Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1925

Question Number 16874    Answers: 0   Comments: 0

Let ABC be an acute triangle. The interior bisectors of the angles ∠B and ∠C meet the opposite sides at the points L and M, respectively. Prove that there exists a point K in the interior of the side BC such that ΔKLM is equilateral if and only if ∠A = 60°.

$$\mathrm{Let}\:{ABC}\:\mathrm{be}\:\mathrm{an}\:\mathrm{acute}\:\mathrm{triangle}.\:\mathrm{The} \\ $$$$\mathrm{interior}\:\mathrm{bisectors}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angles}\:\angle{B}\:\mathrm{and} \\ $$$$\angle{C}\:\mathrm{meet}\:\mathrm{the}\:\mathrm{opposite}\:\mathrm{sides}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{points}\:{L}\:\mathrm{and}\:{M},\:\mathrm{respectively}.\:\mathrm{Prove} \\ $$$$\mathrm{that}\:\mathrm{there}\:\mathrm{exists}\:\mathrm{a}\:\mathrm{point}\:{K}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{interior}\:\mathrm{of}\:\mathrm{the}\:\mathrm{side}\:{BC}\:\mathrm{such}\:\mathrm{that} \\ $$$$\Delta{KLM}\:\mathrm{is}\:\mathrm{equilateral}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if} \\ $$$$\angle{A}\:=\:\mathrm{60}°. \\ $$

Question Number 16911    Answers: 0   Comments: 1

Please solve Q. 16066 or please tell me whether to post its solution or not. I don′t understood the solution.

$$\mathrm{Please}\:\mathrm{solve}\:\mathrm{Q}.\:\mathrm{16066}\:\mathrm{or}\:\mathrm{please}\:\mathrm{tell}\:\mathrm{me} \\ $$$$\mathrm{whether}\:\mathrm{to}\:\mathrm{post}\:\mathrm{its}\:\mathrm{solution}\:\mathrm{or}\:\mathrm{not}.\:\mathrm{I} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{understood}\:\mathrm{the}\:\mathrm{solution}. \\ $$

Question Number 16873    Answers: 0   Comments: 0

Let I be the incenter of ΔABC. It is known that for every point M ∈ (AB), one can find the points N ∈ (BC) and P ∈ (AC) such that I is the centroid of ΔMNP. Prove that ABC is an equilateral triangle.

$$\mathrm{Let}\:{I}\:\mathrm{be}\:\mathrm{the}\:\mathrm{incenter}\:\mathrm{of}\:\Delta{ABC}.\:\mathrm{It}\:\mathrm{is} \\ $$$$\mathrm{known}\:\mathrm{that}\:\mathrm{for}\:\mathrm{every}\:\mathrm{point}\:{M}\:\in\:\left({AB}\right), \\ $$$$\mathrm{one}\:\mathrm{can}\:\mathrm{find}\:\mathrm{the}\:\mathrm{points}\:{N}\:\in\:\left({BC}\right)\:\mathrm{and} \\ $$$${P}\:\in\:\left({AC}\right)\:\mathrm{such}\:\mathrm{that}\:{I}\:\mathrm{is}\:\mathrm{the}\:\mathrm{centroid}\:\mathrm{of} \\ $$$$\Delta{MNP}.\:\mathrm{Prove}\:\mathrm{that}\:{ABC}\:\mathrm{is}\:\mathrm{an} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}. \\ $$

Question Number 16868    Answers: 1   Comments: 0

In how many ways can the letters of the word. EVERMORE be arrange if the word must begin with (i) R (ii) E

$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word}.\:\mathrm{EVERMORE}\:\mathrm{be}\:\mathrm{arrange} \\ $$$$\mathrm{if}\:\mathrm{the}\:\mathrm{word}\:\mathrm{must}\:\mathrm{begin}\:\mathrm{with}\: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{R} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{E} \\ $$

Question Number 16859    Answers: 0   Comments: 0

In dealing with motion of projectile in air, we ignore effect of air resistance on motion. What would the trajectory look like if air resistance is included? Sketch such a trajectory and explain why you have drawn it that way.

$$\mathrm{In}\:\mathrm{dealing}\:\mathrm{with}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{projectile}\:\mathrm{in} \\ $$$$\mathrm{air},\:\mathrm{we}\:\mathrm{ignore}\:\mathrm{effect}\:\mathrm{of}\:\mathrm{air}\:\mathrm{resistance} \\ $$$$\mathrm{on}\:\mathrm{motion}.\:\mathrm{What}\:\mathrm{would}\:\mathrm{the}\:\mathrm{trajectory} \\ $$$$\mathrm{look}\:\mathrm{like}\:\mathrm{if}\:\mathrm{air}\:\mathrm{resistance}\:\mathrm{is}\:\mathrm{included}? \\ $$$$\mathrm{Sketch}\:\mathrm{such}\:\mathrm{a}\:\mathrm{trajectory}\:\mathrm{and}\:\mathrm{explain} \\ $$$$\mathrm{why}\:\mathrm{you}\:\mathrm{have}\:\mathrm{drawn}\:\mathrm{it}\:\mathrm{that}\:\mathrm{way}. \\ $$

Question Number 16857    Answers: 1   Comments: 0

Suppose x and y are vectors in R^n that have the same length. show that x + y bisect the angle between x and y.

$$\mathrm{Suppose}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{are}\:\mathrm{vectors}\:\mathrm{in}\:\mathbb{R}^{\mathrm{n}} \:\mathrm{that}\:\mathrm{have}\:\mathrm{the}\:\mathrm{same}\:\mathrm{length}.\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{x}\:+\:\mathrm{y}\:\:\mathrm{bisect}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}. \\ $$

Question Number 16855    Answers: 1   Comments: 0

If sin θ = (1/2), cos φ = (1/3), then θ + φ belongs to, where 0 < θ, φ < (π/2) (1) ((π/3), (π/2)) (2) ((π/2), ((2π)/3))

$$\mathrm{If}\:\mathrm{sin}\:\theta\:=\:\frac{\mathrm{1}}{\mathrm{2}},\:\mathrm{cos}\:\phi\:=\:\frac{\mathrm{1}}{\mathrm{3}},\:\mathrm{then}\:\theta\:+\:\phi \\ $$$$\mathrm{belongs}\:\mathrm{to},\:\mathrm{where}\:\mathrm{0}\:<\:\theta,\:\phi\:<\:\frac{\pi}{\mathrm{2}} \\ $$$$\left(\mathrm{1}\right)\:\left(\frac{\pi}{\mathrm{3}},\:\frac{\pi}{\mathrm{2}}\right) \\ $$$$\left(\mathrm{2}\right)\:\left(\frac{\pi}{\mathrm{2}},\:\frac{\mathrm{2}\pi}{\mathrm{3}}\right) \\ $$

Question Number 16845    Answers: 1   Comments: 3

Question Number 16829    Answers: 0   Comments: 1

Solve for x 6(4^x + 9^x ) = (13.6)^x

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x} \\ $$$$\mathrm{6}\left(\mathrm{4}^{\mathrm{x}} \:+\:\mathrm{9}^{\mathrm{x}} \right)\:=\:\left(\mathrm{13}.\mathrm{6}\right)^{\mathrm{x}} \\ $$

Question Number 16840    Answers: 0   Comments: 3

6/2(2+1)

$$\mathrm{6}/\mathrm{2}\left(\mathrm{2}+\mathrm{1}\right) \\ $$

Question Number 16839    Answers: 0   Comments: 2

∫x^e^x dx

$$\int\mathrm{x}^{\mathrm{e}^{\mathrm{x}} } \mathrm{dx} \\ $$

Question Number 16834    Answers: 0   Comments: 3

If α<β<γ<2π and cos (x+α)+cos (x+β)+cos (x+γ)=0 for all x∈R, then is γ−α=((2π)/3)?

$$\mathrm{If}\:\alpha<\beta<\gamma<\mathrm{2}\pi\:\mathrm{and} \\ $$$$\mathrm{cos}\:\left({x}+\alpha\right)+\mathrm{cos}\:\left({x}+\beta\right)+\mathrm{cos}\:\left({x}+\gamma\right)=\mathrm{0} \\ $$$$\mathrm{for}\:\mathrm{all}\:{x}\in\mathbb{R},\:\mathrm{then}\:\mathrm{is} \\ $$$$\gamma−\alpha=\frac{\mathrm{2}\pi}{\mathrm{3}}? \\ $$

Question Number 16823    Answers: 0   Comments: 2

solve for g. 6(4^x + g^x ) = 13.6^x

$$\mathrm{solve}\:\mathrm{for}\:\mathrm{g}. \\ $$$$\mathrm{6}\left(\mathrm{4}^{\mathrm{x}} \:+\:\mathrm{g}^{\mathrm{x}} \right)\:=\:\mathrm{13}.\mathrm{6}^{\mathrm{x}} \\ $$

Question Number 16836    Answers: 1   Comments: 0

Find how many number greater than 2,500 can be formed from the digit 0, 1, 2, 3, 4 if no digit can be used more than once.

$$\mathrm{Find}\:\mathrm{how}\:\mathrm{many}\:\mathrm{number}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{2},\mathrm{500}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{from}\:\mathrm{the}\:\mathrm{digit} \\ $$$$\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4}\:\:\mathrm{if}\:\mathrm{no}\:\mathrm{digit}\:\mathrm{can}\:\mathrm{be}\:\mathrm{used}\:\mathrm{more}\:\mathrm{than}\:\mathrm{once}. \\ $$

Question Number 16835    Answers: 1   Comments: 0

Question Number 16807    Answers: 1   Comments: 1

(a+2)sin α+(2a−1)cos α=(2a+1) then tan α=?

$$\left({a}+\mathrm{2}\right)\mathrm{sin}\:\alpha+\left(\mathrm{2}{a}−\mathrm{1}\right)\mathrm{cos}\:\alpha=\left(\mathrm{2}{a}+\mathrm{1}\right) \\ $$$$\mathrm{then}\:\mathrm{tan}\:\alpha=? \\ $$

Question Number 16803    Answers: 1   Comments: 1

Question Number 16794    Answers: 1   Comments: 0

Question Number 16789    Answers: 2   Comments: 1

Question Number 16785    Answers: 2   Comments: 2

Question Number 16771    Answers: 1   Comments: 1

Question Number 16788    Answers: 0   Comments: 1

Question Number 16756    Answers: 2   Comments: 1

Alternate vertices of a regular hexagon are joined as shown. What fraction of the total area of the hexagon is shaded? (Justify your answer.)

$$\mathrm{Alternate}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{regular}\:\mathrm{hexagon} \\ $$$$\mathrm{are}\:\mathrm{joined}\:\mathrm{as}\:\mathrm{shown}.\:\mathrm{What}\:\mathrm{fraction}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{total}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{hexagon}\:\mathrm{is} \\ $$$$\mathrm{shaded}?\:\left(\mathrm{Justify}\:\mathrm{your}\:\mathrm{answer}.\right) \\ $$

Question Number 16769    Answers: 0   Comments: 2

2n + p = w^a make a the subject of the formular.

$$\mathrm{2n}\:+\:\mathrm{p}\:=\:\mathrm{w}^{\mathrm{a}} \\ $$$$\mathrm{make}\:\mathrm{a}\:\mathrm{the}\:\mathrm{subject}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formular}. \\ $$

Question Number 17921    Answers: 0   Comments: 5

The value of the expression (3 − tan^2 1°)(3 − tan^2 2°)(3 − tan^2 3°)....(3 − tan^2 89°) is equal to

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\left(\mathrm{3}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{1}°\right)\left(\mathrm{3}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{2}°\right)\left(\mathrm{3}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{3}°\right)....\left(\mathrm{3}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{89}°\right) \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 17463    Answers: 2   Comments: 0

Evaluate ∫_0 ^1 ((x^4 (1−x)^4 )/(1+x^2 )) dx.

$${Evaluate}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\frac{{x}^{\mathrm{4}} \left(\mathrm{1}−{x}\right)^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}. \\ $$

  Pg 1920      Pg 1921      Pg 1922      Pg 1923      Pg 1924      Pg 1925      Pg 1926      Pg 1927      Pg 1928      Pg 1929   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com