Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1916

Question Number 17976    Answers: 1   Comments: 0

A driver is 5.2 below the surface of water of density 1000kg/m. if the atmospheric pressure is 1.02 × 10^5 Pa. calculate the pressure on the driver.

$$\mathrm{A}\:\mathrm{driver}\:\mathrm{is}\:\mathrm{5}.\mathrm{2}\:\mathrm{below}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{water}\:\mathrm{of}\:\mathrm{density}\:\mathrm{1000kg}/\mathrm{m}.\:\:\mathrm{if}\:\mathrm{the} \\ $$$$\mathrm{atmospheric}\:\mathrm{pressure}\:\mathrm{is}\:\mathrm{1}.\mathrm{02}\:×\:\mathrm{10}^{\mathrm{5}} \:\mathrm{Pa}.\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{pressure}\:\mathrm{on}\:\mathrm{the}\:\mathrm{driver}. \\ $$

Question Number 17970    Answers: 1   Comments: 0

Question Number 17969    Answers: 0   Comments: 0

Question Number 17963    Answers: 0   Comments: 4

Question Number 17961    Answers: 1   Comments: 0

Question Number 17959    Answers: 1   Comments: 0

Question Number 17957    Answers: 1   Comments: 0

prove that (1+(a/x))^n =(1+((an)/x)) , x≫a

$$\mathrm{prove}\:\mathrm{that}\:\left(\mathrm{1}+\frac{\mathrm{a}}{\mathrm{x}}\right)^{\mathrm{n}} =\left(\mathrm{1}+\frac{\mathrm{an}}{\mathrm{x}}\right)\:,\:\:\mathrm{x}\gg\mathrm{a} \\ $$

Question Number 17939    Answers: 1   Comments: 1

∫secxdx

$$\int{secxdx}\: \\ $$

Question Number 17938    Answers: 2   Comments: 2

If only downward motion along lines is allowed, what is the total number of paths from point P to point Q in the figure below?

$$\mathrm{If}\:\mathrm{only}\:\mathrm{downward}\:\mathrm{motion}\:\mathrm{along}\:\mathrm{lines}\:\mathrm{is} \\ $$$$\mathrm{allowed},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{paths}\:\mathrm{from}\:\mathrm{point}\:\mathrm{P}\:\mathrm{to}\:\mathrm{point}\:\mathrm{Q}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{figure}\:\mathrm{below}? \\ $$

Question Number 17936    Answers: 2   Comments: 1

Two particles start moving towards each other with constant acceleration of 1 m/s^2 . If their initial separation is 100 m, find after what time they will meet each other (A) 40s (B) 45s (C) 50 s (D)55s

$$\mathrm{Two}\:\mathrm{particles}\:\mathrm{start}\:\mathrm{moving}\:\mathrm{towards} \\ $$$$\mathrm{each}\:\mathrm{other}\:\mathrm{with}\:\mathrm{constant}\:\mathrm{acceleration} \\ $$$$\mathrm{of}\:\:\mathrm{1}\:{m}/{s}^{\mathrm{2}} .\:\mathrm{If}\:\mathrm{their}\:\mathrm{initial}\:\mathrm{separation}\:\mathrm{is} \\ $$$$\mathrm{100}\:\mathrm{m},\:\mathrm{find}\:\mathrm{after}\:\mathrm{what}\:\mathrm{time}\:\mathrm{they}\:\mathrm{will} \\ $$$$\mathrm{meet}\:\mathrm{each}\:\mathrm{other} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{40}{s}\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{45}{s}\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{50}\:{s}\:\left(\mathrm{D}\right)\mathrm{55}{s} \\ $$

Question Number 17919    Answers: 0   Comments: 0

How do the electronic configurations of the elements with Z = 107 − 109 differ from one another?

$$\mathrm{How}\:\mathrm{do}\:\mathrm{the}\:\mathrm{electronic}\:\mathrm{configurations}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{elements}\:\mathrm{with}\:\mathrm{Z}\:=\:\mathrm{107}\:−\:\mathrm{109}\:\mathrm{differ} \\ $$$$\mathrm{from}\:\mathrm{one}\:\mathrm{another}? \\ $$

Question Number 17918    Answers: 0   Comments: 0

Write the electronic configuration and the block to which an element with Z = 90 belongs.

$$\mathrm{Write}\:\mathrm{the}\:\mathrm{electronic}\:\mathrm{configuration}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{block}\:\mathrm{to}\:\mathrm{which}\:\mathrm{an}\:\mathrm{element}\:\mathrm{with} \\ $$$$\mathrm{Z}\:=\:\mathrm{90}\:\mathrm{belongs}. \\ $$

Question Number 17901    Answers: 1   Comments: 2

Question Number 17895    Answers: 0   Comments: 2

Question Number 17909    Answers: 0   Comments: 1

Please answer Q. 17525

$${Please}\:{answer}\:{Q}.\:\mathrm{17525} \\ $$

Question Number 17890    Answers: 0   Comments: 0

Question Number 17948    Answers: 1   Comments: 3

Question Number 17886    Answers: 0   Comments: 7

Question Number 17884    Answers: 1   Comments: 1

Question Number 17879    Answers: 0   Comments: 0

Question Number 17878    Answers: 0   Comments: 0

Question Number 17872    Answers: 2   Comments: 0

Solve : ∣x − 1∣ + ∣x∣ + ∣x + 1∣ = x + 2

$$\mathrm{Solve}\:: \\ $$$$\mid{x}\:−\:\mathrm{1}\mid\:+\:\mid{x}\mid\:+\:\mid{x}\:+\:\mathrm{1}\mid\:=\:{x}\:+\:\mathrm{2} \\ $$

Question Number 17867    Answers: 1   Comments: 0

prove that (2+(√3))^(2n) +(2−(√3))^(2n) is an even integer and that (2+(√3))^(2n) −(2−(√3))^(2n) =w(√3) for some integers w,for all integer n≥1.

$${prove}\:{that}\:\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}{n}} +\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}{n}} {is}\:{an} \\ $$$${even}\:{integer}\:{and}\:{that}\:\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}{n}} −\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}{n}} ={w}\sqrt{\mathrm{3}} \\ $$$${for}\:{some}\:{integers}\:{w},{for}\:{all}\:{integer}\:{n}\geqslant\mathrm{1}. \\ $$$$ \\ $$

Question Number 17866    Answers: 1   Comments: 0

Prove that sin 5A = 5 cos^4 A sin A − 10 cos^2 A sin^3 A + sin^5 A

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{sin}\:\mathrm{5}{A}\:=\:\mathrm{5}\:\mathrm{cos}^{\mathrm{4}} \:{A}\:\mathrm{sin}\:{A}\:− \\ $$$$\mathrm{10}\:\mathrm{cos}^{\mathrm{2}} \:{A}\:\mathrm{sin}^{\mathrm{3}} \:{A}\:+\:\mathrm{sin}^{\mathrm{5}} \:{A} \\ $$

Question Number 17852    Answers: 0   Comments: 1

A particle moves in a straight line (x-axis) with the velocity shown in the figure. Knowing that x = −16 m at t = 0, draw the a-t and x-t curves for the interval 0 < t < 40 s and determine (i) Maximum value of the position coordinate of the particle. (ii) The values of t for which the particle is at a distance of 50 m from the origin.

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{moves}\:\mathrm{in}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line} \\ $$$$\left({x}-\mathrm{axis}\right)\:\mathrm{with}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{figure}.\:\mathrm{Knowing}\:\mathrm{that}\:{x}\:=\:−\mathrm{16}\:\mathrm{m}\:\mathrm{at} \\ $$$${t}\:=\:\mathrm{0},\:\mathrm{draw}\:\mathrm{the}\:{a}-{t}\:\mathrm{and}\:{x}-{t}\:\mathrm{curves}\:\mathrm{for} \\ $$$$\mathrm{the}\:\mathrm{interval}\:\mathrm{0}\:<\:{t}\:<\:\mathrm{40}\:\mathrm{s}\:\mathrm{and}\:\mathrm{determine} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{position} \\ $$$$\mathrm{coordinate}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{The}\:\mathrm{values}\:\mathrm{of}\:{t}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the} \\ $$$$\mathrm{particle}\:\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{50}\:\mathrm{m}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{origin}. \\ $$

Question Number 17935    Answers: 0   Comments: 0

Ball A is dropped from the top of a building. At the same instant ball B is thrown vertically upwards from the ground. When the ball collide, they are moving in opposite directions and the speed of A(u) is twice the speed of B. The relative velocity of the ball just before collision and relative acceleration between them is (only their magnitudes) (A) 0 and 0 (B) ((3u)/2) and 0 (C) ((3u)/2) and 2g (D) ((3u)/2) and g

$$\mathrm{Ball}\:{A}\:\mathrm{is}\:\mathrm{dropped}\:\mathrm{from}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{a}\:\mathrm{building}. \\ $$$$\mathrm{At}\:\mathrm{the}\:\mathrm{same}\:\mathrm{instant}\:\mathrm{ball}\:{B}\:\mathrm{is}\:\mathrm{thrown} \\ $$$$\mathrm{vertically}\:\mathrm{upwards}\:\mathrm{from}\:\mathrm{the}\:\mathrm{ground}. \\ $$$$\mathrm{When}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{collide},\:\mathrm{they}\:\mathrm{are}\:\mathrm{moving}\:\:\mathrm{in} \\ $$$$\mathrm{opposite}\:\mathrm{directions}\:\mathrm{and}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:{A}\left({u}\right) \\ $$$$\mathrm{is}\:\mathrm{twice}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:{B}.\:\mathrm{The}\:\mathrm{relative}\: \\ $$$$\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{just}\:\mathrm{before}\:\mathrm{collision} \\ $$$$\mathrm{and}\:\mathrm{relative}\:\mathrm{acceleration}\:\mathrm{between}\:\mathrm{them} \\ $$$$\mathrm{is}\:\left(\mathrm{only}\:\mathrm{their}\:\mathrm{magnitudes}\right) \\ $$$$\left(\mathrm{A}\right)\:\mathrm{0}\:\mathrm{and}\:\mathrm{0}\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\frac{\mathrm{3}{u}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{0} \\ $$$$\left(\mathrm{C}\right)\:\frac{\mathrm{3}{u}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{2}{g}\:\:\:\left(\mathrm{D}\right)\:\frac{\mathrm{3}{u}}{\mathrm{2}}\:\mathrm{and}\:{g} \\ $$

  Pg 1911      Pg 1912      Pg 1913      Pg 1914      Pg 1915      Pg 1916      Pg 1917      Pg 1918      Pg 1919      Pg 1920   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com