrm{vertices}\:\mathrm{of} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Square} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Cyclic}\:\mathrm{quadrilateral} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Rectangle} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Parallelogram} \\ $$

Question Number 15418    Answers: 2   Comments: 0

A grasshopper can jump a maximum horizontal distance of 40 cm. If it spends negligible time on the ground then in this case its speed along the horizontal road will be?

$$\mathrm{A}\:\mathrm{grasshopper}\:\mathrm{can}\:\mathrm{jump}\:\mathrm{a}\:\mathrm{maximum} \\ $$$$\mathrm{horizontal}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{40}\:\mathrm{cm}.\:\mathrm{If}\:\mathrm{it} \\ $$$$\mathrm{spends}\:\mathrm{negligible}\:\mathrm{time}\:\mathrm{on}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\mathrm{then}\:\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{its}\:\mathrm{speed}\:\mathrm{along}\:\mathrm{the} \\ $$$$\mathrm{horizontal}\:\mathrm{road}\:\mathrm{will}\:\mathrm{be}? \\ $$

Question Number 15358    Answers: 1   Comments: 0

If a^→ , b^→ , c^→ are mutually perpendicular vectors of equal magnitudes, show that the vector a^→ + b^→ + c^→ is equally inclined to a^→ , b^→ and c^→ .

$$\mathrm{If}\:\overset{\rightarrow} {{a}},\:\overset{\rightarrow} {{b}},\:\overset{\rightarrow} {{c}}\:\mathrm{are}\:\mathrm{mutually}\:\mathrm{perpendicular} \\ $$$$\mathrm{vectors}\:\mathrm{of}\:\mathrm{equal}\:\mathrm{magnitudes},\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{vector}\:\overset{\rightarrow} {{a}}\:+\:\overset{\rightarrow} {{b}}\:+\:\overset{\rightarrow} {{c}}\:\mathrm{is}\:\mathrm{equally}\:\mathrm{inclined} \\ $$$$\mathrm{to}\:\overset{\rightarrow} {{a}},\:\overset{\rightarrow} {{b}}\:\mathrm{and}\:\overset{\rightarrow} {{c}}\:. \\ $$

Question Number 15352    Answers: 0   Comments: 4

Let a^→ = i^∧ + 4j^∧ + 2k^∧ , b^→ = 3i^∧ − 2j^∧ + 7k^∧ and c^→ = 2i^∧ − j^∧ + 4k^∧ . Find a vector d^→ which is perpendicular to both a^→ and b^→ , and c^→ ∙ d^→ = 15.

$$\mathrm{Let}\:\overset{\rightarrow} {{a}}\:=\:\overset{\wedge} {{i}}\:+\:\mathrm{4}\overset{\wedge} {{j}}\:+\:\mathrm{2}\overset{\wedge} {{k}},\:\overset{\rightarrow} {{b}}\:=\:\mathrm{3}\overset{\wedge} {{i}}\:−\:\mathrm{2}\overset{\wedge} {{j}}\:+\:\mathrm{7}\overset{\wedge} {{k}} \\ $$$$\mathrm{and}\:\overset{\rightarrow} {{c}}\:=\:\mathrm{2}\overset{\wedge} {{i}}\:−\:\overset{\wedge} {{j}}\:+\:\mathrm{4}\overset{\wedge} {{k}}\:.\:\mathrm{Find}\:\mathrm{a}\:\mathrm{vector}\:\overset{\rightarrow} {{d}} \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{both}\:\overset{\rightarrow} {{a}}\:\mathrm{and}\:\overset{\rightarrow} {{b}}, \\ $$$$\mathrm{and}\:\overset{\rightarrow} {{c}}\:\centerdot\:\overset{\rightarrow} {{d}}\:=\:\mathrm{15}. \\ $$

Question Number 15348    Answers: 2   Comments: 0

Solve the equation z^2 + 2(1 + j)z + 2 = 0, Givin each result in form a + jb with a and b correct to 2dp.

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\:\mathrm{z}^{\mathrm{2}} \:+\:\mathrm{2}\left(\mathrm{1}\:+\:\mathrm{j}\right)\mathrm{z}\:+\:\mathrm{2}\:=\:\mathrm{0},\:\mathrm{Givin}\:\mathrm{each}\:\mathrm{result}\:\mathrm{in}\:\mathrm{form}\:\:\mathrm{a}\:+\:\mathrm{jb} \\ $$$$\mathrm{with}\:\:\mathrm{a}\:\:\mathrm{and}\:\:\mathrm{b}\:\:\mathrm{correct}\:\mathrm{to}\:\:\mathrm{2dp}. \\ $$

Question Number 15343    Answers: 0   Comments: 0

Question Number 15344    Answers: 0   Comments: 0

Question Number 15328    Answers: 1   Comments: 0

Prove that. sec^4 (x) − cosec^4 (x) = ((sin^2 (x) − cos^2 (x))/(sec^4 (x)))

$$\mathrm{Prove}\:\mathrm{that}. \\ $$$$\mathrm{sec}^{\mathrm{4}} \left(\mathrm{x}\right)\:−\:\mathrm{cosec}^{\mathrm{4}} \left(\mathrm{x}\right)\:=\:\frac{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\:−\:\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{sec}^{\mathrm{4}} \left(\mathrm{x}\right)} \\ $$

Question Number 15322    Answers: 0   Comments: 6

Question Number 15318    Answers: 2   Comments: 6

Question Number 15311    Answers: 0   Comments: 0

In a toll-booth at a bridge , some cars can pass by paying a tax of Rs. 10 and some special vehicles are exempted from paying tax. The booth has to track number of vehicles and total tax collected. Define a class ′tollbooth′. It should contain two data items of type int to hold the number of cars and total tax connected. A constructor initalizes these two variable to zero. A memberfunction freecar() only increments the car total. Finally another memberfunction show() displays the two totals. Write a C++ program such that the user has to press the key ′T′ for printing number of taxable cars and total tax, ′F′ for printing number of free cars and ′Esc′ to exit.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{toll}-\mathrm{booth}\:\mathrm{at}\:\mathrm{a}\:\mathrm{bridge}\:,\:\mathrm{some}\:\mathrm{cars}\:\mathrm{can}\:\mathrm{pass}\:\mathrm{by}\:\mathrm{paying}\:\mathrm{a}\:\mathrm{tax}\:\mathrm{of}\:\mathrm{Rs}.\:\mathrm{10}\:\mathrm{and} \\ $$$$\mathrm{some}\:\mathrm{special}\:\mathrm{vehicles}\:\mathrm{are}\:\mathrm{exempted}\:\mathrm{from}\:\mathrm{paying}\:\mathrm{tax}.\:\mathrm{The}\:\mathrm{booth}\:\mathrm{has}\:\mathrm{to}\:\mathrm{track}\: \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{vehicles}\:\mathrm{and}\:\mathrm{total}\:\mathrm{tax}\:\mathrm{collected}.\:\mathrm{Define}\:\mathrm{a}\:\mathrm{class}\:'\mathrm{tollbooth}'.\:\mathrm{It}\:\mathrm{should}\:\mathrm{contain} \\ $$$$\mathrm{two}\:\mathrm{data}\:\mathrm{items}\:\mathrm{of}\:\mathrm{type}\:\mathrm{int}\:\mathrm{to}\:\mathrm{hold}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{cars}\:\mathrm{and}\:\mathrm{total}\:\mathrm{tax}\:\mathrm{connected}. \\ $$$$\mathrm{A}\:\mathrm{constructor}\:\mathrm{initalizes}\:\mathrm{these}\:\mathrm{two}\:\mathrm{variable}\:\mathrm{to}\:\mathrm{zero}.\:\mathrm{A}\:\mathrm{memberfunction}\:\mathrm{freecar}\left(\right)\:\mathrm{only} \\ $$$$\mathrm{increments}\:\mathrm{the}\:\mathrm{car}\:\mathrm{total}.\:\mathrm{Finally}\:\mathrm{another}\:\mathrm{memberfunction}\:\mathrm{show}\left(\right)\:\mathrm{displays}\:\mathrm{the} \\ $$$$\mathrm{two}\:\mathrm{totals}. \\ $$$$\:\:\:\mathrm{Write}\:\mathrm{a}\:\mathrm{C}++\:\mathrm{program}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{user}\:\mathrm{has}\:\mathrm{to}\:\mathrm{press}\:\mathrm{the}\:\mathrm{key}\:'\mathrm{T}'\:\mathrm{for} \\ $$$$\mathrm{printing}\:\mathrm{number}\:\mathrm{of}\:\mathrm{taxable}\:\mathrm{cars}\:\mathrm{and}\:\mathrm{total}\:\mathrm{tax},\:'\mathrm{F}'\:\mathrm{for}\:\mathrm{printing}\:\mathrm{number}\:\mathrm{of}\:\:\mathrm{free} \\ $$$$\mathrm{cars}\:\mathrm{and}\:'\mathrm{Esc}'\:\mathrm{to}\:\mathrm{exit}. \\ $$

Question Number 15302    Answers: 0   Comments: 0

Prove that number of commutative binary operations on a set having n elements is n^((n(n − 1))/2) .

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{number}\:\mathrm{of}\:\mathrm{commutative} \\ $$$$\mathrm{binary}\:\mathrm{operations}\:\mathrm{on}\:\mathrm{a}\:\mathrm{set}\:\mathrm{having}\:{n} \\ $$$$\mathrm{elements}\:\mathrm{is}\:{n}^{\frac{{n}\left({n}\:−\:\mathrm{1}\right)}{\mathrm{2}}} \:. \\ $$

Question Number 15301    Answers: 1   Comments: 0

With the help of graph, find the solution set of inequation tan x > −(√3) .

$$\mathrm{With}\:\mathrm{the}\:\mathrm{help}\:\mathrm{of}\:\mathrm{graph},\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\mathrm{inequation}\:\mathrm{tan}\:{x}\:>\:−\sqrt{\mathrm{3}}\:. \\ $$

Question Number 15300    Answers: 1   Comments: 3

Find the values of α and β, 0 < α, β < (π/2) satisfying the following equation cos α cos β cos (α + β) = −(1/8) .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\alpha\:\mathrm{and}\:\beta,\:\mathrm{0}\:<\:\alpha,\:\beta\:<\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\mathrm{following}\:\mathrm{equation} \\ $$$$\mathrm{cos}\:\alpha\:\mathrm{cos}\:\beta\:\mathrm{cos}\:\left(\alpha\:+\:\beta\right)\:=\:−\frac{\mathrm{1}}{\mathrm{8}}\:. \\ $$

Question Number 15298    Answers: 1   Comments: 4

Solve for x and y x^2 + 2x sin(xy) + 1 = 0

$$\mathrm{Solve}\:\mathrm{for}\:{x}\:\mathrm{and}\:{y} \\ $$$${x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:\mathrm{sin}\left({xy}\right)\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$

Question Number 15294    Answers: 0   Comments: 1

A straigth conductor of length L is charged with q charge. What will be the electric field in the equatorial line at a distance d ? Ans: ((2q)/(4Πε_0 d(√(L^2 +4d^2 ))))

$$\mathrm{A}\:\mathrm{straigth}\:\mathrm{conductor}\:\mathrm{of}\:\mathrm{length} \\ $$$$\mathrm{L}\:\mathrm{is}\:\mathrm{charged}\:\mathrm{with}\:\mathrm{q}\:\mathrm{charge}.\:\mathrm{What} \\ $$$$\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{electric}\:\mathrm{field}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{equatorial}\:\mathrm{line}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{d}\:? \\ $$$$\mathrm{Ans}:\:\frac{\mathrm{2q}}{\mathrm{4}\Pi\epsilon_{\mathrm{0}} \mathrm{d}\sqrt{\mathrm{L}^{\mathrm{2}} +\mathrm{4d}^{\mathrm{2}} }} \\ $$

Question Number 15288    Answers: 0   Comments: 1

Question Number 15284    Answers: 1   Comments: 3

Question Number 15266    Answers: 0   Comments: 0

calculate the pH of 1(N) HCl.

$$\mathrm{calculate}\:\mathrm{the}\:\mathrm{pH}\:\mathrm{of}\:\mathrm{1}\left(\mathrm{N}\right)\:\mathrm{HCl}. \\ $$

Question Number 15264    Answers: 1   Comments: 0

The solution set of inequation cos x + (1/2) ≥ 0 is [−π, π] (1) [0, ((2π)/3)] (2) [−((2π)/3), ((2π)/3)] (3) [0, (π/2)] (4) [−(π/2), ((3π)/2)]

$$\mathrm{The}\:\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\mathrm{inequation} \\ $$$$\mathrm{cos}\:{x}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:\geqslant\:\mathrm{0}\:\mathrm{is}\:\left[−\pi,\:\pi\right] \\ $$$$\left(\mathrm{1}\right)\:\left[\mathrm{0},\:\frac{\mathrm{2}\pi}{\mathrm{3}}\right] \\ $$$$\left(\mathrm{2}\right)\:\left[−\frac{\mathrm{2}\pi}{\mathrm{3}},\:\frac{\mathrm{2}\pi}{\mathrm{3}}\right] \\ $$$$\left(\mathrm{3}\right)\:\left[\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right] \\ $$$$\left(\mathrm{4}\right)\:\left[−\frac{\pi}{\mathrm{2}},\:\frac{\mathrm{3}\pi}{\mathrm{2}}\right] \\ $$

Question Number 15263    Answers: 1   Comments: 0

The equation asinx + cos2x = 2a − 7 possesses a solution if (1) a > 6 (2) 2 ≤ a ≤ 6 (3) a > 2 (4) a

$$\mathrm{The}\:\mathrm{equation}\:{a}\mathrm{sin}{x}\:+\:\mathrm{cos2}{x}\:=\:\mathrm{2}{a}\:−\:\mathrm{7} \\ $$$$\mathrm{possesses}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{if} \\ $$$$\left(\mathrm{1}\right)\:{a}\:>\:\mathrm{6} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2}\:\leqslant\:{a}\:\leqslant\:\mathrm{6} \\ $$$$\left(\mathrm{3}\right)\:{a}\:>\:\mathrm{2} \\ $$$$\left(\mathrm{4}\right)\:{a} \\ $$

Question Number 15262    Answers: 0   Comments: 7

Solve : x^2 − 6x + [x] + 7 = 0.

$$\mathrm{Solve}\::\:{x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:\left[{x}\right]\:+\:\mathrm{7}\:=\:\mathrm{0}. \\ $$

Question Number 15267    Answers: 2   Comments: 6

In an acute angled ΔABC, the minimum value of tan A tan B tan C is?

$$\mathrm{In}\:\mathrm{an}\:\mathrm{acute}\:\mathrm{angled}\:\Delta{ABC},\:\mathrm{the} \\ $$$$\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{tan}\:{A}\:\mathrm{tan}\:{B}\:\mathrm{tan}\:{C}\:\mathrm{is}? \\ $$

Question Number 15292    Answers: 3   Comments: 0

Light version of Q#13724 Expansion of 100! has 24, 0′s at the end. Find the first non-zero digit from right. 100!=.....d000...00 What is the value of d?

$$\mathrm{Light}\:\mathrm{version}\:\mathrm{of}\:\mathcal{Q}#\mathrm{13724} \\ $$$$\mathcal{E}\mathrm{xpansion}\:\mathrm{of}\:\mathrm{100}!\:\mathrm{has}\:\mathrm{24},\:\mathrm{0}'\mathrm{s}\:\:\mathrm{at}\:\mathrm{the}\:\mathrm{end}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{first}\:\mathrm{non}-\mathrm{zero}\:\mathrm{digit}\:\mathrm{from}\:\mathrm{right}. \\ $$$$\mathrm{100}!=.....\mathrm{d000}...\mathrm{00} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{d}? \\ $$

Question Number 15234    Answers: 0   Comments: 2

A question related to Q.15184 Find the maximum of f(x)=(ln x)^(1/x)

$$\mathrm{A}\:\mathrm{question}\:\mathrm{related}\:\mathrm{to}\:\mathrm{Q}.\mathrm{15184} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{ln}\:\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} \\ $$

Question Number 15233    Answers: 1   Comments: 0

Find the general solution of the following homogeneous system of equation x_1 + x_2 − 2x_3 = 0 3x_1 − x_2 − 6x_3 = 0 −2x_1 + 3x_(2 ) + 4x_3 = 0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{homogeneous}\:\mathrm{system}\:\mathrm{of} \\ $$$$\mathrm{equation}\:\: \\ $$$$\mathrm{x}_{\mathrm{1}} \:+\:\mathrm{x}_{\mathrm{2}} \:−\:\mathrm{2x}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\mathrm{3x}_{\mathrm{1}} \:−\:\mathrm{x}_{\mathrm{2}} \:−\:\mathrm{6x}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$−\mathrm{2x}_{\mathrm{1}} \:+\:\mathrm{3x}_{\mathrm{2}\:} +\:\mathrm{4x}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$

  Pg 1922      Pg 1923      Pg 1924      Pg 1925      Pg 1926      Pg 1927      Pg 1928      Pg 1929      Pg 1930      Pg 1931   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com