Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1921

Question Number 17322    Answers: 1   Comments: 0

Solve: (dy/dx) + (1/2)y = (3/2) with y(0) = 4

$$\mathrm{Solve}:\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{y}\:=\:\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{with}\:\:\:\mathrm{y}\left(\mathrm{0}\right)\:=\:\mathrm{4} \\ $$

Question Number 17280    Answers: 0   Comments: 2

prove that: cosh(2x) = 2cosh^2 (x) − 1

$$\mathrm{prove}\:\mathrm{that}:\:\:\mathrm{cosh}\left(\mathrm{2x}\right)\:=\:\mathrm{2cosh}^{\mathrm{2}} \left(\mathrm{x}\right)\:−\:\mathrm{1} \\ $$

Question Number 17279    Answers: 0   Comments: 3

Is cosh^2 (3x) = (1/2)[1 + cos(6x)] ??????

$$\mathrm{Is}\:\:\mathrm{cosh}^{\mathrm{2}} \left(\mathrm{3x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{1}\:+\:\mathrm{cos}\left(\mathrm{6x}\right)\right]\:\:?????? \\ $$

Question Number 17273    Answers: 1   Comments: 2

The intersection of the ABC triangle median is at G point. The corner of the BGC is 90°. If the AG cut length is 12 cm, locate the BC side.

$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{intersection}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{ABC}}\:\boldsymbol{\mathrm{triangle}} \\ $$$$\boldsymbol{\mathrm{median}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{G}}\:\boldsymbol{\mathrm{point}}.\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{corner}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{BGC}}\:\boldsymbol{\mathrm{is}}\:\mathrm{90}°.\:\boldsymbol{\mathrm{If}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{AG}}\:\boldsymbol{\mathrm{cut}}\: \\ $$$$\boldsymbol{\mathrm{length}}\:\boldsymbol{\mathrm{is}}\:\mathrm{12}\:\boldsymbol{\mathrm{cm}},\:\boldsymbol{\mathrm{locate}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{BC}}\:\boldsymbol{\mathrm{side}}. \\ $$

Question Number 17272    Answers: 0   Comments: 5

Determine two distinct primes p and q such that: (i) p+q+1,p+q−1,((p+q)/2) ∈ P (All primes)? (ii) p+q+1,p+q−1,((p+q)/2),((p−q)/2) ∈ P (All primes)?

$$\mathrm{Determine}\:\mathrm{two}\:\mathrm{distinct}\:\mathrm{primes}\:\:\:\mathrm{p}\:\:\:\mathrm{and}\:\:\:\mathrm{q}\: \\ $$$$\mathrm{such}\:\mathrm{that}: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{p}+\mathrm{q}+\mathrm{1},\mathrm{p}+\mathrm{q}−\mathrm{1},\frac{\mathrm{p}+\mathrm{q}}{\mathrm{2}}\:\in\:\mathbb{P}\:\left(\mathrm{All}\:\mathrm{primes}\right)? \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{p}+\mathrm{q}+\mathrm{1},\mathrm{p}+\mathrm{q}−\mathrm{1},\frac{\mathrm{p}+\mathrm{q}}{\mathrm{2}},\frac{\mathrm{p}−\mathrm{q}}{\mathrm{2}}\:\in\:\mathbb{P}\:\left(\mathrm{All}\:\mathrm{primes}\right)? \\ $$

Question Number 17271    Answers: 1   Comments: 0

Solve the equation. (√(((15)/4^(1−x) )+4^(1−x) ))=32.

$$\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{equation}}. \\ $$$$\sqrt{\frac{\mathrm{15}}{\mathrm{4}^{\mathrm{1}−\boldsymbol{\mathrm{x}}} }+\mathrm{4}^{\mathrm{1}−\boldsymbol{\mathrm{x}}} }=\mathrm{32}. \\ $$

Question Number 17270    Answers: 1   Comments: 2

If x=((1+(√(17)))/2). Find the value of ((x^3 −2x^2 +7x−1)/(x^2 −x+1)) decimal point.

$$\boldsymbol{\mathrm{If}}\:\boldsymbol{\mathrm{x}}=\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}}.\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}} \\ $$$$\frac{\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{7}\boldsymbol{\mathrm{x}}−\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}+\mathrm{1}}\:\:\boldsymbol{\mathrm{decimal}}\:\boldsymbol{\mathrm{point}}. \\ $$

Question Number 17260    Answers: 1   Comments: 1

for a,b,c>0 prove that (ab+bc+ca)^2 ≥3(a+b+c)abc

$${for}\:{a},{b},{c}>\mathrm{0}\:{prove}\:{that} \\ $$$$\left({ab}+{bc}+{ca}\right)^{\mathrm{2}} \geqslant\mathrm{3}\left({a}+{b}+{c}\right){abc} \\ $$

Question Number 17255    Answers: 1   Comments: 0

∫_0 ^( (Π/2)) ((d(sinx+cosx))/(sinx+cosx))

$$\int_{\mathrm{0}} ^{\:\frac{\Pi}{\mathrm{2}}} \:\frac{\mathrm{d}\left(\mathrm{sinx}+\mathrm{cosx}\right)}{\mathrm{sinx}+\mathrm{cosx}} \\ $$

Question Number 17252    Answers: 0   Comments: 2

The sum of the digits of the number 2^(2000) 5^(2004) is Will it be 13 or 14?

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{2}^{\mathrm{2000}} \mathrm{5}^{\mathrm{2004}} \:\mathrm{is} \\ $$$$\mathrm{Will}\:\mathrm{it}\:\mathrm{be}\:\mathrm{13}\:\mathrm{or}\:\mathrm{14}? \\ $$

Question Number 17328    Answers: 0   Comments: 3

Question Number 17247    Answers: 0   Comments: 0

A carrier based on its anual records notes that its trucks cover 50000 km with a normal distribution with a detour of 12000 km. How many miles can be traveled at least 80% of trucks ?

$${A}\:{carrier}\:{based}\:{on}\:{its}\:{anual}\:{records}\:{notes}\:{that}\:{its}\:{trucks}\:{cover}\:\mathrm{50000} \\ $$$${km}\:{with}\:{a}\:{normal}\:{distribution}\:{with}\:{a}\:{detour}\:{of}\:\mathrm{12000}\:{km}. \\ $$$${How}\:{many}\:{miles}\:{can}\:{be}\:{traveled}\:{at}\:{least}\:\mathrm{80\%}\:{of}\:{trucks}\:? \\ $$

Question Number 17220    Answers: 1   Comments: 0

Show that ∫_a ^( b) f(kx)dx=(1/k)∫_(ka) ^( kb) f(x)dx

$$\mathrm{Show}\:\mathrm{that}\:\int_{\mathrm{a}} ^{\:\mathrm{b}} {f}\left(\mathrm{kx}\right)\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{k}}\int_{\mathrm{ka}} ^{\:\mathrm{kb}} {f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 17219    Answers: 1   Comments: 1

∫_0 ^( 2a) xy dx=? where x^2 −y^2 =a^2 and y≥0

$$\int_{\mathrm{0}} ^{\:\mathrm{2a}} \mathrm{xy}\:\mathrm{dx}=?\:\:\mathrm{where}\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{y}\geqslant\mathrm{0} \\ $$

Question Number 17209    Answers: 1   Comments: 0

Spin only magnetic moment of _(25) Mn^(x+) is (√(15))B.M. Then the value of x is? i did following 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5 so to get 3 unpaired electron we need to 2 electron so x=2. book says x=4. Why?

$$\mathrm{Spin}\:\mathrm{only}\:\mathrm{magnetic}\:\mathrm{moment} \\ $$$$\mathrm{of}\:_{\mathrm{25}} \mathrm{Mn}^{\mathrm{x}+} \:\mathrm{is}\:\sqrt{\mathrm{15}}\mathrm{B}.\mathrm{M}.\:\mathrm{Then} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{is}? \\ $$$$\mathrm{i}\:\mathrm{did}\:\mathrm{following} \\ $$$$\mathrm{1s}^{\mathrm{2}} \mathrm{2s}^{\mathrm{2}} \mathrm{2p}^{\mathrm{6}} \mathrm{3s}^{\mathrm{2}} \mathrm{3p}^{\mathrm{6}} \mathrm{4s}^{\mathrm{2}} \mathrm{3d}^{\mathrm{5}} \\ $$$$\mathrm{so}\:\mathrm{to}\:\mathrm{get}\:\mathrm{3}\:\mathrm{unpaired}\:\mathrm{electron} \\ $$$$\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{2}\:\mathrm{electron}\:\mathrm{so}\:\mathrm{x}=\mathrm{2}. \\ $$$$\mathrm{book}\:\mathrm{says}\:\mathrm{x}=\mathrm{4}.\:\mathrm{Why}? \\ $$

Question Number 17210    Answers: 1   Comments: 0

prove that ∫_0 ^( Π) f(sin x)dx=2×∫_0 ^( (Π/2)) f(sin x)dx

$$\mathrm{prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\:\Pi} {f}\left(\mathrm{sin}\:\mathrm{x}\right)\mathrm{dx}=\mathrm{2}×\int_{\mathrm{0}} ^{\:\frac{\Pi}{\mathrm{2}}} {f}\left(\mathrm{sin}\:\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 17206    Answers: 1   Comments: 0

What will be the vallu of ∫_(−a) ^( a) x^2 y dx ? Where x^2 +y^2 =a^2 and y≥0

$$\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{vallu}\:\mathrm{of}\:\int_{−\mathrm{a}} ^{\:\mathrm{a}} \mathrm{x}^{\mathrm{2}} \mathrm{y}\:\mathrm{dx}\:\:? \\ $$$$\mathrm{Where}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{y}\geqslant\mathrm{0} \\ $$

Question Number 17205    Answers: 1   Comments: 0

lim_(n→∞) Σ_(r=1) ^(n−1) (1/n)(√((n+r)/(n−r)))

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\:\underset{\mathrm{r}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\sqrt{\frac{\mathrm{n}+\mathrm{r}}{\mathrm{n}−\mathrm{r}}} \\ $$

Question Number 17204    Answers: 2   Comments: 0

∫_0 ^( (Π/2)) sinθ cosθ(a^2 sin^2 θ+b^2 cos^2 θ)^(1/2) dθ

$$\int_{\mathrm{0}} ^{\:\frac{\Pi}{\mathrm{2}}} \mathrm{sin}\theta\:\mathrm{cos}\theta\left(\mathrm{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \theta+\mathrm{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \theta\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{d}\theta \\ $$

Question Number 17203    Answers: 0   Comments: 3

∫_0 ^( 1) cot^(−1) (1−x+x^2 )dx

$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{cot}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{x}+\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$

Question Number 17281    Answers: 0   Comments: 0

Question Number 17187    Answers: 3   Comments: 0

Question Number 17180    Answers: 0   Comments: 1

Question Number 17179    Answers: 1   Comments: 0

Question Number 17177    Answers: 1   Comments: 0

Question Number 17167    Answers: 1   Comments: 0

∫x^2 sin^(−1) 3x dx

$$\int\mathrm{x}^{\mathrm{2}} \mathrm{sin}^{−\mathrm{1}} \mathrm{3x}\:\mathrm{dx} \\ $$

  Pg 1916      Pg 1917      Pg 1918      Pg 1919      Pg 1920      Pg 1921      Pg 1922      Pg 1923      Pg 1924      Pg 1925   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com