Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1916

Question Number 17935    Answers: 0   Comments: 0

Ball A is dropped from the top of a building. At the same instant ball B is thrown vertically upwards from the ground. When the ball collide, they are moving in opposite directions and the speed of A(u) is twice the speed of B. The relative velocity of the ball just before collision and relative acceleration between them is (only their magnitudes) (A) 0 and 0 (B) ((3u)/2) and 0 (C) ((3u)/2) and 2g (D) ((3u)/2) and g

$$\mathrm{Ball}\:{A}\:\mathrm{is}\:\mathrm{dropped}\:\mathrm{from}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{a}\:\mathrm{building}. \\ $$$$\mathrm{At}\:\mathrm{the}\:\mathrm{same}\:\mathrm{instant}\:\mathrm{ball}\:{B}\:\mathrm{is}\:\mathrm{thrown} \\ $$$$\mathrm{vertically}\:\mathrm{upwards}\:\mathrm{from}\:\mathrm{the}\:\mathrm{ground}. \\ $$$$\mathrm{When}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{collide},\:\mathrm{they}\:\mathrm{are}\:\mathrm{moving}\:\:\mathrm{in} \\ $$$$\mathrm{opposite}\:\mathrm{directions}\:\mathrm{and}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:{A}\left({u}\right) \\ $$$$\mathrm{is}\:\mathrm{twice}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:{B}.\:\mathrm{The}\:\mathrm{relative}\: \\ $$$$\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{just}\:\mathrm{before}\:\mathrm{collision} \\ $$$$\mathrm{and}\:\mathrm{relative}\:\mathrm{acceleration}\:\mathrm{between}\:\mathrm{them} \\ $$$$\mathrm{is}\:\left(\mathrm{only}\:\mathrm{their}\:\mathrm{magnitudes}\right) \\ $$$$\left(\mathrm{A}\right)\:\mathrm{0}\:\mathrm{and}\:\mathrm{0}\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\frac{\mathrm{3}{u}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{0} \\ $$$$\left(\mathrm{C}\right)\:\frac{\mathrm{3}{u}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{2}{g}\:\:\:\left(\mathrm{D}\right)\:\frac{\mathrm{3}{u}}{\mathrm{2}}\:\mathrm{and}\:{g} \\ $$

Question Number 17835    Answers: 2   Comments: 1

A rocket is moving in a gravity free space with a constant acceleration of 2 m/s^2 along + x direction (see figure). The length of a chamber inside the rocket is 4 m. A ball is thrown from the left end of the chamber in +x direction with a speed of 0.3 m/s relative to the rocket. At the same time, another ball is thrown in −x direction with a speed of 0.2 m/s from its right end relative to the rocket. The time in seconds when the two balls hit each other is

$$\mathrm{A}\:\mathrm{rocket}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{in}\:\mathrm{a}\:\mathrm{gravity}\:\mathrm{free} \\ $$$$\mathrm{space}\:\mathrm{with}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{acceleration}\:\mathrm{of} \\ $$$$\mathrm{2}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \:\mathrm{along}\:+\:\mathrm{x}\:\mathrm{direction}\:\left(\mathrm{see}\:\mathrm{figure}\right). \\ $$$$\mathrm{The}\:\mathrm{length}\:\mathrm{of}\:\mathrm{a}\:\mathrm{chamber}\:\mathrm{inside}\:\mathrm{the} \\ $$$$\mathrm{rocket}\:\mathrm{is}\:\mathrm{4}\:\mathrm{m}.\:\mathrm{A}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{left}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{chamber}\:\mathrm{in}\:+{x}\:\mathrm{direction} \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{0}.\mathrm{3}\:\mathrm{m}/\mathrm{s}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{rocket}.\:\mathrm{At}\:\mathrm{the}\:\mathrm{same}\:\mathrm{time},\:\mathrm{another}\:\mathrm{ball} \\ $$$$\mathrm{is}\:\mathrm{thrown}\:\mathrm{in}\:−{x}\:\mathrm{direction}\:\mathrm{with}\:\mathrm{a}\:\mathrm{speed} \\ $$$$\mathrm{of}\:\mathrm{0}.\mathrm{2}\:\mathrm{m}/\mathrm{s}\:\mathrm{from}\:\mathrm{its}\:\mathrm{right}\:\mathrm{end}\:\mathrm{relative}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{rocket}.\:\mathrm{The}\:\mathrm{time}\:\mathrm{in}\:\mathrm{seconds}\:\mathrm{when} \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{balls}\:\mathrm{hit}\:\mathrm{each}\:\mathrm{other}\:\mathrm{is} \\ $$

Question Number 17830    Answers: 2   Comments: 0

Two candles of the same height are lighted together. First one gets burnt up completely in 3 hours while the second in 4 hours. At what point of time, the length of second candle will be double the length of the first candle?

$$\mathrm{Two}\:\mathrm{candles}\:\mathrm{of}\:\mathrm{the}\:\mathrm{same}\:\mathrm{height}\:\mathrm{are} \\ $$$$\mathrm{lighted}\:\mathrm{together}.\:\mathrm{First}\:\mathrm{one}\:\mathrm{gets}\:\mathrm{burnt}\:\mathrm{up} \\ $$$$\mathrm{completely}\:\mathrm{in}\:\mathrm{3}\:\mathrm{hours}\:\mathrm{while}\:\mathrm{the}\:\mathrm{second} \\ $$$$\mathrm{in}\:\mathrm{4}\:\mathrm{hours}.\:\mathrm{At}\:\mathrm{what}\:\mathrm{point}\:\mathrm{of}\:\mathrm{time},\:\mathrm{the} \\ $$$$\mathrm{length}\:\mathrm{of}\:\mathrm{second}\:\mathrm{candle}\:\mathrm{will}\:\mathrm{be}\:\mathrm{double} \\ $$$$\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{candle}? \\ $$

Question Number 17828    Answers: 1   Comments: 0

Question Number 17815    Answers: 1   Comments: 4

For x ∈ (0, π), the equation sin x + 2 sin 2x − sin 3x = 3 has (1) Infinitely many solutions (2) Three solutions (3) One solution (4) No solution

$$\mathrm{For}\:{x}\:\in\:\left(\mathrm{0},\:\pi\right),\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{sin}\:{x}\:+\:\mathrm{2}\:\mathrm{sin}\:\mathrm{2}{x}\:−\:\mathrm{sin}\:\mathrm{3}{x}\:=\:\mathrm{3}\:\mathrm{has} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Infinitely}\:\mathrm{many}\:\mathrm{solutions} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Three}\:\mathrm{solutions} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{One}\:\mathrm{solution} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{No}\:\mathrm{solution} \\ $$

Question Number 17805    Answers: 0   Comments: 0

If θ=t^n e^(−r^(2/(ut)) ) ,find the value of n which will make (1/r^2 ) (∂/∂r)(r^2 (∂θ/(∂r))) equal to (∂θ/∂t)

$${If}\:\theta={t}^{{n}} {e}^{−{r}^{\frac{\mathrm{2}}{{ut}}} } ,{find}\:{the}\:{value}\:{of} \\ $$$${n}\:{which}\:{will}\:{make}\:\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\:\frac{\partial}{\partial{r}}\left({r}^{\mathrm{2}} \frac{\partial\theta}{\left.\partial{r}\right)}\right. \\ $$$${equal}\:{to}\:\frac{\partial\theta}{\partial{t}} \\ $$

Question Number 17782    Answers: 0   Comments: 1

let a,b,c,x,y and z be complex numbers such that : a=((b+c)/(x−2)), b=((c+a)/(y−2)), c=((a+b)/(z−2)) if xy+yz+zx=1000 and x+y+z=2016, find the value of xyz

$${let}\:{a},{b},{c},{x},{y}\:{and}\:{z}\:{be}\:{complex}\:{numbers} \\ $$$${such}\:{that}\:: \\ $$$${a}=\frac{{b}+{c}}{{x}−\mathrm{2}},\:{b}=\frac{{c}+{a}}{{y}−\mathrm{2}},\:{c}=\frac{{a}+{b}}{{z}−\mathrm{2}} \\ $$$${if}\:{xy}+{yz}+{zx}=\mathrm{1000}\:{and}\:{x}+{y}+{z}=\mathrm{2016}, \\ $$$${find}\:{the}\:{value}\:{of}\:{xyz} \\ $$

Question Number 17779    Answers: 1   Comments: 0

show that {log_a ab}{log_b ab}=logab_a +logab_b

$${show}\:{that}\:\left\{{lo}\underset{{a}} {{g}ab}\right\}\left\{{lo}\underset{{b}} {{g}ab}\right\}={loga}\underset{{a}} {{b}}+{loga}\underset{{b}} {{b}} \\ $$

Question Number 17775    Answers: 2   Comments: 0

Σ_(m=1) ^(10) (((sin 2πm)/(11)) − i((cos 2πm)/(11))) =????? Solve..it

$$\underset{{m}=\mathrm{1}} {\overset{\mathrm{10}} {\sum}}\left(\frac{\mathrm{sin}\:\mathrm{2}\pi{m}}{\mathrm{11}}\:−\:{i}\frac{\mathrm{cos}\:\mathrm{2}\pi{m}}{\mathrm{11}}\right)\:=????? \\ $$$${Solve}..{it} \\ $$$$ \\ $$

Question Number 17771    Answers: 1   Comments: 1

Question Number 17770    Answers: 1   Comments: 0

Find the number of ways the digits 0,1,2 and 3 can be permuted to give rise to a number greater than 2000.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{the} \\ $$$$\mathrm{digits}\:\mathrm{0},\mathrm{1},\mathrm{2}\:\mathrm{and}\:\mathrm{3}\:\mathrm{can}\:\mathrm{be}\:\mathrm{permuted} \\ $$$$\mathrm{to}\:\mathrm{give}\:\mathrm{rise}\:\mathrm{to}\:\mathrm{a}\:\mathrm{number}\:\mathrm{greater} \\ $$$$\mathrm{than}\:\mathrm{2000}. \\ $$

Question Number 17767    Answers: 1   Comments: 0

Σ_(n = 1) ^(30) (n^2 + 1) = (A) Σ_(n = 1) ^(15) (2n^2 + 30n + 224) (B) Σ_(n = 1) ^(15) (2n^2 + 30n + 225) (C) Σ_(n = 1) ^(15) (2n^2 + 30n + 226) (D) Σ_(n = 1) ^(15) (2n^2 + 30n + 227) (E) Σ_(n = 1) ^(15) (2n^2 + 30n + 228)

$$\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{30}} {\sum}}\left({n}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:=\: \\ $$$$\left(\mathrm{A}\right)\:\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left(\mathrm{2}{n}^{\mathrm{2}} \:+\:\mathrm{30}{n}\:+\:\mathrm{224}\right) \\ $$$$\left(\mathrm{B}\right)\:\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left(\mathrm{2}{n}^{\mathrm{2}} \:+\:\mathrm{30}{n}\:+\:\mathrm{225}\right) \\ $$$$\left(\mathrm{C}\right)\:\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left(\mathrm{2}{n}^{\mathrm{2}} \:+\:\mathrm{30}{n}\:+\:\mathrm{226}\right) \\ $$$$\left(\mathrm{D}\right)\:\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left(\mathrm{2}{n}^{\mathrm{2}} \:+\:\mathrm{30}{n}\:+\:\mathrm{227}\right) \\ $$$$\left(\mathrm{E}\right)\:\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{15}} {\sum}}\left(\mathrm{2}{n}^{\mathrm{2}} \:+\:\mathrm{30}{n}\:+\:\mathrm{228}\right) \\ $$

Question Number 17759    Answers: 1   Comments: 0

2^(4(y^2 −2)) =y^((y^2 −8)) please help me find y... pls!

$$\mathrm{2}^{\mathrm{4}\left(\mathrm{y}^{\mathrm{2}} −\mathrm{2}\right)} =\mathrm{y}^{\left(\mathrm{y}^{\mathrm{2}} −\mathrm{8}\right)} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{find}\:\mathrm{y}...\:\mathrm{pls}! \\ $$

Question Number 17748    Answers: 0   Comments: 1

f p^2 =qr, prove thathat log_r ^p +log_(q=) ^p 2log_q ^p log_r ^p

$${f}\:{p}^{\mathrm{2}} ={qr},\:\:{prove}\:{thathat}\:{log}_{{r}} ^{{p}} +{log}_{{q}=} ^{{p}} \\ $$$$\mathrm{2}{log}_{{q}} ^{{p}} {log}_{{r}} ^{{p}} \\ $$

Question Number 17742    Answers: 1   Comments: 1

x^3 = 3^x , find x.

$$\mathrm{x}^{\mathrm{3}} \:=\:\mathrm{3}^{\mathrm{x}} ,\:\:\:\mathrm{find}\:\mathrm{x}. \\ $$

Question Number 17740    Answers: 0   Comments: 1

Question Number 17743    Answers: 2   Comments: 0

Question Number 17736    Answers: 0   Comments: 1

evaluate; ∫ln (sin 2x)dx

$${evaluate};\:\int\mathrm{ln}\:\left(\mathrm{sin}\:\mathrm{2}{x}\right){dx} \\ $$

Question Number 17735    Answers: 1   Comments: 0

Solve: (dy/dx) + ysec(x) = tan(x)

$$\mathrm{Solve}:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\mathrm{ysec}\left(\mathrm{x}\right)\:=\:\mathrm{tan}\left(\mathrm{x}\right) \\ $$

Question Number 17734    Answers: 0   Comments: 0

If x^2 + y^3 − 3xy = 0, Show that, (d^2 y/dx^2 ) = ((− 2xy)/(y^2 − x^2 ))

$$\mathrm{If}\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{3}} \:−\:\mathrm{3xy}\:=\:\mathrm{0}, \\ $$$$\mathrm{Show}\:\mathrm{that},\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:\frac{−\:\mathrm{2xy}}{\mathrm{y}^{\mathrm{2}} \:−\:\mathrm{x}^{\mathrm{2}} } \\ $$

Question Number 17729    Answers: 1   Comments: 3

A lotus plant in a pool of water is (1/2) cubit above water level. When propelled by air, the lotus sinks in the pool 2 cubits away from its position. Find the depth of water in the pool.

$$\mathrm{A}\:\mathrm{lotus}\:\mathrm{plant}\:\mathrm{in}\:\mathrm{a}\:\mathrm{pool}\:\mathrm{of}\:\mathrm{water}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{cubit}\:\mathrm{above}\:\mathrm{water}\:\mathrm{level}.\:\mathrm{When} \\ $$$$\mathrm{propelled}\:\mathrm{by}\:\mathrm{air},\:\mathrm{the}\:\mathrm{lotus}\:\mathrm{sinks}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{pool}\:\mathrm{2}\:\mathrm{cubits}\:\mathrm{away}\:\mathrm{from}\:\mathrm{its}\:\mathrm{position}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{depth}\:\mathrm{of}\:\mathrm{water}\:\mathrm{in}\:\mathrm{the}\:\mathrm{pool}. \\ $$

Question Number 17704    Answers: 2   Comments: 1

A monkey climbs up a slippery pole for 3 seconds and subsequently slips for 3 seconds. Its velocity at time t is given by v (t) = 2t(3 − t) ; 0 < t < 3 and v (t) = − (t − 3)(6 − t) for 3 < t < 6 s in m/s. It repeats this cycle till it reaches the height of 20 m. At what time is its average velocity maximum?

$$\mathrm{A}\:\mathrm{monkey}\:\mathrm{climbs}\:\mathrm{up}\:\mathrm{a}\:\mathrm{slippery}\:\mathrm{pole}\:\mathrm{for} \\ $$$$\mathrm{3}\:\mathrm{seconds}\:\mathrm{and}\:\mathrm{subsequently}\:\mathrm{slips}\:\mathrm{for}\:\mathrm{3} \\ $$$$\mathrm{seconds}.\:\mathrm{Its}\:\mathrm{velocity}\:\mathrm{at}\:\mathrm{time}\:{t}\:\mathrm{is}\:\mathrm{given} \\ $$$$\mathrm{by}\:{v}\:\left({t}\right)\:=\:\mathrm{2}{t}\left(\mathrm{3}\:−\:{t}\right)\:;\:\mathrm{0}\:<\:{t}\:<\:\mathrm{3}\:\mathrm{and} \\ $$$${v}\:\left({t}\right)\:=\:−\:\left({t}\:−\:\mathrm{3}\right)\left(\mathrm{6}\:−\:{t}\right)\:\mathrm{for}\:\mathrm{3}\:<\:{t}\:<\:\mathrm{6}\:\mathrm{s} \\ $$$$\mathrm{in}\:\mathrm{m}/\mathrm{s}.\:\mathrm{It}\:\mathrm{repeats}\:\mathrm{this}\:\mathrm{cycle}\:\mathrm{till}\:\mathrm{it} \\ $$$$\mathrm{reaches}\:\mathrm{the}\:\mathrm{height}\:\mathrm{of}\:\mathrm{20}\:\mathrm{m}.\:\mathrm{At}\:\mathrm{what} \\ $$$$\mathrm{time}\:\mathrm{is}\:\mathrm{its}\:\mathrm{average}\:\mathrm{velocity}\:\mathrm{maximum}? \\ $$

Question Number 17692    Answers: 1   Comments: 0

Question Number 17689    Answers: 1   Comments: 0

A bird is tossing (flying to and fro) between two cars moving towards each other on a straight road. One car has a speed of 18 km/h while the other has the speed of 27 km/h. The bird starts moving from first car towards the other and is moving with the speed of 36 km/h and when the two cars were separated by 36 km. What is the total displacement of the bird?

$$\mathrm{A}\:\mathrm{bird}\:\mathrm{is}\:\mathrm{tossing}\:\left(\mathrm{flying}\:\mathrm{to}\:\mathrm{and}\:\mathrm{fro}\right) \\ $$$$\mathrm{between}\:\mathrm{two}\:\mathrm{cars}\:\mathrm{moving}\:\mathrm{towards} \\ $$$$\mathrm{each}\:\mathrm{other}\:\mathrm{on}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{road}.\:\mathrm{One}\:\mathrm{car} \\ $$$$\mathrm{has}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{18}\:\mathrm{km}/\mathrm{h}\:\mathrm{while}\:\mathrm{the}\:\mathrm{other} \\ $$$$\mathrm{has}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{27}\:\mathrm{km}/\mathrm{h}.\:\mathrm{The}\:\mathrm{bird} \\ $$$$\mathrm{starts}\:\mathrm{moving}\:\mathrm{from}\:\mathrm{first}\:\mathrm{car}\:\mathrm{towards} \\ $$$$\mathrm{the}\:\mathrm{other}\:\mathrm{and}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{the}\:\mathrm{speed} \\ $$$$\mathrm{of}\:\mathrm{36}\:\mathrm{km}/\mathrm{h}\:\mathrm{and}\:\mathrm{when}\:\mathrm{the}\:\mathrm{two}\:\mathrm{cars}\:\mathrm{were} \\ $$$$\mathrm{separated}\:\mathrm{by}\:\mathrm{36}\:\mathrm{km}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{total} \\ $$$$\mathrm{displacement}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bird}? \\ $$

Question Number 17676    Answers: 2   Comments: 0

Question Number 17675    Answers: 1   Comments: 0

  Pg 1911      Pg 1912      Pg 1913      Pg 1914      Pg 1915      Pg 1916      Pg 1917      Pg 1918      Pg 1919      Pg 1920   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com