Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1916
Question Number 14587 Answers: 1 Comments: 0
$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{64}\:=\:\mathrm{0}\:\:\mathrm{in}\:\mathrm{the}\:\mathrm{polar}\:\mathrm{form}\:\:\mathrm{a}\:+\:\mathrm{jb}, \\ $$$$\mathrm{Where}\:\:\mathrm{a}\:\:\mathrm{and}\:\:\mathrm{b}\:\:\mathrm{are}\:\mathrm{real}. \\ $$
Question Number 14564 Answers: 0 Comments: 9
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{last}\:\mathrm{2}\:\mathrm{digits}\:\mathrm{of}\:\:\:\:\:\:\mathrm{2}^{\mathrm{613}} \\ $$
Question Number 14560 Answers: 0 Comments: 0
Question Number 14559 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x} \\ $$$$\frac{\mathrm{6x}\:+\:\mathrm{2a}\:+\:\mathrm{3b}\:+\:\mathrm{c}\:}{\mathrm{6x}\:+\:\mathrm{2a}\:−\:\mathrm{3b}\:−\:\mathrm{c}}\:=\:\frac{\mathrm{2x}\:+\:\mathrm{6a}\:+\:\mathrm{b}\:+\:\mathrm{3c}}{\mathrm{2x}\:+\:\mathrm{6a}\:−\:\mathrm{b}\:−\:\mathrm{3c}} \\ $$
Question Number 14544 Answers: 0 Comments: 0
Question Number 14543 Answers: 2 Comments: 1
$$\mathrm{An}\:\mathrm{open}\:\mathrm{box}\:\mathrm{of}\:\mathrm{area}\:\mathrm{486cm}^{\mathrm{2}} .\mathrm{If}\:\mathrm{the} \\ $$$$\mathrm{length}\:\mathrm{is}\:\mathrm{twice}\:\mathrm{the}\:\mathrm{breadth}.\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{maximum}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{box}. \\ $$$$\mathrm{hence},\mathrm{Show}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{is}\:\mathrm{maximum}. \\ $$
Question Number 14541 Answers: 0 Comments: 0
Question Number 14535 Answers: 2 Comments: 6
Question Number 14523 Answers: 2 Comments: 0
Question Number 14521 Answers: 0 Comments: 0
Question Number 14513 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\mathrm{y}^{\mathrm{2}} \left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)\:=\:\mathrm{1}\:−\:\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{Show}\:\mathrm{that},\:\:\:\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{\mathrm{2}} \:=\:\frac{\mathrm{1}\:−\:\mathrm{y}^{\mathrm{4}} }{\mathrm{1}\:−\:\mathrm{x}^{\mathrm{4}} } \\ $$
Question Number 14510 Answers: 0 Comments: 0
$$\int\:\:\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{3}} \:−\:\mathrm{1}\right)^{\mathrm{3}} }\:\mathrm{dx} \\ $$
Question Number 14507 Answers: 0 Comments: 0
Question Number 14502 Answers: 1 Comments: 3
Question Number 14491 Answers: 1 Comments: 0
$$\sqrt{\mathrm{25}} \\ $$$$ \\ $$
Question Number 14486 Answers: 0 Comments: 0
$${S}=\mathrm{1}−\mathrm{2}+\mathrm{3}−\mathrm{4}+... \\ $$$$\therefore{S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {n} \\ $$$$\: \\ $$$${S}=\underset{{s}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {n}^{\mathrm{1}−{s}} \right) \\ $$$$\: \\ $$$$\mathrm{Prove}\:{S}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Question Number 14483 Answers: 0 Comments: 8
$$\mathrm{x}^{\mathrm{y}} +\mathrm{y}^{\mathrm{x}} =\mathrm{3}.....\left(\mathrm{1}\right) \\ $$$$\mathrm{x}+\mathrm{y}=\mathrm{3}.....\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$
Question Number 14481 Answers: 0 Comments: 0
Question Number 14479 Answers: 1 Comments: 0
Question Number 14478 Answers: 2 Comments: 0
$$\mathrm{Solve}:\:\:\:\:\mathrm{y}'\:=\:\left(\mathrm{y}\:−\:\mathrm{x}\right)^{\mathrm{2}} \\ $$
Question Number 14470 Answers: 0 Comments: 4
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solution}\left(\mathrm{s}\right)\:\mathrm{of} \\ $$$${x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{sin}\:{x}\:=\:\mathrm{0},\:{x}\:\in\:\left[\mathrm{0},\:\pi\right] \\ $$
Question Number 14468 Answers: 0 Comments: 0
Question Number 14467 Answers: 0 Comments: 6
Question Number 14452 Answers: 1 Comments: 3
Question Number 14451 Answers: 2 Comments: 0
Question Number 14444 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}\: \\ $$$$\mathrm{y}'\:=\:\frac{\mathrm{2x}\:+\:\mathrm{3y}\:−\:\mathrm{4}}{\mathrm{4x}\:+\:\mathrm{3y}\:+\:\mathrm{2}} \\ $$
Pg 1911 Pg 1912 Pg 1913 Pg 1914 Pg 1915 Pg 1916 Pg 1917 Pg 1918 Pg 1919 Pg 1920
Terms of Service
Privacy Policy
Contact: info@tinkutara.com