Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1907

Question Number 10846    Answers: 1   Comments: 0

Two parallel chords of length 24 cm and 10 cm which lies on opposite sides of a circle are 17 cm apart. Calculate the radius of the circle to the nearest whole number.

$$\mathrm{Two}\:\mathrm{parallel}\:\mathrm{chords}\:\mathrm{of}\:\mathrm{length}\:\mathrm{24}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{10}\:\mathrm{cm}\:\mathrm{which}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{opposite} \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{are}\:\mathrm{17}\:\mathrm{cm}\:\mathrm{apart}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{whole}\:\mathrm{number}. \\ $$

Question Number 10837    Answers: 1   Comments: 0

given that sinA=((12)/(13))and sinB=(4/5), where A and B are acute angles, find cos(A−B) and sin(A+B)

$${given}\:{that}\:{sinA}=\frac{\mathrm{12}}{\mathrm{13}}{and}\:{sinB}=\frac{\mathrm{4}}{\mathrm{5}}, \\ $$$${where}\:{A}\:{and}\:{B}\:{are}\:{acute}\:{angles}, \\ $$$${find}\:{cos}\left({A}−{B}\right)\:{and}\:{sin}\left({A}+{B}\right) \\ $$$$ \\ $$

Question Number 10830    Answers: 2   Comments: 0

lim_(x→∞) ((3^x − 3^(−x) )/(3^x + 3^(−x) ))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{3}^{\mathrm{x}} \:−\:\mathrm{3}^{−\mathrm{x}} }{\mathrm{3}^{\mathrm{x}} \:+\:\mathrm{3}^{−\mathrm{x}} } \\ $$

Question Number 10825    Answers: 1   Comments: 0

Given that sin(x) − sin(y) = sin(θ) cos(x) + cos(y) = cos(θ) Show that cos(x + y) = −(1/2)

$$\mathrm{Given}\:\mathrm{that}\: \\ $$$$\mathrm{sin}\left(\mathrm{x}\right)\:−\:\mathrm{sin}\left(\mathrm{y}\right)\:=\:\mathrm{sin}\left(\theta\right) \\ $$$$\mathrm{cos}\left(\mathrm{x}\right)\:+\:\mathrm{cos}\left(\mathrm{y}\right)\:=\:\mathrm{cos}\left(\theta\right) \\ $$$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\mathrm{cos}\left(\mathrm{x}\:+\:\mathrm{y}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 10820    Answers: 1   Comments: 0

Question Number 10836    Answers: 1   Comments: 0

solve cos2θ−3cosθ=1 for o≤θ≤2π

$${solve}\:{cos}\mathrm{2}\theta−\mathrm{3}{cos}\theta=\mathrm{1} \\ $$$${for}\:{o}\leqslant\theta\leqslant\mathrm{2}\pi \\ $$

Question Number 10815    Answers: 0   Comments: 0

Evalute ∫(x^(2 ) + 9)^9 dx .

$${Evalute}\:\:\int\left({x}^{\mathrm{2}\:} \:\:+\:\mathrm{9}\right)^{\mathrm{9}} \:{dx}\:. \\ $$

Question Number 10807    Answers: 2   Comments: 2

Question Number 10795    Answers: 1   Comments: 1

by use sketching determine the range or(ranges) of the value x can take for each of the following inqualities (i) 3x^2 −19x−6≤0 (ii)2x^2 −5x−3≥0

$$\mathrm{by}\:\mathrm{use}\:\mathrm{sketching}\:\mathrm{determine}\:\mathrm{the}\:\mathrm{range} \\ $$$$\mathrm{or}\left(\mathrm{ranges}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{value}\:\mathrm{x}\:\mathrm{can}\:\mathrm{take}\:\mathrm{for} \\ $$$$\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inqualities} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{3x}^{\mathrm{2}} −\mathrm{19x}−\mathrm{6}\leqslant\mathrm{0} \\ $$$$\left(\mathrm{ii}\right)\mathrm{2x}^{\mathrm{2}} −\mathrm{5x}−\mathrm{3}\geqslant\mathrm{0} \\ $$

Question Number 10794    Answers: 0   Comments: 1

find the range or(ranges) of the value x can take for x+6>∣2x+3∣

$$\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{or}\left(\mathrm{ranges}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{x}\:\mathrm{can}\:\mathrm{take}\:\mathrm{for}\:\mathrm{x}+\mathrm{6}>\mid\mathrm{2x}+\mathrm{3}\mid \\ $$

Question Number 10793    Answers: 1   Comments: 0

let A = determinant ((4,(4k),k),(0,k,(4k)),(0,0,4)) if det(A^2 )=16 then ∣k∣ is?

$$\mathrm{let}\:\:\mathrm{A}\:=\begin{vmatrix}{\mathrm{4}}&{\mathrm{4k}}&{\mathrm{k}}\\{\mathrm{0}}&{\mathrm{k}}&{\mathrm{4k}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{4}}\end{vmatrix}\:\mathrm{if}\:\mathrm{det}\left(\mathrm{A}^{\mathrm{2}} \right)=\mathrm{16} \\ $$$$\mathrm{then}\:\mid\mathrm{k}\mid\:\mathrm{is}? \\ $$

Question Number 10790    Answers: 1   Comments: 0

∫_0 ^(π/2) (√(sin x)) dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{sin}\:{x}}\:{dx} \\ $$

Question Number 10789    Answers: 1   Comments: 0

(2+3i)x^2 −(3−2i)y=2x−3y+5i

$$\left(\mathrm{2}+\mathrm{3}{i}\right){x}^{\mathrm{2}} −\left(\mathrm{3}−\mathrm{2}{i}\right){y}=\mathrm{2}{x}−\mathrm{3}{y}+\mathrm{5}{i} \\ $$

Question Number 10788    Answers: 1   Comments: 0

factorise the expression sin4x−sinx

$${factorise}\:{the}\:{expression}\:{sin}\mathrm{4}{x}−{sinx} \\ $$

Question Number 10787    Answers: 0   Comments: 2

Question Number 10829    Answers: 2   Comments: 0

lim_(x→1) ∫_( 1) ^( x) ((e^t^2 (dt))/(x^2 − 1)) (a) 1 (b) 0 (c) e/2 (d) e

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\int_{\:\mathrm{1}} ^{\:\mathrm{x}} \:\:\:\frac{\mathrm{e}^{\mathrm{t}^{\mathrm{2}} } \:\left(\mathrm{dt}\right)}{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{1}}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{1}\:\left(\mathrm{b}\right)\:\mathrm{0}\:\left(\mathrm{c}\right)\:\mathrm{e}/\mathrm{2}\:\left(\mathrm{d}\right)\:\mathrm{e} \\ $$

Question Number 10777    Answers: 2   Comments: 2

find the range or (ranges) of value x can take for x+6>[2x+3]

$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{or}\:\left(\mathrm{ranges}\right)\:\mathrm{of}\:\mathrm{value}\:\mathrm{x} \\ $$$$\mathrm{can}\:\mathrm{take}\:\mathrm{for}\:\:\mathrm{x}+\mathrm{6}>\left[\mathrm{2x}+\mathrm{3}\right] \\ $$

Question Number 10776    Answers: 1   Comments: 0

if D = determinant ((1,(3sinθ),1),((sinθ),1,(3cosθ)),(1,(sinθ),1)) the maxi mum value of D is?

$$\mathrm{if}\:\:\:\mathrm{D}\:=\begin{vmatrix}{\mathrm{1}}&{\mathrm{3sin}\theta}&{\mathrm{1}}\\{\mathrm{sin}\theta}&{\mathrm{1}}&{\mathrm{3cos}\theta}\\{\mathrm{1}}&{\mathrm{sin}\theta}&{\mathrm{1}}\end{vmatrix}\:\mathrm{the}\:\mathrm{maxi} \\ $$$$\mathrm{mum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{D}\:\mathrm{is}? \\ $$

Question Number 10774    Answers: 1   Comments: 0

Question Number 10773    Answers: 1   Comments: 0

Question Number 10768    Answers: 0   Comments: 2

Solve the following differential equations by power series. y^(//) −2y = 4x^2 e^x^2

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{differential}\:\mathrm{equations}\: \\ $$$$\mathrm{by}\:\mathrm{power}\:\mathrm{series}. \\ $$$${y}^{//} −\mathrm{2}{y}\:=\:\mathrm{4}{x}^{\mathrm{2}} {e}^{{x}^{\mathrm{2}} } \\ $$

Question Number 10762    Answers: 0   Comments: 0

in eac of the following problems you are given a function on the interval −π<x<π. Sketch several periods of the corresponding periodic function of period 2π. Expand the periodic function in a sine−consine Fourier series. F(x) = { _0 ^(x+π) _(0<x<π) ^(−π<x<0)

$$\mathrm{in}\:\mathrm{eac}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{problems}\:\mathrm{you}\:{are} \\ $$$$\mathrm{given}\:\mathrm{a}\:\mathrm{function}\:\mathrm{on}\:\mathrm{the}\:\mathrm{interval}\:\:−\pi<{x}<\pi. \\ $$$$\mathrm{Sketch}\:\mathrm{several}\:\mathrm{periods}\:\mathrm{of}\:\mathrm{the}\:\mathrm{corresponding} \\ $$$$\mathrm{periodic}\:\mathrm{function}\:\mathrm{of}\:\mathrm{period}\:\mathrm{2}\pi.\:\mathrm{Expand}\:\mathrm{the} \\ $$$$\mathrm{periodic}\:\mathrm{function}\:\mathrm{in}\:\mathrm{a}\:\mathrm{sine}−\mathrm{consine}\:\mathrm{Fourier} \\ $$$$\mathrm{series}.\:\: \\ $$$$ \\ $$$${F}\left({x}\right)\:=\:\left\{\overset{{x}+\pi} {\:}_{\mathrm{0}} \:\:\:\overset{−\pi<{x}<\mathrm{0}} {\:}_{\mathrm{0}<{x}<\pi} \right. \\ $$

Question Number 10761    Answers: 0   Comments: 0

Express the following Γ function using tables and evaluate them using a table or Γ functions. ∫_0 ^∞ x^(−1/3) e^(−8x ) dx

$$\mathrm{Express}\:\mathrm{the}\:\mathrm{following}\:\Gamma\:\mathrm{function}\:\mathrm{using}\:\mathrm{tables} \\ $$$$\mathrm{and}\:\mathrm{evaluate}\:\mathrm{them}\:\mathrm{using}\:\mathrm{a}\:\mathrm{table}\:\mathrm{or}\:\Gamma\:\mathrm{functions}. \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}^{−\mathrm{1}/\mathrm{3}} {e}^{−\mathrm{8}{x}\:} {dx} \\ $$

Question Number 10760    Answers: 1   Comments: 1

A block of mass 2.0kg resting on a smooth horizontal plane is acted upon simultaneously by two forces 10N due north and 10N due east. The magnitude of the acceleration produce by the force on the block.

$$\mathrm{A}\:\mathrm{block}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}.\mathrm{0kg}\:\mathrm{resting}\:\mathrm{on}\:\mathrm{a}\:\mathrm{smooth}\:\mathrm{horizontal}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{acted} \\ $$$$\mathrm{upon}\:\mathrm{simultaneously}\:\mathrm{by}\:\mathrm{two}\:\mathrm{forces}\:\mathrm{10N}\:\mathrm{due}\:\mathrm{north}\:\mathrm{and}\:\mathrm{10N}\:\mathrm{due}\:\mathrm{east}. \\ $$$$\mathrm{The}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{produce}\:\mathrm{by}\:\mathrm{the}\:\mathrm{force}\:\mathrm{on}\:\mathrm{the}\:\mathrm{block}. \\ $$

Question Number 10755    Answers: 1   Comments: 0

x^2 + y^2 + xy + 2(x − y) = 9 How many solution that fulfilled the equation above ? x, y ∈ N

$${x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{xy}\:+\:\mathrm{2}\left({x}\:−\:{y}\right)\:=\:\mathrm{9} \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{solution}\:\mathrm{that}\:\mathrm{fulfilled}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{above}\:? \\ $$$${x},\:{y}\:\in\:\mathbb{N} \\ $$

Question Number 10750    Answers: 1   Comments: 0

Exact value of sin 9° = ...

$$\mathrm{Exact}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{sin}\:\mathrm{9}°\:=\:... \\ $$

  Pg 1902      Pg 1903      Pg 1904      Pg 1905      Pg 1906      Pg 1907      Pg 1908      Pg 1909      Pg 1910      Pg 1911   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com